Amino acids-Classification, Structure, and reactions of amino acids.pdf

AdithyaRajesh15 39 views 128 slides Jul 06, 2024
Slide 1
Slide 1 of 128
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128

About This Presentation

Notes


Slide Content

Amino acids-Classification, Structure, and
reactions of amino acids
1

•Aminoacidsareorganiccompoundsthatserveasthebuildingblocksofproteins.
•Proteins,inturn,areessentialmacromoleculesthatplayacrucialroleinthestructureandfunction
oflivingorganisms.
•Aminoacidsarecharacterizedbythepresenceofbothamino(-NH2)andcarboxyl(-COOH)
functionalgroups,alongwithasidechain(Rgroup)thatvariesamongdifferentaminoacids.
2

3

•AminoGroup(-NH2):Thisgroupconsistsofanitrogenatombondedtotwohydrogenatoms.It
impartsbasicpropertiestotheaminoacid.
•CarboxylGroup(-COOH):Thisgroupiscomposedofacarbonatomdouble-bondedtoanoxygen
atomandsingle-bondedtoahydroxylgroup(-OH).Itgivestheaminoacidacidicproperties.
•SideChain(RGroup):Thesidechainisavariablegroupthatdistinguishesdifferentaminoacids.
•Itcanrangefromasinglehydrogenatomtocomplexstructures.
•Thenatureofthesidechaininfluencestheaminoacid'sproperties.
4

Early Discoveries:
•Asparagine(1806):
•DiscoveredbyFrenchchemistLouisNicolasVauquelininasparagusjuice.
•Namedafterasparagus,whereitwasfirstidentified.
•GlutamicAcid(1865):
•GermanchemistKarlHeinrichRitthausenisolatedglutamicacidfromwheatgluten.
•Namedforitsroleintheacidichydrolysisofgluten.
•CystineandCysteine(1810-1899):
•Cystine,adimerofcysteine,wasisolatedfromurinarycalculibyWilliamHydeWollastonin1810.
•ThestructureofcysteinewasdeterminedbyEmilFischerin1899.
5

Classification of Amino Acids
•Non-polar, aliphatic amino acids:
•Glycine (Gly)
•Alanine (Ala)
•Valine (Val)
•Leucine (Leu)
•Isoleucine (Ile)
•Methionine (Met)
•Proline (Pro)
6

7

8

•Polar, uncharged amino acids:
•Serine (Ser)
•Threonine (Thr)
•Cysteine (Cys)
•Asparagine (Asn)
•Glutamine (Gln)
9

10

11

•Aromatic amino acids:
•Phenylalanine (Phe)
•Tyrosine (Tyr)
•Tryptophan (Trp)
12

•Positively charged (basic) amino acids:
•Lysine (Lys)
•Arginine (Arg)
•Histidine (His)
13

•Negativelycharged(acidic)aminoacids:
•Asparticacid(Asp)
•Glutamicacid(Glu)
14

15

•Aminoacidsareclassifiednutritionallybasedontheiressentiality,meaningwhetherthehuman
bodycansynthesizethemendogenously(non-essential)oriftheymustbeobtainedthroughthe
diet(essential).
•Thisnutritionalclassificationisimportantforunderstandingdietaryrequirementsandensuringthat
thebodyreceivesanadequatesupplyofallessentialaminoacids.
•Theclassificationincludesthreemaincategories:essential,non-essential,andconditionally
essentialaminoacids.
16

•EssentialAminoAcids:
•Theseaminoacidscannotbesynthesizedbythehumanbodyinsufficientamounts,sotheymust
beobtainedfromthediet.Therearenineessentialaminoacids:
•Isoleucine(Ile):
•Importantformusclemetabolism,immunefunction,andenergyregulation.
•Leucine(Leu):
•Playsakeyroleinproteinsynthesis,musclerepair,andgrowth.
•Lysine(Lys):
•Essentialforproteinsynthesis,collagenformation,andcalciumabsorption.
•Methionine(Met):
•Precursortootheraminoacids;involvedinmetabolismandantioxidantdefense.
17

•Phenylalanine(Phe):
•Essentialforthesynthesisofneurotransmittersandotherimportantmolecules.
•Threonine(Thr):
•Necessaryfortheformationofproteins,collagen,andelastin.
•Tryptophan(Trp):
•Precursortoserotoninandmelatonin;importantformoodandsleepregulation.
•Valine(Val):
•Involvedinmusclemetabolism,tissuerepair,andenergyproduction.
•Histidine(His):
•Importantforthegrowthandrepairoftissues;aprecursortohistamine.
18

•Non-essentialAminoAcids:
•Thehumanbodycansynthesizetheseaminoacids,sotheyarenotstrictlyrequiredinthediet.
•However,theirsynthesismaynotalwaysbesufficientundercertainconditionssuchasillnessor
stress.Thereareelevennon-essentialaminoacids:
•Alanine(Ala):
•Importantforglucoseproductionandenergymetabolism.
•Arginine(Arg):
•Involvedinimmunefunction,hormonerelease,andbloodvesselrelaxation.
•Asparagine(Asn):
•Importantforthesynthesisofproteinsandnucleotides.
19

•AsparticAcid(Asp):
•Involvedintheureacycle,whichhelpseliminateammoniafromthebody.
•Cysteine(Cys):
•Aprecursortoantioxidantmolecules;importantforskinandhairhealth.
•GlutamicAcid(Glu):
•Functionsasaneurotransmitterandisinvolvedincellularmetabolism.
•Glutamine(Gln):
•Importantforimmunefunctionandmaintaininggutintegrity.
20

•Glycine(Gly):
•Importantforthesynthesisofproteins,DNA,andRNA.
•Proline(Pro):
•Involvedincollagensynthesisandmaintainingskinelasticity.
•Serine(Ser):
•Importantforthesynthesisofproteins,nucleotides,andotheraminoacids.
•Tyrosine(Tyr):
•Precursortoneurotransmitters;importantforthesynthesisofhormones.
21

•ConditionallyEssentialAminoAcids:
•Theseaminoacidsaretypicallyconsiderednon-essentialbecausethebodycansynthesizethem.
•However,undercertainconditions,thebody'sabilitytoproducethemmaybecompromised,
makingthemconditionallyessential.
•Examplesinclude:
•Arginine(Arg):
•Incertainsituations,suchasduringgrowth,illness,ortrauma,thebody'sabilitytoproduce
argininemaybeinsufficient.
22

•Cysteine(Cys):
•Duringcertainconditions,suchasoxidativestressorillness,cysteinemaybecomeconditionally
essential.
•Tyrosine(Tyr):
•Insituationswherethereisalimitedsupplyofphenylalanine,asseeninphenylketonuria(PKU),
tyrosinemaybecomeconditionallyessential.
•Understandingthenutritionalclassificationofaminoacidsiscrucialfordesigningbalanceddiets
thatprovidethenecessarybuildingblocksforproteinsynthesisandoverallhealth.
•Avariedandbalanceddietthatincludesadiverserangeofproteinsourcestypicallyensuresan
adequatesupplyofbothessentialandnon-essentialaminoacids.
23

Reactions of amino acids
•Aminoacidsparticipateinvariousbiochemicalreactions,contributingtoessentialprocessesinliving
organisms.Herearesomekeyreactionsinvolvingaminoacids:
•PeptideBondFormation:
•Reaction:Condensationreactionbetweentheaminogroupofoneaminoacidandthecarboxylgroup
ofanother,formingapeptidebond.
•Catalyst:Ribosomesandenzymescalledpeptidyltransferases.
•Importance:Peptidebondslinkaminoacidstogethertoformproteins.
24

•AminoAcidTransamination:
•Reaction:Transferofanaminogroupfromoneaminoacidtoaketoacid,forminganewamino
acidandanewketoacid.
•Catalyst:Aminotransferaseenzymes.
•Importance:Involvedinthesynthesisofnon-essentialaminoacidsandinthecatabolismofamino
acids.
25

26

•Deamination:
•Reaction:Removalofanaminogroupfromanaminoacid,formingammonia(NH3)andaketoacid.
•Catalyst:Deaminaseenzymes.
•Importance:Importantinthebreakdownofaminoacidsforenergyproduction.
27

•Decarboxylation:
•Reaction:Removalofacarboxylgroupfromanaminoacid,resultinginthereleaseofcarbon
dioxide(CO2)andamines.
•Catalyst:Decarboxylaseenzymes.
•Importance:Canbepartofvariousmetabolicpathways,includingthesynthesisof
neurotransmitters.
28

Proteins-peptide bond
BIOCHEMISTRY
BTY 103
29

•Proteinsarelarge,complexmoleculesessentialforthestructure,function,andregulationofcells
andtissuesinlivingorganisms.
•Composedofaminoacidslinkedbypeptidebonds,proteinsexhibitawidevarietyofstructures
andfunctions.
30

•PrimaryStructure:
•Thelinearsequenceofaminoacidsinapolypeptidechain.
•Example:Theprimarystructureofinsulinisachainof51aminoacids.
•SecondaryStructure:
•Localizedfoldingpatternsresultingfromhydrogenbonding,formingalphahelicesorbetasheets.
•Example:Alphahelicesinkeratin,astructuralproteininhairandnails.
•TertiaryStructure:
•Overallthree-dimensionalshapeofasinglepolypeptidechain,influencedbyinteractionsbetween
aminoacidsidechains.
•Example:Myoglobin,aproteininvolvedinoxygenstorageinmusclecells.
•QuaternaryStructure:
•Arrangementofmultiplepolypeptidechains(subunits)inaproteinwithmorethanonesubunit.
•Example:Hemoglobin,consistingoffoursubunits,eachwithahemegroupforoxygenbinding.
31

Functions of Proteins:
•Enzymes:
•Example:Catalase,anenzymethatcatalyzesthebreakdownofhydrogenperoxideincells.
•StructuralProteins:
•Example:Collagen,providingstrengthandflexibilitytoconnectivetissues.
•TransportProteins:
•Example:Hemoglobin,transportingoxygeninthebloodstream.
•Hormones:
•Example:Insulin,regulatingbloodglucoselevels.
•Antibodies:
•Example:ImmunoglobulinG(IgG),playingakeyroleintheimmuneresponse.
32

•Contractile Proteins:
•Example: Actin and myosin, enabling muscle contraction.
•Storage Proteins:
•Example: Ferritin, storing and releasing iron in cells.
•Receptor Proteins:
•Example: Rhodopsin, a light-sensitive receptor protein in the retina.
•Chaperone Proteins:
•Example: Heat shock proteins, assisting in the proper folding of other proteins.
•Cell Adhesion Proteins:
•Example: Integrins, facilitating cell-to-cell and cell-to-matrix interactions.
33

Protein synthesis
•Proteinsynthesisisacomplexandhighlyregulatedcellularprocessthatinvolvestheproductionof
proteinsfromthegeneticinformationstoredinDNA.
•Itoccursintwomainstages:transcriptionandtranslation.
34

Transcription
•Initiation:
•RNApolymerasebindstothepromoterregionofageneonDNA.
•DNAunwinds,andtheRNApolymeraseinitiatesthesynthesisofacomplementarymRNAstrand.
•Elongation:
•RNApolymerasemovesalongtheDNAtemplate,synthesizinganmRNAstrandbyadding
complementarynucleotides.
•mRNAissynthesizedinthe5'to3'direction.
35

•Termination:
•TranscriptionstopswhenRNApolymerasereachesaterminationsignalontheDNA.
•mRNAisreleased,andtheDNAhelixreforms.
•Processing:
•Ineukaryotes,theinitialmRNAtranscript(pre-mRNA)undergoessplicing,wherenon-coding
intronsareremoved,andcodingexonsarejoined.
•A5'capandapoly-AtailareaddedtothemRNA,facilitatingstabilityandtranslation.
36

37

38

Translation
•Initiation:
•mRNA,smallribosomalsubunit,andinitiatortRNA(carryingmethionine)formacomplex.
•Thecomplexbindstothestartcodon(AUG)onthemRNA.
•Elongation:
•Alargerribosomalsubunitjoinsthecomplex.
•tRNAmoleculesbringaminoacidstotheribosome,guidedbythemRNAcodons.
•Apeptidebondformsbetweenadjacentaminoacids,formingagrowingpolypeptidechain.
•Termination:
•Theribosomereachesastopcodon(UAA,UAG,orUGA)onthemRNA.
•Releasefactorsbindtotheribosome,causingthereleaseofthecompletedpolypeptidechain.
39

40

41

Key Players in Protein Synthesis:
•mRNA(MessengerRNA):
•CarriesthegeneticcodefromDNAtotheribosomesforproteinsynthesis.
•tRNA(TransferRNA):
•TransfersaminoacidstotheribosomebasedonthemRNAcodons.
42

•Ribosomes:
•Cellularstructureswhereproteinsynthesisoccurs.
•ComposedofribosomalRNA(rRNA)andproteins.
•AminoAcids:
•Buildingblocksofproteins,broughttotheribosomebytRNA.
43

44

Regulation of Protein Synthesis:
•TranscriptionalRegulation:
•Controlofgeneexpressionatthetranscriptionallevel.
•RegulatoryproteinsandtranscriptionfactorsinfluencethebindingofRNApolymerasetothe
promoter.
•Post-transcriptionalRegulation:
•InvolvesmodificationstothemRNAtranscriptbeforetranslation.
•AlternativesplicingandmRNAstabilityregulation.
45

•TranslationalRegulation:
•Controlstherateoftranslation.
•Initiationfactorsandribosome-bindingproteinsinfluencethestartoftranslation.
•Post-translationalModification:
•Alterationstotheproteinaftertranslation.
•Phosphorylation,glycosylation,andadditionofprostheticgroups
46

Protein Synthesis in Health and Disease
•NormalGrowthandDevelopment:
•Proteinsynthesisisessentialforthegrowth,development,andmaintenanceoftissuesin
organisms.
•GeneticDisorders:
•Mutationsaffectingproteinsinvolvedintranslationcanleadtogeneticdisorders.
•Examplesincludecertaintypesofmusculardystrophyandcysticfibrosis.
47

•Cancer:
•Dysregulationofproteinsynthesisiscommonincancer.
•Overexpressionormutationsingenesinvolvedinproteinsynthesiscontributetouncontrolledcell
growth.
•NeurologicalDisorders:
•Impairedproteinsynthesisisobservedinneurodegenerativediseases.
•Alzheimer'sandParkinson'sdiseasesareassociatedwithabnormalproteinsynthesisand
aggregation.
48

Peptide bond
•Apeptidebondisacovalentchemicalbondthatformsbetweentheaminogroup(-NH₂)ofone
aminoacidandthecarboxylgroup(-COOH)ofanotheraminoacid,resultingintheformationofa
peptidelinkage.
•Thesebondsarefundamentalinthecreationofproteinsandpeptides,whichareessential
biologicalmacromolecules.
49

•CondensationReaction(DehydrationSynthesis):
•Ahydroxylgroupfromthecarboxylendofoneaminoacidreactswithahydrogenatomfromthe
aminogroupofanotheraminoacid.
•Thisresultsinthereleaseofawatermoleculeandtheformationofapeptidebond.
•Theprocessinvolvesthelossofonewatermoleculeforeachpeptidebondformed.
50
•H₂N-CH₂-COOH + HO-CH₂-COOH → H₂N-CH₂-CO-NH-CH₂-COOH + H₂O

•Peptide Bond Structure:
•Theresultingpeptidebondhasapartialdouble-bondcharacterduetoresonancebetweentwo
possiblestructures.
•The peptide bond is planar, with the carbon and nitrogen atoms involved in the bond lying in the
same plane.
51

Properties of Peptide Bonds
•Rigidity:
•Thepeptidebondintroducesrigiditytotheproteinbackboneduetothepartialdouble-bond
character.
•RotationaroundtheC-Naxisisrestricted,whichinfluencestheprotein'soverallstructure.
•Directionality:
•Peptidebondshavedirectionality,withanamino(NH)endandacarboxyl(CO)end.
•Proteinsynthesisoccursfromtheaminoterminus(N-terminus)tothecarboxylterminus(C-
terminus).
52

Peptides and Polypeptides
•Peptides:
•Short chains of amino acids linked by peptide bonds.
•Typically, peptides consist of fewer than 50 amino acids.
•Example:
•The hormone oxytocin is a peptide consisting of nine amino acids.
•Polypeptides:
•Longer chains of amino acids linked by peptide bonds.
•Proteins are often made up of one or more polypeptide chains.
•Example:
•Insulin is a protein consisting of two polypeptide chains linked by disulfide bonds.
53

•HydrolysisReaction:
•The reverse process of peptide bond formation.
•In the presence of water and specific enzymes (peptidases), a peptide bond can be broken
54
H₂N-CH₂-CO-NH-CH₂-COOH + H₂O → H₂N-CH₂-COOH + HO-CH₂-COOH

Significance of Peptide Bonds
•ProteinStructure:
•Peptidebondsarecrucialfortheprimarystructureofproteins,formingthelinearsequenceof
aminoacids.
•ProteinFunction:
•Therigidityintroducedbypeptidebondsinfluencestheoverallthree-dimensionalstructureof
proteins,whichisessentialfortheirspecificfunctions.
•BiologicalSignaling:
•Peptidehormonesandneurotransmittersplayessentialrolesincellularsignaling.
•Examplesincludeinsulin(regulatesbloodsugar)andoxytocin(involvedinsocialbonding).
55

•Enzymes:
•Numerousenzymes,essentialforcatalyzingbiochemicalreactions,consistofpolypeptidechains
linkedbypeptidebonds.
•Insummary,peptidebondsarecriticalintheformationofproteinsandpeptides,providing
structuralintegrityandcontributingtotheirdiversefunctionsinbiologicalsystems.
•Thespecificityofthepeptidebondanditsuniquepropertiesplayafundamentalroleinthe
complexityandfunctionalityofproteinsinlivingorganisms.
56

Ramachandran's plot, Structural organizations of
proteins (primary, secondary, tertiary)
BIOCHEMISTRY
BTY 103
57

Ramachandran's plot
•Ramachandran'splotislikeamapthathelpsscientistsunderstandhowthebuildingblocksof
proteins,calledaminoacids,cantwistandturn.
•Ramachandran'splot,namedafteritscreatorGopalasamudramNarayanaRamachandran,isa
graphicalrepresentationoftheenergeticallyallowedregionsofdihedralangles(phiandpsi)for
aminoacidresiduesinproteinstructures.
•Theseanglesdefinetherotationaboutthebondsbetweenthebackboneatomsofadjacentamino
acidresidues.
•Ramachandranplotsareessentialtoolsforanalyzingthestereochemicalqualityofprotein
structures.
•Imagineyou'rebuildingatoywithblocks,andeachblockrepresentsanaminoacid.Thewayyou
connecttheseblocksaffectstheshapeofthetoy.
58

59

Structural organizations of proteins
•Proteins exhibit a hierarchical structural organization that is essential for their diverse functions in
living organisms.
•The primary, secondary, tertiary, and quaternary structures represent the levels of organization in a
protein.
60

•Theprimarystructureofaproteinreferstothespecificlinearsequenceofaminoacidsinits
polypeptidechain.
•Thissequenceisencodedbythegenecorrespondingtothatprotein,anditplaysafundamental
roleindeterminingtheprotein'sultimatestructureandfunction.
•AminoAcids:
•Proteinsarecomposedofaminoacidslinkedtogetherinaspecificsequence.
•Thereare20differentaminoacidsthatcanbeincorporatedintoproteins,eachwithauniqueside
chain(R-group).
•PeptideBonds:
•Aminoacidsarelinkedbypeptidebondsduringproteinsynthesis.
•Peptidebondsformbetweentheaminogroup(-NH₂)ofoneaminoacidandthecarboxylgroup(-
COOH)ofanotheraminoacid.
•Theresultingstructureisalinearchainofaminoacids,knownasapolypeptidechain.
61

•Directionality:
•Theprimarystructureofaproteinhasdirectionality.
•ItisdescribedfromtheN-terminus(aminoterminus)totheC-terminus(carboxylterminus)ofthe
polypeptidechain.
•GeneticCode:
•Thesequenceofaminoacidsisdeterminedbythegeneticcode.
•Eachsetofthreenucleotides(codon)inDNAorRNAcorrespondstoaspecificaminoacidora
stopsignalduringproteinsynthesis.
62

•Variability:
•Theprimarystructureofproteinscanvarywidelyamongdifferentproteins.
•Evensmallchangesintheaminoacidsequencecanleadtosignificantdifferencesintheprotein's
structureandfunction.
•Post-translationalModifications:
•Insomecases,aminoacidsintheprimarystructureundergopost-translationalmodifications.
•Examplesincludephosphorylation,glycosylation,andacetylation,whichcanimpactprotein
function.
63

•Thesecondarystructureofproteinsreferstolocalfoldingpatternswithinapolypeptidechain.
•Unlikethelinearsequenceofaminoacidsintheprimarystructure,thesecondarystructure
involvesregular,repetitivearrangementsthatarestabilizedbyhydrogenbondingbetweenamino
acidresidues.
•Thetwomostcommontypesofsecondarystructuresarealphahelicesandbetasheets.
64

•AlphaHelix:
•Aright-handedhelicalorcoiledstructure.
•Eachturnofthehelixcontainsapproximately3.6aminoacidresidues.
•Thebackboneofthepolypeptidechainformsthehelix,andthesidechainsprojectoutward.
•Stabilizedbyhydrogenbondsformedbetweenthecarbonyloxygenofanaminoacidresidueand
theaminohydrogenoftheaminoacidlocatedfourresiduesaheadinthesequence.
65

•Alphakeratin,astructuralproteininhair,nails,andtheouterlayeroftheskin,containsalpha
helices.
•Providesstructuralstability.
•Typicallyfoundintheinnerregionsofglobularproteins.
66

•BetaSheet:
•Formedbyhydrogen-bondedstrandsofthepolypeptidechainrunningalongsideeachother.
•Canbeparallelorantiparallel,dependingonthedirectionoftheadjacentstrands.
•Hydrogenbondsformbetweenthecarbonyloxygenofonestrandandtheaminohydrogenofan
adjacentstrand.
67

68

•Silkfibroin,theproteininspidersilk,containsantiparallelbetasheets.
•Contributestothestabilityandrigidityofcertainproteinstructures.
•Oftenfoundinthecoreofglobularproteins.
69

•Turns and Loops:
•Short segments where the polypeptide chain changes direction.
•Connects different secondary structure elements.
•Example:
•Beta turns, which often involve four amino acid residues, are common in proteins.
•Facilitate changes in direction in the protein structure.
•Play a role in connecting different functional domains.
70

•Coiled-CoilStructures:
•Involvestwoormorealphaheliceswoundaroundeachother.
•Formsasuperhelicalstructure.
•Example:
•Theleucinezippermotif,foundinsometranscriptionfactors,isacoiled-coilstructure.
•Providesstabilityandisinvolvedinprotein-proteininteractions.
71

•ImportanceofSecondaryStructure:
•FunctionalRoles:
•Thesecondarystructureisoftenlinkedtothebiologicalfunctionofaprotein.
•ProteinFolding:
•Thesecondarystructurecontributestotheoverallfoldingofproteinsintotheirthree-dimensional
shapes.
•StructuralStability:
•Contributestothestabilityandrigidityoftheproteinstructure.
•DiseaseImplications:
•Mutationsaffectingsecondarystructureelementscanleadtodiseases.
72

•Tertiarystructurereferstothethree-dimensionalarrangementofalltheatomsinasingle
polypeptidechain,includingitssecondarystructureelements,withinaprotein.
•Itrepresentstheoverallfoldingpatternoftheproteinandiscriticalforitsspecificbiological
function.
•Thetertiarystructureisstabilizedbyvariousinteractionsbetweenaminoacidsidechains(R-
groups),includinghydrogenbonds,disulfidebonds,hydrophobicinteractions,ionicbonds,andvan
derWaalsforces.
73

•FoldingPatterns:
•Thepolypeptidechainfoldsintoaspecificthree-dimensionalshape.
•Thefoldingisdeterminedbytheinteractionsbetweenaminoacidresidues.
•StabilizingInteractions:
•HydrogenBonds:Formedbetweenpolaraminoacidsidechains.
•DisulfideBonds:Covalentbondsbetweencysteineresidues.
•HydrophobicInteractions:Nonpolarsidechainstendtoclustertogethertominimizecontactwith
water.
•IonicBonds:Attractionbetweenpositivelyandnegativelychargedsidechains.
•VanderWaalsForces:Weakattractionsbetweenatomsincloseproximity.
74

75

•FunctionalDomains:
•Tertiarystructureoftenincludesdistinctregionscalleddomains.
•Domainsarefunctionalandstructuralunitswithinaprotein.
•ActiveSites:
•Theactivesiteofanenzyme,wheresubstratebindingandcatalysisoccur,isafeatureoftertiary
structure.
•Proteinsmayhaveotherfunctionalsites,suchasbindingsitesforligandsorcofactors.
76

•FlexibilityandDynamics:
•Proteinsarenotstaticstructures;theycanundergoconformationalchanges.
•Tertiarystructurecontributestotheflexibilityanddynamicsofproteins.
•HemeBindinginHemoglobinandMyoglobin:
•Inhemoglobinandmyoglobin,thehemegroupispartofthetertiarystructure.
•Theironioninhemebindstooxygen,facilitatingoxygentransportinblood(hemoglobin)or
oxygenstorageinmuscles(myoglobin).
77

•DeterminantsofTertiaryStructure:
•AminoAcidSequence:
•Theprimarystructuredictatestheaminoacidcomposition,which,inturn,influencesthetertiary
structure.
•EnvironmentalFactors:
•Thesurroundingenvironment,includingtemperature,pH,andthepresenceofions,caninfluence
tertiarystructurestability.
•ChaperoneProteins:
•Chaperonesassistinthecorrectfoldingofproteins.
•Theypreventmisfoldingandaggregationduringproteinsynthesis.
78

•ImportanceofTertiaryStructure:
•FunctionalSpecificity:
•Tertiarystructureisintimatelylinkedtothespecificbiologicalfunctionsofproteins.
•MolecularRecognition:
•Tertiarystructurefacilitatestherecognitionandinteractionofproteinswithothermolecules,such
assubstrates,ligands,orotherproteins.
•EnzymaticActivity:
•Enzymesexhibitspecificcatalyticactivitiesbasedontheirtertiarystructure.
•DiseaseImplications:
•Mutationsorstructuralabnormalitiesinthetertiarystructurecanleadtodiseases.
79

•RibonucleaseA:
•Anenzymewithawell-studiedtertiarystructure.
•Containsseveralalphahelicesandbetasheets.
•ImmunoglobulinG(IgG):
•AnantibodywithaY-shapedtertiarystructure.
•Theantigen-bindingregionispartofthetertiarystructure.
80

Structural organizations of proteins (quaternary,
Super secondary structures: Domains, Motifs &
Folds)
BIOCHEMISTRY
BTY 103
81

•Thequaternarystructureofaproteinreferstothespatialarrangementandinteractionsbetween
multipleproteinsubunits,orpolypeptidechains,inacomplex.
•Notallproteinshavequaternarystructure;itischaracteristicofproteinscomposedoftwoormore
polypeptidechains.
•Thequaternarystructureisessentialfortheoverallfunctionandstabilityoftheseproteins.
82

•Composition:
•Subunits:Proteinswithquaternarystructureconsistofmultiplesubunits.Thesesubunitscanbe
identical(homodimers,homotrimers,etc.)ordifferent(heterodimers,heterotrimers,etc.).
•PolypeptideChains:Eachsubunitisapolypeptidechain,andtheentirecomplexisformedbythe
interactionofthesechains.
•Interactions:
•Non-CovalentBonds:Theinteractionsbetweensubunitsareprimarilynon-covalent.
•Thisincludeshydrogenbonds,vanderWaalsforces,ionicinteractions,andhydrophobic
interactions.
•CovalentBonds:Insomecases,covalentbondsmayalsoplayaroleinstabilizingthequaternary
structure.
•Disulfidebonds,formedbetweencysteineresiduesindifferentchains,areacommonexample.
83

Intra-molecular and Inter-molecular bonding
•Intramolecularbonding,alsoknownasintramolecularforces,innanoparticlesplaysacrucialrolein
theirstructure,stability,andproperties.
•Theseforcesrefertotheinteractionsthatoccurbetweenatomswithinthesamemoleculeor
nanoparticle.
84

•RoleinFunction:
•AllostericRegulation:Allostericenzymesoftenhavequaternarystructures.
•Thebindingofamoleculetoonesubunitcaninduceconformationalchangesinothersubunits,
influencingtheenzyme'sactivity.
•Changesinonesubunitcanaffecttheactivityofothersubunitswithinthecomplex.
•Stability:Theinteractionbetweensubunitscontributestotheoverallstabilityoftheprotein.
•Thequaternarystructureprovidesahigherlevelofstabilitycomparedtoindividualpolypeptide
chains.
85

•ConformationalChanges:Proteinswithquaternarystructuremayundergoconformationalchanges
inresponsetoenvironmentalcuesorbindingevents.
•Thesechangescanaffectthefunctionoftheproteincomplex.
•Understandingthequaternarystructureofproteinsiscrucialforcomprehendingtheirbiological
functions.
•TechniquessuchasX-raycrystallography,nuclearmagneticresonance(NMR)spectroscopy,and
cryo-electronmicroscopyareemployedtostudythethree-dimensionalstructureofprotein
complexesandelucidatetheirquaternaryarrangements.
86

Supersecondarystructures
•Supersecondarystructures,alsoknownasmotifsorfolds,areintermediatestructuralelementsthat
aresmallerthantheoveralltertiarystructureofaproteinbutlargerthansecondary
structureslikealphahelicesandbetastrands.
•Theyrepresentrecurringstructuralpatternsorarrangementsofsecondarystructureelementswithin
aprotein.
•Supersecondarystructurescontributetotheoverallthree-dimensionalarchitectureofaproteinand
playacrucialroleindeterminingitsfunction
87

•Beta-alpha-betaMotif(β-α-β):
•Thismotifisacommonstructuralfeatureinproteins.
•Ittypicallyconsistsofabetastrandfollowedbyanalphahelixandanotherbetastrand.
•Thebetastrandsareoftenadjacentorantiparalleltoeachother.
•Thismotifisfrequentlyinvolvedinligandbindingorenzymaticactivity.
88

•BetaHairpin:
•Abetahairpinisastructuralmotifformedbytwoadjacentantiparallelbetastrandsconnectedbya
reverseturn.
•Itresemblesahairpinshapeandisofteninvolvedinprotein-proteininteractionsandstability.
89

•Helix-turn-helixMotif:
•ThismotifiscommoninDNA-bindingproteins.
•Itconsistsoftwoalphahelicesconnectedbyashortturn.
•ThesecondhelixofteninteractswithDNAandisinvolvedinsequence-specificDNArecognition.
90

•GreekKeyMotif:
•TheGreekkeymotifisarepeatedpatternoffourantiparallelbetastrandsarrangedinasquareor
rectangularshape.
•Itisacommonstructuralmotifinbetasheetsandisofteninvolvedinformingbetabarrelsorbeta
sheets
91

•Beta-meander:
•Abeta-meanderisastructuralmotifinwhichconsecutiveantiparallelbetastrandsareconnected
byturns,formingameanderingorzigzagpattern.
•Thismotifisoftenfoundinbetasheetsandcontributestothestabilityoftheproteinstructure.
92

•Four-helixBundle:
•Proteinswithafour-helixbundlesupersecondarystructureconsistoffouralphahelicesarrangedin
abundle.
•Thisarrangementisoftenstableandprovidesastructuralframeworkforvariousfunctions,including
membraneproteinstructures.
93

•Coiled-coilMotif:
•Thecoiled-coilmotifisacommonsupersecondarystructureinvolvedin
protein-proteininteractions.
•Itisformedbytwoormorealphaheliceswindingaroundeachother,
creatingacoiledstructure.
•Thismotifisoftenfoundinstructuralandregulatoryproteins.
94

•RossmannFold:
•TheRossmannfoldisacommonsupersecondarystructureinenzymesinvolvedinbinding
nucleotides,suchasNAD(P)-bindingproteins.
•Itconsistsofalternatingbetastrandsandalphahelicesarrangedinaspecificpattern.
95

•TIMBarrel(TriosephosphateIsomeraseBarrel):
•TheTIMbarrelisasupersecondarystructurefoundinenzymes.
•Itconsistsofeightalphahelicesandeightparallelbetastrands,formingabarrel-likestructure.
•EnzymeswithTIMbarrelstructuresoftencatalyzereactionsinvolvingsmallmolecules
96

•Greek Key Barrel:
•SimilartotheGreekKeyMotif,theGreekKeyBarrelisastructuralmotiffoundinproteinswitha
barrel-likeshape.
•ItisformedbythearrangementofantiparallelbetastrandsinawaythatresemblesaGreekkey
pattern
97

•Understandingsupersecondarystructuresiscrucialindecipheringtheoverallarchitectureand
functionofproteins.
•Thesestructuralmotifscontributetothediversityofproteinstructuresandtheirabilitytoperforma
widerangeofbiologicalfunctions.
•ExperimentaltechniquessuchasX-raycrystallographyandnuclearmagneticresonance(NMR)
spectroscopyarecommonlyusedtodeterminethethree-dimensionalstructuresofproteinsand
identifysupersecondarystructureswithinthem.
98

•Exceptforthesimplestaminoacid,glycine,alloftheotheraminoacidsthatareincorporatedinto
proteinstructuresarechiralinnature.
•Althoughmostaminoacidscanexistinbothleftandrighthandedforms,lifeonEarthismadeof
lefthandedaminoacids,almostexclusively.
•Thereasonbehindthishomochirality(havingthesamehandedness)inbiologicalsystemsisnot
completelyunderstood,anditremainsoneoftheintriguingmysteriesintheoriginsoflife
99

•Proteinmisfoldingisaphenomenonwhereaproteinfailstoadoptitsnative,functionalthree-
dimensionalstructure.
•Misfoldedproteinscanhavesevereconsequencesforcellularfunctionandareassociatedwith
variousdiseases.
100

•Manyneurodegenerativediseasesarelinkedtoproteinmisfolding.
•Alzheimer'sDisease:Misfoldingofproteinslikebeta-amyloidandtauleadstotheformationof
plaquesandtanglesinthebrain.
•Parkinson'sDisease:Misfoldingofthealpha-synucleinproteincontributestotheformationof
Lewybodiesinbraincells.
•Huntington'sDisease:Expansionofarepeatedsequenceinthehuntingtinproteincauses
misfoldingandaggregationinneurons.
101

Structure and functional classification
of proteins; Structure-Function relationship with
protease as an example
BIOCHEMISTRY
BTY 103
102

Structural classification of proteins
•FibrousProteins:
•Characteristics:
•ExtendedandStrand-like:Fibrousproteinshavealongandnarrowshape.
•RepetitiveStructure:Oftencharacterizedbyrepetitivesequences.
•Examples:
•Collagen:Providesstrengthandflexibilitytoconnectivetissueslikeskin,tendons,andbones.
•Keratin:Foundinhair,nails,andtheouterlayeroftheskin.
•Fibroin:Constituentofsilkfibers.
103

•GlobularProteins:
•Characteristics:
•CompactandSpherical:Globularproteinshaveamorerounded,three-dimensionalstructure.
•DiverseFunctions:Exhibitawiderangeofbiologicalfunctions.
•Examples:
•Enzymes:Catalyzebiochemicalreactions.
•Hemoglobin:Oxygentransportinblood.
•Insulin:Regulatesglucosemetabolism.
•Myoglobin:Oxygenstorageinmuscles.
104

•MembraneProteins:
•Characteristics:
•IntegralorPeripheral:Embeddedwithinorassociatedwithcellmembranes.
•TransmembraneRegions:Manyhavehydrophobicregionsthatspanthelipidbilayer.
•Examples:
•IonChannels:Facilitatethepassageofionsacrossmembranes.
•Transporters:Movesubstancesacrossmembranes.
•Receptors:Transmitsignalsfromtheextracellularenvironmenttothecell.
105

•DisorderedProteins(IntrinsicallyDisorderedProteins-IDPs):
•Characteristics:
•LackaDefinedStructure:Donotadoptastablethree-dimensionalstructureunderphysiological
conditions.
•ConformationalFlexibility:Exhibitflexibilityanddisorder.
•Examples:
•P53:Involvedincellcycleregulationandapoptosis.
•α-Synuclein:AssociatedwithParkinson'sdisease.
•TauProtein:ImplicatedinAlzheimer'sdisease.
106

•Thestructuralclassificationofproteinshighlightsthediversityofproteinarchitectureandfunction.
•Proteinswithsimilarthree-dimensionalstructuresoftensharecommoncharacteristicsand
functions.
•Understandingthestructuralclassesofproteinsisessentialforunravelingtheirrolesinbiological
processesanddesigningtherapeuticinterventionstargetingspecificproteins.
107

Functional Classification of Proteins:
•Proteinsservediversefunctionsinlivingorganisms,andtheycanbeclassifiedbasedontheir
biologicalroles.
•Enzymes:
•Function:Catalyzebiochemicalreactionsbyloweringactivationenergy.
•Example:Catalasecatalyzesthedecompositionofhydrogenperoxideintowaterandoxygen.
108

•StructuralProteins:
•Function:Providesupportandmaintainthestructureofcellsandtissues.
•Example:Collagenisastructuralproteininconnectivetissues.
•TransportProteins:
•Function:Facilitatethemovementofsubstancesacrossbiologicalmembranesorthroughthe
bloodstream.
•Example:Hemoglobintransportsoxygeninredbloodcells
109

•StorageProteins:
•Function:Storeessentialsubstances,suchasaminoacidsormetalions,forlateruse.
•Example:Ferritinstoresironintheliver.
•HormonalProteins:
•Function:Actassignalingmoleculestoregulatephysiologicalprocesses.
•Example:Insulinregulatesglucosemetabolism.
110

•Antibodies(Immunoglobulins):
•Function:Playakeyroleintheimmunesystembyrecognizingandneutralizingforeign
substances.
•Example:IgGisanimmunoglobulininvolvedinimmuneresponses.
•ContractileProteins:
•Function:Enablemovementbycontractingandrelaxing.
•Example:Actinandmyosinarecontractileproteinsinmusclecells.
111

•ReceptorProteins:
•Function:Bindtospecificmolecules(ligands)toinitiateacellularresponse.
•Example:Gprotein-coupledreceptorsareinvolvedinsignaltransduction.
•RegulatoryProteins:
•Function:Controltheactivityofotherproteinsorcellularprocesses.
•Example:Cyclinsregulatethecellcycle.
•DefensiveProteins:
•Function:Providedefenseagainstpathogens.
•Example:Antimicrobialpeptidesactasadefensemechanismagainstbacteria.
112

•Proteinsareincrediblydiverseandversatilemoleculesthatcarryoutawiderangeoffunctions
essentialforlife.
•Theirstructure,fromthelinearsequenceofaminoacidstothecomplexthree-dimensional
arrangements,determinestheirspecificrolesinbiologicalprocesses.
•Thefunctionalclassificationreflectsthediverserolesthatproteinsplayinmaintainingthestructure
andfunctionofcellsandorganisms.
•Understandingproteinstructureandfunctioniscrucialforadvancingourknowledgeofbiologyand
developingtherapeuticinterventions.
113

Structure function relationship of proteins
•Thestructure-functionrelationshipofproteinsisafundamentalconceptinmolecularbiologythat
emphasizesthecloseconnectionbetweenthethree-dimensionalstructureofaproteinandits
biologicalfunction.
•Thespecificshapeandpropertiesofaproteindictateitsuniqueroleinthecomplexwebof
biologicalfunctions.
114

Structure of Proteases
•ActiveSite:
•CatalyticTriad:Manyproteases,particularlyserineproteases,haveacatalytictriadintheiractive
sitecomposedofserine,histidine,andaspartateresidues.
•CatalyticResidues:Theserineresidueactsasanucleophile,initiatingthecleavageofthepeptide
bond.
•DomainsandMotifs:
•ProteaseDomains:Proteasesoftenhavespecificdomainsresponsibleforsubstraterecognition
andbinding.
•ConservedMotifs:Someproteasesshareconservedsequencemotifs,suchasthecatalytictriadin
serineproteases.
115

116

•ZymogenActivation:
•InactiveForm(Zymogen):Manyproteasesareinitiallysynthesizedinaninactiveform,requiring
activation.
•ActivationPeptide:Proteolyticremovalofanactivationpeptideexposestheactivesite,rendering
theenzymecatalyticallyactive.
•Cofactors:
•MetalIons:Someproteasesrequiremetalions(e.g.,zinc)ascofactorsforcatalyticactivity.
•Coenzymes:Certainproteasesmayinteractwithcoenzymestoperformtheirfunctions.
117

•Proteasesareclassifiedbasedontheircatalyticmechanismsandactivesiteresidues.
•Herearesomeofthemaintypesofproteases:
•SerineProteases:
•CatalyticResidue:Serine.
•ActiveSiteTriad:Serine,histidine,andaspartate.
•Examples:
•Chymotrypsin,Trypsin,Thrombin,Elastase
•CysteineProteases:
•CatalyticResidue:Cysteine.
•ActiveSiteNucleophile:Cysteinethiolate.
•Examples:
•Papain
•Caspases(involvedinapoptosis)
118

•AsparticProteases:
•CatalyticResidue:Asparticacid.
•ActiveSiteAspartateDyad:Twoaspartateresidues.
•Examples:
•Pepsin(foundinthestomach)
•CathepsinD(lysosomalenzyme)
•Metalloproteases:
•CatalyticResidue:Metalion(e.g.,zinc).
•ActiveSiteMetalIon:Coordinateswithspecificaminoacidresidues.
•Examples:
•Matrixmetalloproteinases(MMPs)
•Aminopeptidases
119

•ThreonineProteases:
•CatalyticResidue:Threonine.
•ActiveSiteResidue:Partofacatalytictriad.
•Example:
•Proteasomes(involvedinproteindegradation)
•GlutamicProteases:
•CatalyticResidue:Glutamicacid.
•ActiveSiteResidue:Partofacatalyticdyad.
•Example:
•γ-Glutamyltranspeptidase(involvedinglutathionemetabolism)
120

•ATP-DependentProteases:
•EnergySource:UseATPhydrolysisforproteolysis.
•Examples:
•Clpproteasefamily,Lonprotease
•SignalPeptidases:
•Function:Involvedincleavingsignalpeptidesfromnewlysynthesizedproteins.
•Examples:
•TypeIandTypeIIsignalpeptidases
•ProteaseComplexes:
•Examples:
•Proteasome:Alargeproteasecomplexinvolvedinthedegradationofubiquitinatedproteins.
•Immunoproteasome:Aspecializedproteasomevariantwithimmune-relatedfunctions.
121

Function of Protease
•SubstrateSpecificity:
•CleavageSpecificity:Proteasesexhibitspecificityincleavingpeptidebondsatspecificaminoacid
residues.
•SubstrateRecognition:Thestructureoftheactivesitedeterminestheenzyme'sspecificityfor
certainsubstrates.
122

•Catalysis:
•NucleophilicAttack:Thecatalyticresiduesintheactivesitefacilitateanucleophilicattackonthe
carbonylcarbonofthepeptidebond.
•PhysiologicalRoles:
•Digestion:Digestiveproteasesbreakdowndietaryproteinsintopeptidesandaminoacidsfor
absorption.
•CellularRegulation:Proteasesregulatecellularprocesses,includingcellcycleprogressionand
apoptosis.
•BloodClotting:Proteaseslikethrombinplayacrucialroleinthecoagulationcascade.
123

124

•ProteaseInhibitors:
•EndogenousInhibitors:Cellsproduceproteaseinhibitorstoregulateproteaseactivity.
•TherapeuticApplications:Proteaseinhibitorsareusedinmedicineforconditionssuchas
HIV/AIDS.
•SignalingPathways:
•ActivationofSignalingMolecules:Proteasescleaveandactivatesignalingmolecules,influencing
cellularresponses.
•ProteolysisasaSignal:Thecleavageofspecificsubstratesactsasasignalinvarioussignaling
pathways.
125

Structure-Function Relationship
•Thestructure-functionrelationshipinproteasesisevidentinthefollowingways:
•ActiveSiteSpecificity:Thespecificarrangementofaminoacidresiduesintheactivesite
determinestheprotease'ssubstratespecificityandcatalyticactivity.
•DomainArchitecture:Differentproteaseshavedistinctdomainarchitecturesthatcontributetotheir
uniquefunctionsandsubstraterecognition.
•QuaternaryStructure:Thearrangementofsubunitsinmultimericproteasesinfluencestheir
enzymaticactivityandregulation.
126

•CofactorDependency:Proteasesmayrequirespecificcofactorsforoptimalcatalyticactivity,
emphasizingtheimportanceoftheoverallenzymestructure.
•ZymogenActivation:Thepresenceofanactivationpeptideinzymogenshighlightsthestructural
changesnecessaryforproteaseactivation.
•EvolutionaryConservation:Despitevariationsinsequences,conservedmotifsandstructures
highlighttheevolutionaryimportanceofspecificelementsinproteases.
127

128