Aljabar Linier Pertemuan 1.pptxjjtnrntriotno

199804202025062013 0 views 26 slides Oct 31, 2025
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

tjbj3rejkkjntketnk


Slide Content

Linear Algebra By : Elvira Wahyu Arum Fanani, S.Pd ., M.T. Linier Algebra 1

Robot lengan mewakili bidang mekanika & robotika di teknik mesin, di mana linear algebra digunakan untuk: menghitung pergerakan (kinematika), mengatur gaya dan torsi, mengontrol posisi ujung lengan saat mengambil/memindahkan beban. Introduction to Linear Algebra in Engineering

Pendahuluan dan Sistem Persamaan Linear (1-2) Determinan (3-4) Vektor (5-6) Ruang Vektor Euclid (7) Ruang Vektor Umum (9-10) Ruang Hasil Kali Dalam (11-12) Nilai Eiger dan Vektor Eigen (13) Transformasi Linier (14-15) Topics

Kontrak Kuliah

Sub-Topics Introduction to Linear Equation Systems Gauss–Jordan Elimination Matrices and Matrix Operations Matrix Algebra, Inverse Matrix Elementary Matrices: How to Find the Inverse Matrix Types of Matrices

Systems of Linear Equations There is a line in the plane There is a line in the plane These two lines are examples of Linear Equations. In general, a linear equation has infinite variables:   General form of linear equations   Where: and are coefficients is a constant or are variables/unknown  

INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS Exercise 1 Are the following equations linear to ?  

INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS A system of linear equations is a system consisting of more than one linear equation. The following is the general form of a linear equation: + …….+ + …….+ + …….+ + …….+   Examples:  

INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS The values of the variables that satisfy a system of linear equations are called solutions to a linear equation. In general, the number of solutions to a System of Linear Equations (SLE) / Sistem Persamaan Linier (SPL) in Indonesian is as follows: 0 Solution / no solution 1 Solution Infinitely many Solutions An SLE that has no solutions is said to be inconsistent , while an SLE that has solutions is said to be consistent.

INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS Geometrically, the SLE solution can be described as follows:

INTRODUCTION TO SYSTEMS OF LINEAR EQUATIONS Exercise 2 Determine whether the following SLE has 1 solution, multiple solutions, or no solutions! 1.

A German mathematician, he discovered Gaussian elimination , which is used to obtain Row Echelon Matrices / Matriks Eselon Baris A German geodesist, he developed Gaussian elimination into Gauss-Jordan elimination to obtain Reduced Row Echelon Matrices / Matriks Eselon Baris Tereduksi Gauss–Jordan Elimination 13

Baris nol : baris yang seluruh angkanya Adalah 0 Baris- tak - nol : baris yang mempunyai minimal nilai 1 angka tak nol Matriks esellon baris : Jika suatu baris adalah baris tak nol , maka angka tak nol pertama di baris tersebut harus angka 1. angka 1 ini disebut satu-utama (leading 1) . Baris nol harus dikelompokkan di dasar matriks . 3. Dalam 2 baris tak nol yang berurutan , satu utama dalam baris yang lebih bawah harus terletak di sebelah kanan dari satu utama baris yang lebih atas Matriks eselon baris tereduksi : memenuhi sifat 1,2, dan 3 ditambah 4. masing-masing kolom yang berisi satu utama mempunyai angka 0 di baris lainnya dalam kolom tersebut. Gauss–Jordan Elimination

Gauss–Jordan Elimination

Gauss Jordan Elimination Some a u th o rs use the t e rm Ga u ssian eli m ination to ref e r o n ly to the pr o ce d ure u n til the matrix is in e ch e lon form, a n d use t h e term Gau ss -Jordan el i mination to refer to the proc e d u re which en d s in reduc e d e c helon for m . In line a r alg e bra, Ga u s s – Jord a n e lim i n a tion is an alg o rithm for g e tting matrices in re d uc e d r ow echel o n form using ele m ent a ry r ow o p era t io n s. It is a v a riation of Ga u ssian eliminatio n .

Example 1 x + y + 2x + 3y 4x + 5 z z = 5 + 5z = 8 = 2

5 2  Solution : fo l l o win g . The augmented m atrix of the system is the 1 2 4 1 3 1 |5 5 |8 5 |2  W e w i ll now p erf o rm row op e rat i ons u n til we o bt a in a matr i x in r e du c ed row ec h el o n form. 1 2 4 1 3 1 |5 5 |8 5 |2 1 1 1 4 5 1 3 -2

R 3-4 R 1 1 1 1 5 1 3 -2 4 5 2 1 1 1 5 1 3 -2 -4 1 -18

R 3 +4R2 1 1 1 5 1 3 -2 -4 1 -18 1 1 1 5 1 3 -2 13 -26

(1/ 1 3) R 3 1 1 1 5 1 3 -2 13 -26 1 1 1 5 1 3 -2 1 -2

R2-3R3 1 1 1 5 1 3 -2 1 -2 1 1 1 5 1 -2 1 4

1 1 1 5 1 4 1 -2 1 4 1 -2 1 1 7 R 1- R 3

1 1 7 1 4 1 -2 1 4 1 -2 1 3 R1 -R2

 F r om t hi s fi n a l mat ri x, s yst e m. It is we c an r e a d t h e s o l u ti on of t he X= 3 Y=4 Z=-2  Substitute x , y, z in system equation, if the right side = left side in three equation then the sol. is correct 3+4-2=5 2*3+3*4+5*(-2)=8 4*3+5*(-2)=2

THANK YOU! See you in our next class
Tags