BCD ADDER

29,971 views 24 slides Sep 05, 2015
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

A topic from "Digital Logic Design"


Slide Content

Welcome
To
Our presentation
Presented by
Shahriar Reza Rusel
ID-011132065
Samrin Ahmed Riya
ID-011142021
Rayhan Ahamed
ID-011142141
Rakib Hasan Suvo
ID-011142016
Dept-CSE

 A digital circuit.
 Sums the amplitudes of two input signals.
Representation of Adders:
 Binary-Coded-Decimal or Excess-3
Processor Use:
 Calculate addresses, table indices and
similar operations.
What is ADDER ?

Types of Adder

Half ADDER:
 A computational device.
 Adds two binary digits .
 No carry as input.
 Produces a sum bit and
a carry bit.
Types of Adder
INPUTS OUTPUTS
A B SUM CARRY
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Half Adder Circuit

Full Adder:
A computational device.
Adds three one-bit binary numbers.
Produces a sum of two inputs and a carry value.

Types of ADDER (Cont...)
INPUTS OUTPUTS
A B CIN COUT S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
Full Adder Circuit

Also Known as 8421 digit.
A 4-bit binary adder.
Adds two 4-bit digits having a BCD.
Resulting format 4-bit output digit.
Sum exceeding decimal value of 9, a carry’s
generated.
What is BCD ADDER?

Conversion and Coding
(12)
10
1100 00010010
Conversion
Coding
(using BCD code
for each digit)

A 4-bit BCD code’s used to represent 0 to 9 digits.
Adding BCD numbers using BCD addition.
Adding 6 with the sum while exceeding 9 and generating a carry.
By adding 6 to the sum, make an invalid digit valid.
.

Maximum sum is 9+9 + 1 = 19
Max digit
Carry from previous digits

Number C S3 S2 S1 S0
0 0 0 0 0 0
1 0 0 0 0 1
2 0 0 0 1 0
3 0 0 0 1 1
4 0 0 1 0 0
5 0 0 1 0 1
6 0 0 1 1 0
7 0 0 1 1 1
8 0 1 0 0 0
9 0 1 0 0 1

Number C S3 S2 S1 S0
10 1 0 0 0 0
11 1 0 0 0 1
12 1 0 0 1 0
13 1 0 0 1 1
14 1 0 1 0 0
15 1 0 1 0 1
16 1 0 1 1 0
17 1 0 1 1 1
18 1 1 0 0 0
19 1 1 0 0 1

BCD adder sum Binary sum
Number
CS3S2S1S0
101 0 0 0 0
111 0 0 0 1
121 0 0 1 0
131 0 0 1 1
141 0 1 0 0
151 0 1 0 1
161 0 1 1 0
171 0 1 1 1
181 1 0 0 0
191 1 0 0 1
Ks3s2s1s0
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
+6

If sum is up to 9
Use the regular Adder.
If the sum > 9
Use the regular adder and add 6 to the result

Sum of two BCD digits exceeding 9.
A carry is generated.
Converting the invalid digit into valid digit.
Carry generated by adding 6 to the invalid BCD digit’s
passed on to the next BCD digit.

Binary sum
Number
K S3 S2 S1 S0
10 0 1 0 1 0
11 0 1 0 1 1
12 0 1 1 0 0
13 0 1 1 0 1
14 0 1 1 1 0
15 0 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
C = K +

Binary sum
Number
K S3 S2 S1 S0
10 0 1 0 1 0
11 0 1 0 1 1
12 0 1 1 0 0
13 0 1 1 0 1
14 0 1 1 1 0
15 0 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
C = K + S3*S2+

Binary sum
Number
K S3 S2 S1 S0
10 0 1 0 1 0
11 0 1 0 1 1
12 0 1 1 0 0
13 0 1 1 0 1
14 0 1 1 1 0
15 0 1 1 1 1
16 1 0 0 0 0
17 1 0 0 0 1
18 1 0 0 1 0
19 1 0 0 1 1
C = K + S3*S2+
S3*S1

4-bit Adder
4-bit Adder
0 0
s3s2s1s0
S3S2S1S0
Cin
K
0 1 1 00 1 1 1
1 1 0 1
0
1 1 0 1
1 1
1
0 0 1 1
1
0
1

 Applications in Decimal Number Display.
Systematic running of counters.
Organized digital clocks.

http://www.electronics-
tutorials.ws/combination/comb_7.html
http://www.encyclopedia.com/doc/1O11-
binarycodeddecimal.html
http://www2.elo.utfsm.cl/~lsb/elo211/aplicaci
ones/katz/chapter5/chapter05.doc4.html
https://tams-www.informatik.uni-
hamburg.de/applets/hades/webdemos/20-
arithmetic/10-adders/bcd-adder.html
Tags