28 E. Pap
9. Czachor, M.: Non−Newtonian mathematics instead of non−Newtonian physics: dark matter and
dark energy from a mismatch of arithmetics. Found. Sci.26, 75–95 (2021).https://doi.org/10.
1007/s10699−020−09687−9(0123456789(),−volV)(0123456789().,−volV)
10. Carbajal−Hernandez, J.J., Sanchez−Fernandez, L.P., Carrasco−Ochoa, J.A.: Assessment and
prediction of air quality using fuzzy logic and autoregressive models. Atmos. Environ.60,
3–50 (2012)
11. Choquet, G.: Theory of capacities. Ann. lnst. Fourier5, 131–295 (1953)
12. Deisenroth, M.P., Faisal, A.A., Ong, C.S.: Mathematics for Machine Learning. Cambridge
University Press, Cambridge (2020)
13. Deli´c, M., Nedovi´c, E., Pap, E.: Extended power−based aggregation of distance functions and
application in image segmentation. Inf. Sci.494, 155–173 (2019)
14. Denneberg, D.: Non−additive Measure and Integral. Kluwer, Dordrecht (1994)
15. Do, Y., Thiele, C.:L
p
theory for outer measures and two themes of Lennart Carlson united.
Bull. Amer. Math. Soc.52(2), 249–296 (2015)
16. Dubois, D., Pap, E., Prade, H.: Hybrid probabilistic−possibilistic mixtures and utility functions.
In: Fodor, J., de Baets, B., Perny, P. (eds. ) Preferences and Decisions Under Incomplete
Knowledge, volume 51 of Studies in Fuzziness and Soft Computing, pp. 51–73. Springer,
Berlin (2000)
17. Even, Y., Lehrer, E.: Decomposition−integral: unifying Choquet and concave integrals. Econom.
Theory56, 33–58 (2014)
18. Gal, G.: On a Choquet−Stieltjes type integral on intervals. Math. Slovaca69, 801–814 (2019)
19. Gilboa, I., Schmeidler, D.: Additive Representations of non−additive measures and the Choquet
integral. Ann. Oper. Res.52, 43–65 (1994)
20. Grabisch, M.: Set Functions. Games and Capacities in Decision Making. Springer, Cham (2016)
21. Grabisch, M., Marichal, J.L., Mesiar, R., Pap, E.: Aggregation Functions. Encyclopedia of
Mathematics and Its Applications, vol. 127, Cambridge University Press, Cambridge (2009)
22. Grossman, M., Katz, R.: Non−Newtonian Calculus. Lee Press, Pigeon Cove (1972)
23. Grbi´c, T., Medi´c, S., Perovi´c, A., Mihailovi´c, B., Novkovi´c, N., Durakovi´c, N.: A premium
principle based on theg−integral. Stoch. Anal. Appl.35(3), 465–477 (2017)
24. Greco, S., Mesiar, R., Rindone, F.: Discrete bipolar universal integral. Fuzzy Sets Syst.252,
55–65 (2014)
25. Joe, H.: Dependence Modeling with Copulas. Monographs on Statistics and Applied Proba−
bility, vol. 134. CRC Press, Boca Raton (2015)
26. Hadži´c, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces. Mathematics and Its
Applications, vol. 536. Kluwer Academic Publishers, Dordrecht (2001)
27. Kaluszka, M., Krzeszowiec, M.: Pricing insurance contracts under cumulative prospect theory.
Insur. Math. Econ.50, 159–166 (2012)
28. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer, Amsterdam (2000)
29. Klement, E.P., Mesiar, R., Pap, E.: Integration with respect to decomposable measures based on
a conditionally distributive semiring on the unit interval. Int. J. Uncertain. Fuzziness Knowl.−
Based Syst.8, 701–717 (2000)
30. Klement, E.P., Mesiar, R., Pap, E.: A universal integral as common frame for Choquet and
Sugeno integral. IEEE Trans. Fuzzy Syst.18(1), 178–187 (2010)
31. Klement, E.P., Li, J., Mesiar, R., Pap, E.: Integrals based on monotone set functions. Fuzzy
Sets Syst.281, 88–102 (2015)
32. Kolokoltsov, V.N.: Nonexpansive maps and option pricing theory. Kybernetika34(6), 713–724
(1998)
33. Kuczma, M., Gilányi, A. (ed.): An Introduction to the Theory of Functional Equations and
Inequalities, Cauchy’s Equation and Jensens Inequality, 2nd edn. Birkhäuser, Basel (2009)
34. Lehrer, E.: A new integral for capacities. Econom. Theory39, 157–176 (2009)
35. Lehrer, E., Teper, R.: The concave integral over large spaces. Fuzzy Sets Syst.159, 2130–2144
(2008)
36. Litvinov, G.L., Maslov, V.P. (eds): Idempotent Mathematics and Mathematical Physics. Con−
temporary Mathematics, vol. 377. American Mathematical Society, Providence (2003)