References11Big data in radiation oncology
56. Benedict, S. H. et al. Overview of the American Society for Radiation Oncology-National Institutes of Health-
American Association of Physicists in Medicine Workshop 2015: Exploring opportunities for radiation oncology
in the era of big data. Int. J. Radiat. Oncol. Biol. Phys. 95, 873–879 (2016).
57. Benedict, S. H., El Naqa, I. & Klein, E. E. Introduction to big data in radiation oncology: Exploring opportu-
nities for research, quality assessment, and clinical care. Int. J. Radiat. Oncol. Biol. Phys. 95, 871–872 (2016).
58. Huser, V. & Cimino, J. J. Impending challenges for the use of big data. Int. J. Radiat. Oncol. (2015).
doi:10.1016/j.ijrobp.2015.10.060.
59. Skripcak, T. et al. Creating a data exchange strategy for radiotherapy research: Towards federated databases and
anonymised public datasets. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 113, 303–309 (2014).
60. Roelofs, E. et al. Benefits of a clinical data warehouse with data mining tools to collect data for a radiotherapy
trial. Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 108, 174–179 (2013).
61. Li, M., Yu, S., Ren, K. & Lou, W. Securing personal health records in cloud computing: Patient-centric and
fine-grained data access control in multi-owner settings. in Security and Privacy in Communication Networks
(eds. Jajodia, S. & Zhou, J.) 89–106 (Springer, Berlin, Germany, 2010).
62. Canuel, V., Rance, B., Avillach, P., Degoulet, P. & Burgun, A. Translational research platforms integrating
clinical and omics data: A review of publicly available solutions. Brief. Bioinform. 16, 280–290 (2015).
63. Quinlan, J. R. Induction of decision trees. Mach. Learn. 1, 81–106 (1986).
64. Langley, P., Iba, W. & Thompson, K. An analysis of Bayesian classifiers. InAaai. 90, 223–228 (1992).
65. Langley, P. & Sage, S. Induction of selective Bayesian classifiers. in Proceedings of the tenth international confer-
ence on Uncertainty in artificial intelligence. (eds. De Mantaras, R. L. & Poole, D.) 399–406 (Morgan Kaufmann
Publishers, San Francisco, CA, 1994).
66. Patrick, E. A. & Fischer III, F. P. A generalized k-nearest neighbor rule. Inf. Control. 16, 128–152 (1970).
67. Vapnik, V. Estimation of Dependences Based on Empirical Data. (Springer-Verlag, New York, 1982).
68. Rumelhart, D. E. & McClelland, J. Parallel Distributed Processing: Explorations in the Microstructure of
Cognition. (Cambridge, MA, MIT Press, 1986).
69. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature. 521, 436–444 (2015).
70. Bryce, T. J., Dewhirst, M. W., Floyd, C. E., Hars, V. & Brizel, D. M. Artificial neural network model of sur-
vival in patients treated with irradiation with and without concurrent chemotherapy for advanced carcinoma of
the head and neck. Int. J. Radiat. Oncol. Biol. Phys. 41, 339–345 (1998).
71. Ochi, T., Murase, K., Fujii, T., Kawamura, M. & Ikezoe, J. Survival prediction using artificial neural networks in
patients with uterine cervical cancer treated by radiation therapy alone. Int. J. Clin. Oncol. 7, 294–300 (2002).
72. Hua, K.-L., Hsu, C.-H., Hidayati, S. C., Cheng, W.-H. & Chen, Y.-J. Computer-aided classification of lung
nodules on computed tomography images via deep learning technique. OncoTargets Ther. 8, 2015–2022 (2015).
73. Guo, Y., Gao, Y. & Shen, D. Deformable MR prostate segmentation via deep feature learning and sparse patch
matching. IEEE Trans. Med. Imaging. (2015). doi:10.1109/TMI.2015.2508280.
74. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 542,
115 –118 (2017).
75. Miotto, R., Li, L., Kidd, B. A. & Dudley, J. T. Deep patient: An unsupervised representation to predict the
future of patients from the electronic health records. Sci. Rep. 6, 26094 (2016).
76. Pagliery, J. Hospital network hacked, 4.5 million records stolen. CNNMoney (2014). Available at: http://money.
cnn.com/2014/08/18/technology/security/hospital-chs-hack/index.html. (Accessed: May 17, 2017.)