Bab 3_Interpolasi Part 2 (Pertemuan 5).pptx

mikaela100417 1 views 27 slides Aug 31, 2025
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

Metode Numerik


Slide Content

METODE NUMERIK 1 INTERPOLASI DWI HARTINI TEKNIK DIRGANTARA ITDA TD036

Interpolasi Polinomial Newton 2 Secara umum: f 1 (x) = b + b 1 (x- x ) f 2 (x) = b + b 1 (x- x ) + b 2 (x-x )(x- x 1 ) f 3 (x) = b + b 1 (x- x ) + b 2 (x-x )(x- x 1 ) + b 3 (x-x )(x-x 1 )(x- x 2 ) … f n (x) = b + b 1 (x- x ) + b 2 (x-x )(x- x 1 ) + b 3 (x-x )(x-x 1 )(x- x 2 ) + … + b n (x-x 1 )(x-x 2 )…(x- x n- 1 )

Interpolasi Polinomial Newton 3 Dengan: b = f(x ) b 1 = f[x 1 , x ] b 2 = f[x 2 , x 1 , x ] … b n = f[x n , x n- 1 , x n- 2 , . . . ., x ]

4 Diketahui: n titik ( x 1 , y 1 ), ( x 2 , y 2 ), …, ( x n , y n ) ( y i = f ( x i ), i =1,2,…, n ) Ditanya : f n ( x ) = a + a 1 x + a 2 x 2 + … + a n x n yang melewati n titik tersebut . Interpolasi Polinomial Newton

dengan 5 Interpolasi Polinomial Newton

Interpolasi Polinomial Newton Diketahui : (1, 0), (4, 1.386294), (6, 1.791759), (5, 1.609438) (dari fungsi ln x ) Ditanya : Perkirakan ln 2 dengan interpolasi Newton orde ke- 3 6

Interpolasi Polinomial Newton 7 Interpolasi Newton Orde 2:  butuh 3 titik x = 1 x 1 = 4 x 2 = 6 f(x ) = f(x 1 ) = 1.386294 f(x 2 ) = 1.791759 b = f(x ) = f 2 (x) = b + b 1 (x- x ) + b 2 (x-x )(x- x 1 )

Interpolasi Polinomial Newton 8 x0 = 1 x1 = 4 x2 = 6 f(x0) = f(x1) = 1.386294 f(x2) = 1.791759 f 2 (x) = b + b 1 (x- x ) + b 2 (x-x )(x- x 1 ) f 2 (x) = + 0,462(2- 1) – 0,052 (2-1)(2- 4 ) f 2 (x) = 0,566

Interpolasi Polinomial Newton 9 Interpolasi Newton Orde 3:  butuh 4 titik x = 1 x 1 = 4 x 2 = 6 x 3 = 5 f(x ) = f(x 1 ) = 1.386294 f(x 2 ) = 1.791759 f(x 3 ) = 1.609438 b = f(x ) =

Interpolasi Polinomial Newton f 3 (2) = 0.629 10 x = 1 x 1 = 4 x 2 = 6 x 3 = 5 f(x ) = f(x 1 ) = 1.386294 f(x 2 ) = 1.791759 f(x 3 ) = 1.609438

Interpolasi Polinomial Newton  𝑎 = ( 0,6931472−0,566 0,6931472 )100% = 18,343% Kesalahan perkiraan terbaik Orde 2 Orde 3  𝑎 = ( 0,6931472−0,629 11 0,6931472 )100% = 9,254%

Interpolasi Polinomial Newton (Ex.) 12 Hitung nilai tabel distribusi ‘Student t’ pada derajat bebas dengan  = 4%, jika diketahui: t 10% = 1,476 t 5% = 2,015 t 2,5% = 2,571 t 1% = 3,365 dengan interpolasi Newton orde 2 dan orde 3!

Interpolasi Polinomial Newton(Ex.) Interpolasi Newton Orde 2:  butuh 3 titik f(x ) = 2,015 f(x 1 ) = 2,571 f(x 2 ) = 3,365 x = 5 x 1 = 2,5 x 2 = 1 b = f(x ) = 2,015 13

Interpolasi Polinomial Newton (Ex.) 14 f 2 (x) = b + b 1 (x- x ) + b 2 (x- x )(x- x 1 ) = 2,015 + (- 0,222) (4- 5) + 0,077 (4-5)(4- 2,5) = 2,121

Interpolasi Polinomial Newton(Ex.) 15 Interpolasi Newton Orde 3:  butuh 4 titik x = 5 x 1 = 2,5 x 2 = 1 x 3 = 10 f(x ) = 2,015 f(x 1 ) = 2,571 f(x 2 ) = 3,365 f(x3) = 1,476

Interpolasi Polinomial Newton (Ex.) b = f(x ) = 2,015 b 1 = - 0,222  f[x 1 ,x ] b 2 = 0,077  f[x 2 ,x 1 ,x ] b 3 = ?  f[x 3 ,x 2 ,x 1 ,x ] 16 x = 5 f(x ) = 2,015 x 1 = 2,5 f(x 1 ) = 2,571 x 2 = 1 f(x 2 ) = 3,365 x 3 = 10 f(x 3 ) = 1,476

Interpolasi Polinomial Newton(Ex.) 17 f 3 (x) = b + b 1 (x- x ) + b 2 (x- x )(x- x 1 ) + b 3 (x- x )(x-x 1 )(x- x 2 ) = 2,015 + (- 0,222)(4- 5) + 0,077 (4-5)(4- 2,5) + (-0,007)(4-5)(4-2,5)(4- 1) = 2,015 + 0,222 + 0,1155 + 0,0315 = 2,153

Kesalahan Interpolasi Polinomial 18 R n = |f[x n+1 ,x n ,x n-1 ,…,x ](x- x )(x- x 1 )…(x-x n )| Menghitung R 1 Perlu 3 titik (karena ada x n+1 ) R 1 = |f[x 2 ,x 1 ,x ](x- x )(x- x 1 )| Menghitung R 2 Perlu 4 titik sebagai harga awal R 2 = |f[x 3 ,x 2 ,x 1 ,x ](x-x )(x- x 1 )(x- x 2 )|

Kesalahan Interpolasi Polinomial (Ex.) 19 Berdasarkan contoh: R 1 = |f[x 2 ,x 1 ,x ](x-x )(x-x 1 )| = |0.077 (4-5)(4-2.5)| = 0.1155 R 2 = |f[x 3 ,x 2 ,x 1 ,x ](x- x )(x-x 1 )(x- x 2 )| = |- 0.007 (4-5)(4-2.5)(4- 1)| = 0.0315

Interpolasi Lagrange Interpolasi Lagrange pada dasarnya dilakukan untuk menghindari perhitungan dari differensiasi terbagi hingga (Interpolasi Newton) Rumus: dengan 20

Interpolasi Lagrange Pendekatan orde ke- 1 f 1 (x) = L (x)f(x ) + L 1 (x)f(x 1 ) i=0, j=1, n=1, j≠i i=1, j=0, n=1 21

Interpolasi Lagrange Pendekatan orde ke- 2 f 2 (x) = L (x)f(x ) + L 1 (x)f(x 1 ) + L 2 (x)f(x 2 ) 22

Interpolasi Lagrange Pendekatan orde ke- 3 f 3 (x) = L (x)f(x ) + L 1 (x)f(x 1 ) + L 2 (x)f(x 2 ) + L 3 (x)f(x 3 ) 3 3 2 3 2 2 3 2 2  f  x      3 1   x  x  x  x  x  x   x  x  x  x 1  x  x 2  f  x      x  x   1     x  x  x  x  x  x  x  x 1  x  x 3 23

Interpolasi Lagrange (Ex.) 24 Berapa nilai distribusi t pada  = 4 %?  = 2,5 %  x = 2,5  f(x ) = 2,571  = 5 %  x 1 = 5  f(x 1 ) = 2,015  = 10 %  x 2 = 10  f(x 2 ) = 1,476

Interpolasi Lagrange (Ex.) Pendekatan orde ke- 1 f 1 (x) = L (x)f(x ) + L 1 (x)f(x 1 ) 1 1 1 f  x  f  x   x  x 1 x  x x  x 1 x  x f  x    25     2,237  2,5  5   5  2,5    4  5   2,571    4  2,5   2,015  x = 2,5  f(x ) = 2,571 x 1 = 5  f(x 1 ) = 2,015 x 2 = 10  f(x 2 ) = 1,476

Interpolasi Lagrange (Ex.) Pendekatan orde ke- 2 f 2 (x) = L (x)f(x ) + L 1 (x)f(x 1 ) + L 2 (x)f(x 2 ) 26 x = 2,5  f(x ) = 2,571 x 1 = 5  f(x 1 ) = 2,015 x 2 = 10  f(x 2 ) = 1,476

Interpolasi Lagrange (Ex.) 27 Latihan Gunakan interpolasi polinomial Lagrange order dua untuk menghitung ln 2 ? x = 1 x 1 = 4 x 2 = 6 f(x ) = f(x 1 ) = 1,3862944 f(x 2 ) = 1,791759 5
Tags