BINARY-OPERATION and OPERATION OF FUNCTION.pptx

InahEguia2 54 views 26 slides Sep 03, 2024
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

BINARY-OPERATION


Slide Content

BINARY OPERATION JOHN CLIFFORD T. MORENO, LPT

A binary operation *in a set S is a way of assigning every ordered pair of elements, a and b , from the set, a unique response called c , where c is also from the set S. a * b = c First element from the set operation Second element from the set Unique response from the set

Binary operations include addition, subtraction, multiplication and division. The value of f(x) is obtained upon assigning a specific value for x. The variable x represents the independent variable and y represents the dependent variable.

Given y=f(x) and let a be in the domain of f . Then f(a) represents the second element in the pair of defining f, or the value of the function at x = a. The value of f(a) is obtained by replacing x by a in f(x).

Let f(x) = 2x³ - 3x² - 5 x + 2. Find: a. f(1) b. (-1) c. f(-3)

Solutions: a. f (1) = 2(1)³-3(1)²-5(1)+2 = -4 b. f (-1) = 2(-1)³-3(-1)²-5(-1)+2 = 2 c. f (-3) = 2(-3)³-3(-3)²-5(-3) +2 = -64

2. Let f(x) = Find: a. f(2) b. f c. f(b )  

Solution: a. (2) = b. f c. f(b) =  

3. Compute: if f(x) = 2x – 1, h Solution: = =  

A binary operation on a set is a calculation involving two elements of the set to produce another element of the set. Given two functions : f(x) and g(x), then Sum of two functions : f(x) + g(x) Difference of two functions : f(x) – g(x) Product of two functions : f(x) Quotient of two functions : f(x)/g(x), g(x)  

Operations with Functions We can add, subtract, multiply and divide functions! The result is a new function.

Example: Given f(x) = x² + 1 and g(x) = x² - x a. f(x) + g(x) b. f(x) – g(x) c. f(x) g(x) d.  

Solution: f(x)+g(x)=(x²+1)+(x²-x) = x²+1+x²-x = 2x²-x+1 f(x)-g(x) =(x²+1)-(x²-x) = x²+1-x²+x = x+1 f(x) g(x) = (x²+1)(x²-x) =  

Addition of Function We can add two functions: ( f+g )(x) = f(x) + g(x)   Note: we put the f+g inside () to show they both work on x.

Example 1 Let f(x) = 2x+3 and g(x) = x2 Find ( f+g )(x) Solution: ( f+g )(x) = f(x) + g(x) = (2x+3) + (x2) = x2+2x+3

Example 2 Let v(x) = 5x+1 and w(x) = 3x-2 Find ( v+w )(x) Solution: ( v+w )(x) = v(x)+w(x) =(5x+1) + (3x-2) = 8x-1

Subtaction of Function We can subtract two functions: (f-g)(x) = f(x) - g(x) Note:  The difference f-g is a function whose domains are the set of all real numbers common to the domain of f and g.

Example 3 let  f(x) = x 2 - 5 and g(x) = 5x -4 Find (f-g)(x) Solution:              (f-g)(x) = f(x)-g(x)                              =( x 2 - 5) - (5x-4)                              =x 2 - 5 - 5x +4                               =x 2 - 5x - 1

Multiplication of Function We can multiply two functions: ( f • g )(x) = f(x) • g(x) Note:  The product f•g is a function whose domains are the set of all real numbers common to the domain of f and g.

Example 4 Let  f(x) = 3x - 2 and g(x) = x 2 - 2x - 3 Find ( f • g )(x) Solution:              ( f • g )(x) = f(x) • g(x)                              =(3x - 2) (x 2 - 2x - 3)                               =3x(x 2 - 2x - 3) - 2(x 2 - 2x - 3)                               = 3x 3 - 6x 2 - 9x - 2x 2 +4x + 6                               =3x 3 -8x 2 -5x +6

Division of Function We can divide two functions: ( f/g)(x) = f(x) / g(x) Note:  The quotient f/g is a function whose domains are the set of all real numbers common to the domain of f and g. Where g(x) or denomenator ≠ 0.

Example 5 Let  f(x) = x + 3 and g(x) = x 2 + x - 9 Find (f/g)(x) Solution :                

ACTIVITY 3! Q: Sir kanus -a ipass ? A: I-pass ni siya dungan sa midterm napod nga activities

Directions: Perform the given operation. f(x) =2x – 5, g(x) = 3x – 4 a. f(x) + g(x) b. f(x) – g(x) c. f(x) g(x) d. f(x)/g(x)   f(x )=x²-4, g(x) =x+2 a. f(x) + g(x) b. f(x) – g(x) c. f(x) g(x) d. f(x)/g(x)  
Tags