286 Eduardo Espinoza Ramos
, . \\x -4 , x e[-6,0] , . Jx + 2 , x > -2
g) ,f(x) = \' ' J , g(x) =
2 , jte [l,6 > l 1 , x < -2
ux 4 f|x - l|[ |.v ig (3 - x )|] , xe[0,6] [ | x -2 \ , x e < - 8 ,3 >
h) Si f(x) = ■ , , g(x) = {
x 2 , x e< 6 ,1 0 > |x|x-2| , x e<3,8]
[x2 -4 x -4 .s7 g (|x |-3 ) , x e [0,2]
^ |], .v/ x < 3
x~ +1
X2 + X + 1
x - 1
, si x e [5,10 >
j) Si /( x ) =
V x2 +16 , x e < - 4 ,- 2 > ,
2x + 4 , x e < - 3 ,- l >
[| x |] — 2x , x e [ - l,2 > , g{x) -
x 2 + 2 | , xe<4,6>
[|x2- 2 1 , x g [-1,5 >
21; Determinar fog , cuando f = {(l,3),(2,4),(3,5),(4,6)f y g = {(4,l),(l,2),(6,3),(0,-2)}
(22) Determinar fog , g o f, cuando: f= {(0,1),(1,2),(2,3),(4,3),(5,2)}
g = {(6,7),(5,4),(4,3),(2,4),(1,4),(0,7)}
0 Hallar gof sí: f= {(2,5), (3,4), (6,2), (5,0), (1,7)} y g= {(4,8),(5,3),(0,9),(2,2),(7,4)}
@ Hallar gof sí: f = {(2,5),(5,7),(3,3),(8,1)} y g = {(1,2),(2,3),(4,5),(6,7)}
®
Í3 x -2 ,xeM ,4> ,
Sí / (x) = <^ ; g(x) = x" +1. Hallar (fog)(x)
[x , xe[4,6]
(26) Consideremos las funciones reales de variable real
[x2 x < 0 íx + 2 , x — 1
g(x) = \ ' ; f(x) = \ . Hallar fog
[ l - x , x > 0 [x — 1 , x > l
{Y n Sean las funciones f y g definidas por: