Biographical Encyclopedia Of Astronomers 1st Edition Thomas Hockey

araliasemb 3 views 91 slides May 14, 2025
Slide 1
Slide 1 of 91
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91

About This Presentation

Biographical Encyclopedia Of Astronomers 1st Edition Thomas Hockey
Biographical Encyclopedia Of Astronomers 1st Edition Thomas Hockey
Biographical Encyclopedia Of Astronomers 1st Edition Thomas Hockey


Slide Content

Biographical Encyclopedia Of Astronomers 1st
Edition Thomas Hockey download
https://ebookbell.com/product/biographical-encyclopedia-of-
astronomers-1st-edition-thomas-hockey-2471980
Explore and download more ebooks at ebookbell.com

Here are some recommended products that we believe you will be
interested in. You can click the link to download.
Biographical Encyclopedia Of Astronomers 2nd Edition Thomas Hockey
https://ebookbell.com/product/biographical-encyclopedia-of-
astronomers-2nd-edition-thomas-hockey-4929442
The Biographical Encyclopedia Of Astronomers 1st Edition Thomas Hockey
https://ebookbell.com/product/the-biographical-encyclopedia-of-
astronomers-1st-edition-thomas-hockey-4208094
Biographical Encyclopedia Of Scientists 3ed Daintith J Ed
https://ebookbell.com/product/biographical-encyclopedia-of-
scientists-3ed-daintith-j-ed-2042234
Biographical Encyclopedia Of The Modern Middle East North Africa 1st
Edition Michael R Fischbach
https://ebookbell.com/product/biographical-encyclopedia-of-the-modern-
middle-east-north-africa-1st-edition-michael-r-fischbach-4443572

Biographical Encyclopedia Of American Radio 1st Edition Christopher H
Sterling Cary Odell
https://ebookbell.com/product/biographical-encyclopedia-of-american-
radio-1st-edition-christopher-h-sterling-cary-odell-51226936
Biographical Encyclopedia Of Scientists Third Edition 3rd John
Daintith
https://ebookbell.com/product/biographical-encyclopedia-of-scientists-
third-edition-3rd-john-daintith-57988606
The Biographical Encyclopedia Of Islamic Philosophy Oliver Leaman
https://ebookbell.com/product/the-biographical-encyclopedia-of-
islamic-philosophy-oliver-leaman-57412248
A Biographical Encyclopedia Of Medical Travel Authors The Americas And
Canada Edward A Martin
https://ebookbell.com/product/a-biographical-encyclopedia-of-medical-
travel-authors-the-americas-and-canada-edward-a-martin-5530962
The Biographical Encyclopedia Of Jazz Feather Leonard
https://ebookbell.com/product/the-biographical-encyclopedia-of-jazz-
feather-leonard-10881430

The Biographical Encyclopedia of Astronomers

The Biographical Encyclopedia
of Astronomers
Editor-in-Chief
Thomas Hockey
Senior Editors
Virginia Trimble
Thomas R. Williams
Editors
Katherine Bracher
Richard A. Jarrell
Jordan D. Marché, II
F. Jamil Ragep
Associate Editor
JoAnn Palmeri
Assistant Editor
Marvin Bolt

Dr. Thomas Hockey
Professor of Astronomy
University of Northern Iowa
Department of Earth Science
Office: Latham 112
Cedar Falls
IA 50614
USA
The electronic version of the whole set will be available under ISBN-13: 978-0-387-30400-7.
The print and electronic bundle of the whole set will be available under ISBN-13: 978-0-387-33628-2.
© .
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer
Science+Business Media, LLC., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis.
Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodo-
logy now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an
expression of opinion as to whether or not they are subject to proprietary rights.
springer.com
Printed on acid-free paper SPIN: 11494034 2109 — 5 4 3 2 1 0

To my teachers
Aldrich Syverson
Joseph Freimeyer
Connie Mitchell
John Miller
Paul Coke
Peggy Hudson
Irwin Shapiro
John Lewis
Reta Beebe
Herbert Beebe
William Eamon
Clyde Tombaugh

Preface
Like that of any human activity, the history of astronomy has been played out under the influence of myriad cultural, institutional, political,
sociological, technological, and natural forces. Any history that focuses only on the greatest participants in a field likely misses a great deal
of interest and historical value. Inasmuch as astronomy is undertaken by and for human beings, therefore, its history cannot be limited to
the lives and achievements of a narrow group.
Here we analyze the lives of people who, in our view, produced some substantial contribution to the field of astronomy, were involved in
some important astronomical event, or were in some other manner important to the discipline. In doing so we do not discount the work of
countless other journeyman astronomers without whom the science would not have progressed as it has.
Scope
Biographical Encyclopedia of Astronomers [BEA] entries presented here do not pretend to illuminate all aspects of a given person’s vita. More-
over, some figures included are better known for their enterprises outside of astronomy. In these situations, their astronomical contributions
are emphasized.
For many of our entries, the length is limited to something substantially less than 1,000 words due to the lack of available information.
There is, of course, an inclination to write a great deal more about persons for whom there is a significant literature already available, e. g.,
Copernicus, Kepler, Newton, William Herschel, or Einstein. Many such individuals are covered in other standard resources, and we have
not felt compelled to repeat all that is already published in those cases. In fact, we look at our entries as a guide to recent scholarship and a
brief summary of the important facts about the lives involved. On the other hand, two-thirds of the entries in this encyclopedia are about
individuals for whom there is no readily available standard source. In those cases, the length of the article may be longer than might be
expected in comparison with those of better known astronomers, and reflects the fact that an entry offers the first (and perhaps only) easily
available information about the astronomer involved: It is not difficult to find sources on “Greats” such as Galileo Galilei; however, it is hard
to find information on Galilei’s acolyte, Mario Guiducci.
Citations within the text have been avoided to enhance readability. Nearly all articles end with a list of selected references. The reader is
thus presented with opportunities for further research; no article is intended to be a dead end. Toward that end, if we do not provide additional
resources for an entry, the subject will be cross-referenced within other articles for which we do provide selected references.
In compiling the selected references, we have tried to include difficult-to-identify secondary sources. At the same time we have largely
excluded standard reference works and include only some of the latest canonical works covering the best-known figures in astronomy.
The BEA documents individuals born from Antiquity to approximately mid–1918. Subjects may be living or dead. While some ancient
figures have become legendary, we have tried to avoid clearly mythological ones. For example, while the royal Chinese astronomers Ho and
Hsi (supposedly third millennium BCE) appear in nearly every history of eclipses, they warrant no entry here.
This terminal birth date assures that the subjects written about have completed most of their careers, and that sufficient time likely has
elapsed since their featured accomplishments that a historical perspective on their work is possible. Note that almost all of our subjects
began their careers before the watershed transformation of astronomy brought about by the events of World War II. It is also true that the
number of astronomers significantly increased after this time. Our youngest subject is Gérard de Vaucouleurs; our oldest is Homer.
Inclusion Parameters
Our entry selection embraces a broad definition of the word “astronomer.” In modern science, little differentiation is made between the
words “astronomy” and “astrophysics”; we do not use such a distinction here. For example, our definition includes astrometrists, cosmolo-
gists, and planetologists. These three fields were considered separate and self-contained for most of human history. Cosmology, especially,
requires the inclusion of many philosophers and theologians.
Early astronomers often also were astrologers. If they performed astronomical pursuits in addition to simple divination, we include
them. Likewise, no distinction is made between the professional and the contributing amateur.
With the exception of a few important cases, instrument makers are included only if they pursued astronomical work with their instru-
ments. Surveyors and cartographers are included if their study of the stars went beyond mere reference for terrestrial mapmaking. Lastly, a
select group of authors, editors of astronomical journals, founders of astronomical societies, observatory builders and directors, astronomy
historians, and patrons of astronomy are included.
A common pitfall in the history of science is to make the story of a discipline appear to be a single ladder ascending toward modern
theory. Instead, it is a tree with many branches, only some of which have led to our current understanding of the Universe. Indeed, seemingly
dead branches may become reanimated later in time. And branches may merge as ideas once considered unrelated are brought together.
A better metaphor may be a vine, one with many grafts.
Scientists who contributed theories no longer held salient, or who made observations now considered suspect, nonetheless are included
on our list if their effort was considered scientifically useful in its time, and the basis for further inquiry. At the same time, scientists whose
ideas or techniques are now considered prescient, but who were unrecognized in their lifetimes, may appear as well.

The contributions of persons selected for entries in this work were weighed in the context of their times. Thus, while a contribution made
by a medieval scholar might seem small by today’s standards, it was significant for its era. We are especially proud of our inclusion of “non-
western” figures who often have been given little treatment in histories of astronomy. Finally, we have included numerous entries of fewer
than 100 words, some just a sentence or two, to introduce their names and place them in context within the broader vistas of astronomy.
Construction of the subject list was done by the editor-in-chief in consultation with the content editors. Well-known historian of
astronomy Owen Gingerich generously volunteered his time to comment upon draft lists. Still, while an earnest attempt was made to make
an objective selection of our more than 1,500 entries, responsibility for omissions must rest with the editor-in-chief. Most vulnerable to
omission were those born in the last century.
Project Staffing
Author solicitation was done by the editor-in-chief. Many of the shortest entries were crafted by the editor-in-chief; some but not most of
these short entries were paraphrased from an unpublished typescript draft titled Biographical Dictionary of Astronomers, originally prepared
by the historian Hector C. Macpherson in 1940. The standardized format of the articles was arrived at by consensus among the editors.
Senior editor Thomas R. Williams’s Author Guidelines proved indispensable.
Editors were invited to join the project by the editor-in-chief. This editorial board includes, more-or-less equally, individuals who
entered history-of-astronomy scholarship with a background either in history of science or in astronomy. (Some have both.) Unlike many
encyclopedists, we did not use our editorial role to eradicate the individual writing styles of the authors.
Each content editor was assigned a thematic editorial responsibility, though all were called upon, at one time or another, to edit articles
outside of this specialty. The assignments were as follows:
Classical and Medieval Astronomers—Katherine Bracher
Renaissance and Enlightenment Astronomers—Richard A. Jarrell
Nineteenth Century Astronomers—Marvin Bolt
Twentieth Century Astronomers/Astrophysicists—Virginia Trimble
Astronomers of the Islamic World—Jamil Ragep
Nonvocational Astronomers—Thomas R. Williams
Astronomy Popularizers—Jordan D. Marché, II
All content editors also contributed articles to the BEA. JoAnn Palmeri edited the vital references for all entries. Additionally she served
as our illustrations editor.
For errata information, e-mail us at [email protected]
Thomas Hockey
October 2005
Prefaceviii

Acknowledgments
The Biographical Encyclopedia of Astronomers [BEA] is above all the product of its authors. These 410 contributors hail from 40 different
countries. Nearly every article is an original piece of scholarship. In some cases, scholars about whom entries were written were themselves
gracious enough to write articles for us on other subjects.
At the heart of this 6-year project has been its board of editors. Contrary to what the narrow definition of this job title might imply, these
people have been actively providing aid, comfort, and advice to the project, since its inception. As to their editorial contribution specifically,
this was often far greater, and more time consuming, than is commonly assumed.
The BEA was the idea of Peter Binfield (then Business Development at Kluwer). Dr. Binfield’s assistant, Ms. Livia Iebba, also provided
support “above and beyond.” Dr. Harry Blom, Springer’s Senior Editor for Astronomy and Astrophysics, traveled many kilometers to meet
with the BEA editorial board and lend support on the long road to publication.
Usually unsung in a project of this nature are those individuals who did not write for us, but instead recommended other willing and
qualified authors. Brevity permits me only two examples: Eva Isaksson of the University of Helsinki and Kevin Krisciunas of the Cerro
Tololo Interamerican Observatory.
Brenda G. Corbin at the United States Naval Observatory kindly provided us with a manuscript copy of Hector Copland MacPherson’s
Biographical Dictionary of Astronomers (1940), which was never published. We hope that its use in assembling the BEA is similar to what
Dr. MacPherson had wished to achieve. Many, though not most, of the shortest entries in the BEA were paraphrased from MacPherson’s work.
Certain scholars consulted with us on astronomers of specific nationalities. We appreciate the assistance of Alexander A. Gurshtein
(astronomers of the former USSR), Suzanne Débarbat (Francophone astronomers), Helge Kragh (Scandinavian astronomers), Robert Van
Gent (Dutch), A. Vagiswari (Indian astronomers), Kevin D. Pang (Chinese astronomers), Jochi Shigeru (East Asian astronomers), and Rudi
Paul Lindner (Byzantine astronomers).
The bibliographies of recent works in the history of astronomy published by Ruth Freitag (Library of Congress) were enormously useful.
So was the Finding List of Obituary Notes of Astronomers (1900–1997) prepared by Hilmar Dürbeck and Beatrix Ott, with contributions by
Wolfgang Dick. The Astrophysics Data System of the National Aeronautics and Space Administration was frequently accessed.
The effort of Daniel W. E. Green, Harvard-Smithsonian Center for Astrophysics and International Astronomical Union Center for
Astronomical Telegrams, assured that the proper use of new International Astronomical Union comet and minor-planet nomenclatures
was maintained.
H. Miller’s Thryomanes font facilitated communicating Arabic text between editors. Yuliana Ivakh helped the editor-in-chief with Cyrillic.
Kari Aunan handled thousands of letters during the author-solicitation process. Wesley Even created and maintained the spreadsheet, so
necessary for keeping track of the data and long lists generated by the project. Rachel Wiekhorst operated the document scanner. Jeff Guntren
prepared the Table of Contents. I am proud to say that all did so while being undergraduate students at the University of Northern Iowa.
Ruby Hockey undertook the cumbersome filing process.
“Thank you” to the members of the Department of Earth Science, University of Northern Iowa [UNI], especially Lois Jerke. I relied on
their infrastructure and good humor greatly. Generous, too, was the support of Dean Kichoon Yang, UNI College of Natural Sciences. Linda
Berneking of the UNI Donald O. Rod Library, Interlibrary Loan, also deserves special mention.
Editor Marvin Bolt would like to thank the Adler Planetarium and Astronomy Museum and the Program in the History and Philosophy
of Science at the University of Notre Dame for research support.
Editor Katherine Bracher would like to acknowledge the advice and support of Cynthia W. Shelmerdine, Professor of Classics at the
University of Texas at Austin.
Editor Jordan D. Marché, II thanks the Department of Astronomy at the University of Wisconsin-Madison for its strong support, and
especially the Woodman Astronomical Library. Concurrently, he acknowledges the other libraries of the University of Wisconsin-Madison
system and the Wisconsin State Historical Society Library.
Editor Jamil Ragep wishes to acknowledge Sally P. Ragep for editorial work behind the scenes and also Julio Samsó for help with Anda-
lusian/North African astronomers.
Editor Virginia Trimble wishes to acknowledge the assistance of Leon Mestel, George Herbig, Meinhard Mayer, Harry Lustig, M. G.
Rodriguez, Adriaan Blaauw, and Dimitri Klimushkin.
Editor Thomas R. Williams would like to acknowledge Peter Hingley, librarian of the Royal Astronomical Society, and Richard McKim,
as well as the staff of Fondren Library at Rice University for their assistance.
The editorial board is grateful for the aid received from the many other scholars and librarians, too many to list here, who assisted with
facts, citations, and general comments on individual entries. This public support is echoed by officers of the International Astronomical
Union Commission 41 (History of Astronomy)/Inter-Union Commission for History of Astronomy, Ileana Chinnici and Wayne Orchiston,
who, in the ICHA Newsletter #3 (2002), wrote regarding the Biographical Encyclopedia of Astronomy: “While the formation of the ICHA
came too late for it to be an active participant in the planning phase, we are happy to report that the ICHA Organizing Committee has given
the project its whole-hearted support…”

Foreword
In the past four decades, the history of astronomy and cosmology has grown into a professional research area, complete with a journal
( Journal for the History of Astronomy), sessions devoted to the subject at annual meetings of professional societies, and regular meetings of
its own, such as the biennial meetings at the University of Notre Dame. Indeed, the field contains subspecialties, such as archaeoastronomy,
that hold regular meetings of their own and have journals.
Astronomy is unique in several respects. First, although the research front in all sciences moves ever faster, constantly increasing the dis-
tance between the practitioner and the subject’s history, in astronomy the time dimension plays a crucial role in current research (as opposed
to, for instance, chemistry), and this means that past data, e. g., of eclipse or sunspot observations, continue to play a role in astronomical
research. The historian of astronomy is often the intermediary between the astronomer and these data, especially for earlier periods. Second,
among the exact sciences, astronomy is the only field in which amateurs continue to play an active, if supporting, role: In a number of cases
professional astronomers rely on the services of the amateurs, and many of the services delivered by these amateurs are very professional
indeed. But the lines demarking astronomers from historians and professionals from amateurs are not cut–and-dried. There are museum
curators and planetarium educators who are amateurs astronomers or do highly professional research on historical periods, and there are
professional astronomers who have an abiding interest in the history of their field for various reasons. And lest we forget, there are very large
numbers of readers and television viewers with a passive interest in the history of astronomy for whom the human dimension of the quest
to understand the heavens is crucial.
Many of the standard histories of astronomy date from the 1930s and 1950s. But these single-volume histories, which once served both
as teaching tools and reference works, have become obsolete in the past few decades. More recent single-volume histories of astronomy can
serve only as teaching tools and works of general interest. There has, thus, been a growing need for reference works that cover the results
of research into the history of astronomy published in the past half century. Recently, two encyclopedias have been published, History of
Astronomy: an Encyclopedia, edited by John Lankford, and Encyclopedia of Cosmology, edited by Norriss S. Hetherington. Concepts and
issues are central in these works. The Biographical Encyclopedia of Astronomers is a reference work that focuses on individuals; it adds the
human dimension without which no science, or its history, can come to life.
Albert van Helden
Utrecht, September 2005

Contributors
Victor K. Abalakin
Pulkovo Observatory
Mohammed Abattouy
Fez University
Leonard B. Abbey
Independent Scholar
Helmut A. Abt
Kitt Peak National Observatory
Narahari Achar
University of Memphis
Meltem Akbas
Istanbul University
Durruty Jesús de Alba Martinez
Universidad de Guadalajara
Roberto de Andrade Martins
Universidade da Campinas
S. M. Razaullah Ansari
Aligarh Muslim University
Adam Jared Apt
Independent Scholar
Stuart Atkinson
Independent Scholar
David Aubin
Université Pierre-et-Marie Curie
Salim Aydüz
Fatih University
Ennio Badolati
Università delgi Studi del Molise
Mohammad Bagheri
Encyclopaedia Islamica Foundation
Yuri V. Balashov
University of Georgia
Sallie Baliunas
Harvard-Smithsonian Center for Astrophysics
Alan Baragona
Virginia Military Institute
Edward Baron
University of Oklahoma
Raymonde Barthalot
Observatoire de la Cote d’Azur
Alan H. Batten
National Research Council (Canada)
Richard Baum
Independent Scholar
Anthony F. Beavers
University of Evansville
Herbert Beebe
New Mexico State University
Martin Beech
University of Regina
Ari Belenkiy
Hebrew University
Trudy E. Bell
Independent Scholar
Isaac Benguigui
Universitat Geneva
J. Len Berggren
Simon Fraser University
Giuseppe Bezza
Independent Scholar
Charlotte Bigg
Max-Planck-Institut für Wissenschafts Geschichte
Albert Bijaoui
Observatoire de Nice
Adriaan Blaauw
Rijksuniversiteit Groningen
Nicolaas Bloembergen
Harvard University
Thomas J. Bogdan
University of Colorado
Karl-Heinz Bohm
University of Washington
Marvin Bolt
Adler Planetarium
Patrick J. Boner
University of Florida
Fabrizio Bònoli
Berrera Osservatorio
Alan J. Bowden
Liverpool Museum
Alan C. Bowen
Princeton University
Katherine Bracher
Whitman College

xiv Contributors
Raffaello Braga
Independent Scholar
Ronald Brashear
Chemical Heritage Foundation
Sonja Brentjes
Aga Khan University
Peter Broughton
Independent Scholar
C. Brown-Syed
Wayne State University
Mary T. Brück
University of Edinburgh
Charles Burnett
Warburg Institute
Paul L. Butzer
Rheinisch-Westfalische Technische Hochschule
Chris K. Caldwell
University of Tennessee
Emilia Calvo
Universitad de Barcelona
Gary L. Cameron
Iowa State University
Nicholas Campion
Bath Spa University College
Juan Casanovas
Vatican Observatory
Josep Casulleras
Universitad de Barcelona
Patrick A. Catt
Independent Scholar
Roger Cayrel
Observatoire de Paris
Davide Cenadelli
Osservatorio di Brera
Michelle Chapront-Touzé
Observatoire de Paris
Paul Charbonneau
University of Colorado
François Charette
Ludwig-Maximilian University
Ileana Chinnici
Palermo Osservatorio
J. S. R. Chisholm
University of Kent
Grant Christie
Aukland Observatory
George W. Clark
Smithsonian Institution
Donald D. Clayton
Clemson University
Mercè Comes
Universitad de Barcelona
Glen M. Cooper
Brigham Young University
Brenda G. Corbin
United States Naval Observatory
Alan D. Corré
University of Wisconsin
Paul Couteau
Observatoire de Nice
George V. Coyne
Vatican Observatory
Mary Croarken
University of Warwick
Michael J. Crowe
University of Notre Dame
David Cunning
Northern Illinois University
Clifford J. Cunningham
Star Lab Press
Martijn P. Cuypers
Universiteit Leiden
Alex Dalgarno
Harvard University
Dennis Danielson
University of British Columbia
A. Clive Davenhall
University of Edinburgh
Suzanne Débarbat
Observatoire de Paris
Robert K. DeKosky
University of Kansas
Deng Kehui
Inner Mongolian Normal University
David DeVorkin
Smithsonian Institution
Jozef T. Devreese
Universiteit Antwerpen
David W. Dewhirst
Cambridge University
Gregg DeYoung
American University in Cairo

xvContributors
Alnoor Dhanani
Institute of Ismaili Studies
Dimitris Dialetis
University of Athens
Steven J. Dick
National Aeronautics and Space Administration (USA)
Richard R. Didick
Independent Scholar
Thomas A. Dobbins
Independent Scholar
John W. Docktor
Independent Scholar
Audouin Dollfus
Observatoire de Paris
Emmanuel Dormy
Institute de Physique du Globe de Paris
Matthew F. Dowd
University of Notre Dame
Ellen Tan Drake
Independent Scholar
Simone Dumont
Observatoire de Meudon
Wolcott B. Dunham, Jr.
Fund for Astrophysics Research, Incorporated
Storm Dunlop
Sussex University
Sven Dupré
Universiteit Ghent
Ian T. Durham
University of Saint Andrews
Suvendra Nath Dutta
Harvard University
James Dye
Northern Illinois University
Frank K. Edmondson
Indiana University
Philip Edwards
Institute of Space and Astronautical Science (UK)
Yuri N. Efremov
Moscow State University
Alv Egeland
Universitet Oslo
Arthur J. Ehlmann
Texas Christian University
Ian Elliott
Dunsink Observatory
David S. Evans
University of Texas
Glenn S. Everett
Stonehill College
Peter S. Excell
University of Bradford
Carl-Gunne Fälthammar
Alfvénlaboratoriet
İhsan Fazlıoğlu
Istanbul University
Fernando B. Figueiredo
Instituto Politécnico de Tomar
Maurice A. Finocchiaro
University of Nevada
Ronald Florence
Independent Scholar
Miquel Forcada
Universitad de Barcelona
Kenneth W. Ford
National Aeronautics and Space Administration (USA)
Malcolm R. Forster
University of Wisconsin
Michael Fosmire
Purdue University
Harmut Frommert
Independent Scholar
Michael Frost
Independent Scholar
Patrick Fuentes
Independent Scholar
George Gale
University of Misourri
Karl Galle
Universität Göttingen
Robert A. Garfinkle
Independent Scholar
Leonardo Gariboldi
Università delgi Studi di Milan
Roy H. Garstang
University of Colorado
Stephen Gaukroger
University of Sydney
Steven J. Gibson
Arecibo Observatory
Henry L. Giclas
Lowell Observatory

xvi Contributors
Adam Gilles
Observatoire de Lyon
Owen Gingerich
Harvard-Smithsonian Center for Astrophysics
M. Colleen Gino
Dudley Observatory
Ian S. Glass
South African Astronomical Observatory
André Goddu
Stonehill College
Gunther Görz
Universität Erlangen-Nürnberg
Daniel W. E. Green
Harvard-Smithsonian Center for Astrophysics
Solange Grillot
Observatoire de Paris
Monique Gros
Observatoire de Paris & Université Pierre-et-Marie Curie
Jiří Grygar
Akademie Ved, Ceská Republika
Françoise le Guet Tully
Observatoire de la Côte d’Azur
Alastair G. Gunn
University of Manchester
Guo Shirong
Inner Mongolian Normal University
Alexander A. Gurshtein
Russian Academy of Sciences
Fathi Habashi
Laval University
Peter Habison
Kuffner Sternwarte
Margherita Hack
Osservatorio Trieste
Petr Hadrava
Akademie Ved, Ceská Republika
Alena Hadravová
Akademie Ved, Ceská Republika
Graham Hall
University of Aberdeen
Fernand Hallyn
Universiteit Ghent
Jürgen Hamel
Museum für Astronomie und Technikgeschichte (Germany)
Truls Lynn Hansen
Universitet Tromsø
Katherine Haramundanis
Hewlett Packard Company
Behnaz Hashemipour
Isfahan University of Technology
Robert Alan Hatch
University of Florida
Christian E. Hauer, Jr.
Westminster College
John Hearnshaw
University of Canterbury
Klaus Hentschel
Universität Göttingen
Dieter B. Herrmann
Independent Scholar
Norriss S. Hetherington
Independent Scholar
Donald W. Hillger
Colorado State University
John Hilton
University of Natal
Alan W. Hirshfeld
University of Massachusetts
Thomas Hockey
University of Northern Iowa
Laurent Hodges
Iowa State University
Dorrit Hoffleit
Yale University
Julian Holland
University of Sydney
Gustav Holmberg
Lunds Universitet
Gerald Holton
Harvard University
Elliott Horch
Rensselaer Polytechnic Institute
Léo Houziaux
Académie Royale (Belgium)
Mark Hurn
Cambridge University
Robert J. Hurry
Calvert Marine Museum
Gary Huss
University of Hawaii
Roger D. Hutchins
Oxford University

xviiContributors
Siek Hyung
Bohyunsan Optical Astronomy Observatory
Saori Ihara
Kochi University
Satoru Ikeuchi
Nagoya University
Setsuro Ikeyama
Independent Scholar
Balthasar Indermühle
Independent Scholar
Francine Jackson
University of Rhode Island
Richard A. Jarrell
York University
David Jefferies
University of Surrey
Derek Jensen
University of California at San Diego
Mihkel Joeveer
Tartu Astrophuusika Observatoorium
J. Bryn Jones
University of Nottingham
Mustafa Kaçar
Istanbul University
Horst Kant
Max-Planck-Institut für Wissenschafts Geschichte
Hannu Karttunen
Independent Scholar
Katalin Kèri
Janus Ponnonius University
Paul T. Keyser
Cornell University
Elaheh Kheirandish
Harvard University
Kevin J. Kilburn
University of Manchester
Stamatios Kimigis
Johns Hopkins University
David A. King
Johann Wolfgang Göthe Universität
Thomas D. Kinman
Kitt Peak National Observatory
Gyula Klima
Fordham University
Thomas Klöti
Universität Bern
Gillian Knapp
University of Washington
Oliver Knill
Harvard University
Wolfgang Kokott
Universität München
Daniel Kolak
William Paterson University
Nicholas Kollerstrom
University College of London
Anne J. Kox
Universiteit Amsterdam
Yoshihide Kozai
National Astronomical Obervatory of Japan
Helge Kragh
Universitet Aarhus
John Kraus
Ohio State University
Henk Kubbinga
Rijksuniversiteit Groningen
Suhasini Kumar
University of Toledo
Paul Kunitzsch
Ludwig-Maximilian Universität
Takanori Kusuba
Osaka University
Alistair Kwan
University of Melbourne
Claud H. Lacy
University of Arkansas
Keith R. Lafortune
University of Notre Dame
Edgar Laird
Southwest Texas State University
Cindy Lammens
Universiteit Ghent
Jérôme Lamy
Observatoire de Paris
Harry G. Lang
Rochester Institute of Technology
Y. Tzvi Langermann
Bar Ilan University
James M. Lattis
University of Wisconsin at Madison
Françoise Launay
Observatoire de Meudon

xviii Contributors
Raimo Lehti
Tekniska Högskolan
Jacques M. Lévy
Observatoire de Paris
Li Di
Inner Mongolian Normal University
Kurt Liffman
Commonwealth Science and Industrial Research Organization
(Australia)
Rudi Paul Lindner
University of Michigan
Jean-Pierre Luminet
Observatoire de Paris
Gene M. Lutz
University of Northern Iowa
Kirsten Lutz
Independent Scholar
Brian Luzum
United States Naval Observatory
Joseph F. MacDonnell
Holycross University
H. Clark Maddux
Indiana University at Kokomo
Jordan D. Marché, II
University of Wisconsin at Madison
Theresa Marché
University of Kutztown Pennsylvania
Tapio Markkanen
Tekniska Högskolan
Brian G. Marsden
Harvard-Smithsonian Center for Astrophysics
M. J. Martres
Observatoire de Paris
Ursula B. Marvin
Harvard-Smithsonian Center for Astrophysics
Sergei Maslikov
Tomsk State University
Kenneth Mayers
Universitet Bergen
Dennis D. McCarthy
United States Naval Observatory
John McFarland
Armagh Observatory
Robert D. McGown
Independent Scholar
Donald J. McGraw
University of San Diego
John M. McMahon
Lemoyne College
Marjorie Steele Meinel
National Aeronautics and Space Administration (USA)
John Menzies
South African Astronomical Observatory
Michael Meo
Independent Scholar
Raymond Mercier
Independent Scholar
Mark D. Meyerson
United States Naval Academy
Michael E. Mickelson
Denison University
Jan Mietelski
Universitas Iagellonica Cracoviensis
Cirilo Flórez Miguel
Universitad de Salamanca
Eugene F. Milone
University of Calgary
Kristian Peder Moesgaard
Steno Museet
Patrick Moore
British Broadcasting Company
Nidia Irene Morrell
Universidad Nacional de La Plata
James Morrison
University of Waterloo
Robert Morrison
Whitman College
Adam Mosley
Cambridge University
George S. Mumford
Tufts University
Marco Murara
Independent Scholar
Paul Murdin
Cambridge Institute of Astronomy
Negar Naderi
Encyclopaedia Islamica Foundation
Victor Navarro-Brotóns
Universidad de Valencia
Davide Neri
Università di Bologna
Claudia Netz
Independent Scholar

xixContributors
Christian Nitschelm
Universiteit Antwerpen
Peter Nockolds
Independent Scholar
Marilyn Bailey Ogilvie
University of Oklahoma
Takeshi Oka
University of Chicago
Timothy O’Keefe
University of Minnesota
Ednilson Oliveira
Universidade de Sao Paolo
Wayne Orchiston
Anglo-Australian Observatory
JoAnn Palmeri
University of Oklahoma
Kevin D. Pang
California Institute of Technology
Jay M. Pasachoff
Williams College
Naomi Pasachoff
Independent Scholar
Stuart F. Pawsey
Independent Scholar
Mariafortuna Pietroluongo
Università di Molise
Luisa Pigatto
Osservatorio Padova
Christof A. Plicht
Independent Scholar
Kim Plofker
Universität Utrecht
Patrick Poitevin
Independent Scholar
Roser Puig
Universitad de Barcelona
F. Jamil Ragep
McGill University
Sally P. Ragep
University of Oklahoma
Steven L. Renshaw
Kochi University
Michael Rich
University of California at Los Angeles
Lutz Richter-Bernburg
Universität Tübingen
Michael S. Reidy
University of Wisconsin
Peter Riley
University of Texas
Mònica Rius
Universitad de Barcelona
Leif J. Robinson
Sky and Telescope
Nadia Robotti
Università degli Studi di Genova
John Rogers
Cambridge University
Stanislaw Rokita
Planetarium Wladyslawa Dziewulskiego
Philipp W. Roseman
University of Dallas
Eckehard Rothenberg
Archenhold-Sternwarte
Marc Rothenberg
Smithsonian Institution
Tamar M. Rudavsky
Ohio State University
M. Eugene Rudd
University of Nebraska
Steven Ruskin
University of Notre Dame
David M. Rust
Johns Hopkins University
John J. Saccoman
Seaton Hall University
K. Sakurai
Kanagawa University
Michael Saladyga
American Association of Variable Star Observers
Julio Samsó
Universitad de Barcelona
Voula Saridakis
Virginia Technological University
Hüseyin Sarıoğlu
Istanbul University
Ke Ve Sarma
SSES Research Centre (India)
Gilbert E. Satterthwaite
Imperial College (UK)
Peggy Huss Schaller
Collections Research for Museums

xx Contributors
Petra G. Schmidl
Johann Wolfgang Göthe Universität
Anneliese Schnell
Universität Wiena
Paul A. Schons
University of Saint Thomas
Ronald A. Schorn
University of Texas
Douglas Scott
University of British Columbia
Mary Woods Scott
Ohio State University
R. W. Sharples
University College of London
Stephen Shectman
Carnegie Observatories
William Sheehan
Independent Scholar
Steven N. Shore
Università di Pisa
Edward Sion
Villanova University
Lucas Siorvanes
King’s College of London
Lorenzo Smerillo
Biblioteca Nazionale Protocenobio Sublacense
Charles H. Smith
Western Kentucky University
Horace A. Smith
Michigan State University
Laura Ackerman Smoller
University of Arkansas
Keith Snedegar
Utah Valley State College
Stephen D. Snobelen
University of King’s College
Martin Solc
Univerzita Karlova
Kerstin Springsfeld
Rheinisch-Westfalische Technische Hochschule
Frieda A. Stahl
California State University at Los Angeles
Matthew Stanley
Iowa State University
Donn R. Starkey
Independent Scholar
David Strauss
Kalamazoo College
David J. Sturdy
University of Ulster
Woodruff T. Sullivan, III
University of Washington
Raghini S. Suresh
Kent State University
Jeff Suzuki
Brooklyn College
László Szabados
Konkoly Obszervatórium
Richard J. Taibi
Independent Scholar
Hidemi Takahashi
Johann Wolfgang Göthe Universität
Scott W. Teare
Mount Wilson Observatory
Pekka Teerikorpi
Turku University
Antonio E. Ten
Universidad de Valencia
Joseph S. Tenn
Sonoma State University
Antonella Testa
Università di Milan
Christian Theis
Universität Kiel
William Tobin
University of Canterbury
Hüseyin Gazi Topdemir
Ankara University
Roberto Torretti
University of Puerto Rico
Tim Trachet
Zenit
Virginia Trimble
University of California at Irvine & Las Cumbres Observatory
Jean-Louis Trudel
Université du Quebec
Giancarlo Truffa
Independent Scholar
Milcho Tsvetkov
Bulgarian Academy of Sciences
Pasquale Tucci
Università di Milan

xxiContributors
Steven Turner
Smithsonian Institution
Arthur Upgren
Wesleyan University
A. Vagiṣwari
Indian Institute of Astrophysics
Ezio Vailati
Southern Illinois University
David Valls-Gabard
Observatoire de Paris
Glen Van Brummelen
Bennington College
Benno van Dalen
Johann Wolfgang Göthe Universität
Guido Van den Berghe
Universiteit Ghent
Petra Van der Heijden
Universiteit Leiden
Frans van Lunteren
Universiteit Utrecht
Steven M. van Roode
Independent Scholar
Ilan Vardi
California Institute of Technology
Yatendra P. Varshni
University of Ottawa
Gerald P. Verbrugghe
Rutgers University
Andreas Verdun
Universität Bern
Graziella Vescovini
Università di Firenze
Živa Vesel
Centre National de la Recherche Scientifique (France)
Jan Vondrák
Observatória na Skalnatom Plese
Bert G. Wachsmuth
Seaton Hall University
Christoffel Waelkens
Universiteit Leuven
Craig B. Waff
Independent Scholar
Glenn A. Walsh
Independent Scholar
Alun Ward
Independent Scholar
Gary A. Wegner
Dartmouth College
Gerald White
Independent Scholar
Raymond E. White
University of Arizona
Patricia S. Whitesell
University of Michigan
Sven Widmalm
Uppsala Universitet
Roland Wielen
Astronomisches Rechen-Institut
Christian Wildberg
Princeton University
Richard P. Wilds
Independent Scholar
Thomas R. Williams
Rice University
Thomas Nelson Winter
University of Nebraska
Peter Wlasuk
Florida International University
Bernd Wöbke
Max-Planck-Institut für Aeronomie
Lodewijk Woltjer
Observatoire de Saint Michel
Shin Yabushita
Nara Sangyo University
Keiji Yamamoto
Kyoto Sangyo University
Michio Yano
Kyoto Sangyo University
Hamid-Reza Giahi Yazdi
Encyclopaedia Islamica Foundation
Donald K. Yeomans
National Aeronautics and Space Administration (USA)
Robinson M. Yost
Iowa State University
Miloslav Zejda
Práce Hvezdárny a Planetária Mikuláše Koperníka
Endre Zsoldos
Konkoly Obszervatórium

Table of Entries

Abbās Wasīm Efendi
Abbe, Cleveland
Abbo of [Abbon de] Fleury
Abbot, Charles Greeley
Abbott, Francis

Abd al-Wājid: Badr al-Dīn

Abd al-Wājid [Wāḥid] ibn
Muḥammad ibn Muḥammad al-Ḥanafī
Abetti, Antonio
Abetti, Giorgio
Abharī: Athīr al-Dīn al-Mufaḍḍal ibn

Umar ibn al-Mufaḍḍal al-
Samarqandī al-Abharī
Abney, William de Wiveleslie
Abū al-Ṣalt: Umayya ibn

Abd al-

Azīz ibn Abī al-Ṣalt al-Dānī al-
Andalusī
Albuzale
Abū al-

Uqūl: Abū al-

Uqūl Muḥammad ibn Aḥmad al-Ṭabarī
Abū Ma

shar Ja

far ibn Muḥammad ibn

Umar al-Balkhi
Albumasar
Acyuta Piṣāraṭi
Ādami: Abū

Alī al-Ḥusayn ibn Muḥammad al-Ādami
Adams, John Couch
Adams, Walter Sydney
Adel, Arthur
Adelard of Bath
Adhémar, Joseph-Alphonse
Aeschylus
Aḥmad Mukhtār: Ghāzī Aḥmad Mukhtār Pasha
Ainslie, Maurice Anderson
Airy, George Biddell
Aitken, Robert Grant
Albert the Great
Albertus Magnus
Albrecht, Sebastian
Alcuin
Alchvine
Ealhwine
Flaccus Albinus
Alden, Harold Lee
Alexander, Arthur Francis O’Donel
Alexander, Stephen
Alfonsi, Petrus
Alfonso X
Alfonso el Sabio
Alfonso the Learned
Alfonso the Wise
Alfvén, Hannes Olof Gösta

Alī al-Muwaqqit: Muṣliḥ al-Dīn Muṣṭafā ibn

Alī al-Qusṭanṭīnī
al-Rūmī al-Ḥanafī al-Muwaqqit

Alī ibn

īsā al-Asṭurlābī

Alī ibn Khalaf: Abū al-Ḥasan ibn Aḥmar al-Ṣaydalānī

Alī ibn Khalaf ibn Aḥmar Akhīr [Akhiyar]
Alighieri, Dante
Allen, Clabon Walter
Aller, Lawrence Hugh
Alvarez, Luis Walter
Amājūr Family
Ambartsumian, Victor Amazaspovitch
Amici, Giovanni Battista

Ᾱmilī: Bahā al-Dīn Muḥammad ibn Ḥusayn al-

Āmilī
Ammonius
Anaxagoras of Clazomenae
Anaximander of Miletus
Anaximenes of Miletus
Andalò di Negro of Genoa
Anderson, Carl David
Anderson, John August
Anderson, Thomas David
Andoyer, Marie-Henri
André, M. Charles
Ångström, Anders Jonas
Anthelme, Voituret
Antoniadi, Eugéne Michael
Apian, Peter
Petrus Apianus
Apollonius of Perga
Appleton, Edward Victor
Aquinas, Thomas
Arago, Dominique-François-Jean
Aratus
Archelaus of Athens
Archenhold, Friedrich Simon
Archimedes
Archytas of Tarentum
Argelander, Friedrich Wilhelm August
Argoli, Andrea
Aristarchus of Samos
Aristotle
Aristyllus
Arrhenius, Svante August
Āryabhaṭa I
Āryabhaṭa the Elder
Āryabhaṭa II
Āryabhaṭa the Younger
Asada, Goryu
Yasuaki
Ascham [Askham], Anthony
Names preceded by an article or preposition are alphabetized by the next word in the name.There are two exceptions: One is the Dutch
“Van,” “Van de,” “Van den,” and “Van der.” Another is “Warren De La Rue” (alphabetized under D). (Arabic names are alphabetized under
the shortened version of the name.)

xxiv Table of Entries
Ashbrook, Joseph
Ashraf: al-Malik al-Ashraf (Mumahhid al-Dīn)

Umar ibn Yūsuf
ibn

Umar ibn

Alī ibn Rasūl
Aston, Francis William
Atkinson, Robert d’Escourt
Augustine of Hippo
Aurelianus Augustinus
Autolycus
Auwers, Arthur Julius Georg Friedrich von
Auzout, Adrien
Baade, Wilhelm Heinrich Walter
Babcock, Harold Delos
Babcock, Horace Welcome
Babinet, Jacques
Bache, Alexander Dallas
Backhouse, Thomas William
Backlund, Jöns Oskar
Bacon, Francis
Bacon, Roger
Bailey, Solon Irving
Baillaud, Edouard-Benjamin
Bailly, Jean-Sylvain
Baily, Francis
Bainbridge, John
Baize, Paul-Achille-Ariel
Baker, James Gilbert
Baldwin, Ralph Belknap
Ball, Robert Stawell
Balmer, Johann Jakob
Banachiewicz, Thaddeus Julian
Banneker, Benjamin
Banū Mūsā
Bär, Nicholaus Reymers
Raimarus Ursus
Barbier, Daniel
Barhebraeus: Gregory Abū al-Faraj
Grīḡōriyōs Bar

Eḇrāyā
Grīḡōriyōs Bar

Eḇroyo
Bar Ḥiyya: Abraham bar Ḥiyya Savasorda
Barker, Thomas
Barnard, Edward Emerson
Barnothy, Jeno M.
Barnothy Forro, Madeleine
Barozzi, Francesco
Franciscus Barocius
Barringer, Daniel Moreau
Bartholin, Erasmus
Bartholomaeus Anglicus
Bartsch, Jakob
Bartschius
Bates, David Robert
Bateson, Frank Maine Battānī: Abū

Abd Allāh Muḥammad ibn Jābir ibn Sinān al-Battānī
al-Ḥarrānī al-Ṣābi’
Albategnius [Albatenius]
Baxendell, Joseph
Bayer, Johann
Beals, Carlyle Smith
Becquerel, Alexandre-Edmond
Bečvář, Antonín
Bede
Beer, Wilhelm
Behaim, Martin
Martin of Bohemia
Belopolsky, Aristarkh Apollonovich
Ben Solomon: Judah ben Solomon ha-Kohen
Bennot, Maude Verona
Benzenberg, Johann Friedrich
Bergstrand, Östen
Berman, Louis
Bernard of Le Treille
Bernardus de Trilia
Bernoulli, Daniel
Bernoulli, Jacob [Jacques, James]
Bernoulli, Johann III
Berossus
Bessel, Friedrich Wilhelm
Bethe, Hans Albrecht
Bevis [Bevans], John
Beyer, Max
Bhāskara I
Bhāskara II
Bianchini, Francesco
Blanchinus, Francisco
Bickerton, Alexander William
Biela, Wilhelm Freiherr von
Biermann, Ludwig Franz Benedikt
Bigourdan, Camille Guillaume
Billy, Jacques de
Biot, Edouard-Constant
Biot, Jean-Baptiste
Birjandī:

Abd al-

Alī ibn Muḥammad ibn Ḥusayn al-Birjandī
Birkeland, Kristian Olaf Bernhard
Birkhoff, George David
Birmingham, John
Birt, William Radcliff
Bīrūnī: Abū al-Rayḥān Muḥammad ibn Aḥmad al-Bīrūnī
Biṭrūjī: Nūr al-Dīn Abū Isḥāq [Abū Ja

far] Ibrāhīm ibn Yūsuf
al-Biṭrūjī
Alpetragius
Bjerknes, Vilhelm Frimann Koren
Blaauw, Adriaan
Blackett, Patrick Maynard Stuart
Baron Blackett of Chelsea
Blagg, Mary Adela
Blazhko, Sergei Nikolaevich
Bliss, Nathaniel
Bobrovnikoff, Nicholas Theodore
Bochart de Saron [Bochart-Saron], Jean-Baptiste-Gaspard
Bode, Johann Elert
Boëthius, Anicius Manlius Torquatus Severinus
Boguslawsky, Palon [Palm] Heinrich Ludwig von
Bohlin, Karl Petrus Teodor
Bohr, Niels Henrik David
Bok, Bart Jan

xxvTable of Entries
Bond, George Phillips
Bond, William Cranch
Borda, Jean-Charles de
Borelli, Giovanni Francesco Antonio Alfonso
Boskovic, Rudjer [Roger] J.
Boss, Benjamin
Boss, Lewis
Bouguer, Pierre
Boulliau, Ismaël
Bour, Edmond
Bouvard, Alexis
Bowditch, Nathaniel
Bowen, Ira Sprague
Bower, Ernest Clare
Boyer, Charles
Bradley, James
Bradwardine, Thomas
Brahe, Tycho [Tyge] Ottsen
Brahmagupta
Brandes, Heinrich Wilhelm
Brashear, John Alfred
Bredikhin, Fyodor Aleksandrovich
Bredon, Simon
Bremiker, Carl
Brenner, Leo
Gopčević, Spiridion
Brinkley, John
Brisbane, Thomas Makdougall
Brooks, William Robert
Brorsen, Theodor Johann Christian Ambders
Brouwer, Dirk
Brown, Ernest William
Brown, Robert Hanbury
Hanbury Brown, Robert
Brück, Hermann Alexander
Brudzewski, Albertus de
Albertus Blar de Brudzewo
Albert Brudzewski
Bruhns, Karl [Carl] Christian
Brünnow, Franz Friedrich Ernst
Bruno, Giordano
Bunsen, Robert Wilhelm Eberhard
Buot [Buhot], Jacques
Burckhardt, Johann Karl [Jean-Charles]
Bürgi, Jost [Joost, Jobst]
Buridan, John
Burnham, Sherburne Wesley
Burrau, Carl
Būzjānī: Abū al-Wafā’ Muḥammad ibn Muḥammad ibn Yaḥyā
al-Būzjānī
Byrd, Mary Emma
Cacciatore, Niccolò
Calandrelli, Giuseppe
Calandrelli, Ignazio
Calcagnini, Celio
Callippus of Cyzikus
Kãllippow
Campani, Giuseppe
Campanus of Novara
Campbell, Leon
Campbell, William Wallace
Camus, Charles-Étienne-Louis
Cannon, Annie Jump
Capella, Martianus (Felix) Mineus [Minneius, Minneus]
Capra, Baldassarre
Cardano, Girolamo
Carlini, Francesco
Carpenter, James
Carrington, Richard Christopher
Cassegrain, Laurent
Cassini de Thury, César-François
Cassini III
Cassini, Giovanni Domenico [Jean-Dominique]
Cassini I
Cassini, Jacques
Cassini II
Cassini, Jean-Dominique
Cassini IV
Cassiodorus, Flavius Magnus Aurelius
Castelli, Benedetto (Antonio)
Cauchy, Augustin-Louis
Cavalieri, Bonaventura (Francesco)
Cavendish, Henry
Cayley, Arthur
Celoria, Giovanni
Celsius, Anders
Cerulli, Vincenzo
Cesi, Federico
Chacornac, Jean
Chalcidius
Challis, James
Chalonge, Daniel
Chamberlin, Thomas Chrowder
Chandler, Seth Carlo, Jr.
Chandrasekhar, Subrahmanyan
Chant, Clarence Augustus
Chapman, Sydney
Chappe d’Auteroche, Jean-Baptiste
Charlier, Carl Vilhelm Ludvig
Charlois, Auguste
Chaucer, Geoffrey
Chauvenet, William
Chemla-Lameche, Felix
Lamech, Felix
Chen Kui
Chen Zhuo
Ch’en Cho
Chiaramonti, Scipione
Chioniades, Gregor [George]
Chladni, Ernst Florens Friedrich
Cholgi: Maḥmūd Shāh Cholgi
Khaljī: Maḥmūd Shāh Khaljī
Christiansen, Wilbur Norman
Christie, William Henry Mahoney
Christmann, Jacob

xxvi Table of Entries
Chrysippus of Soloi
Cicero, Marcus Tullius
Clairaut, Alexis-Claude
Clark Family
Clausen, Thomas
Clavius, Christoph
Clemence, Gerald Maurice
Cleomedes
Cleostratus of Tenedos
Clerke, Agnes Mary
Coblentz, William Weber
Cole, Humphrey
Comas Solá, José
Common, Andrew Ainslie
Compton, Arthur Holly
Comrie, Leslie John
Comstock, George Cary
Comte, Auguste (Isidore-Auguste-Marie-François-Xavier)
Condamine, Charles-Marie de la
Conon of Samos
Cooper, Edward Joshua
Copeland, Ralph
Copernicus [Coppernig, Copernik], Nicolaus [Nicholas]
Koppernigk, Nicolaus [Nicholas]
Cornu, Marie Alfred
Cosmas Indicopleustes
Cosserat, Eugène-Maurice-Pierre
Cotes, Roger
Couderc, Paul
Cousins, Alan William James
Cowell, Philip Herbert
Cowling, Thomas George
Crabtree, William
Craig, John
Critchfield, Charles Louis
Croll, James
Crommelin, Andrew Claude de la Cherois
Crosthwait, Joseph
Cuffey, James
Cunitz [Cunitia, Cunitiae], Maria
Kunicia, Maria
Curtis, Heber Doust
Curtiss, Ralph Hamilton
Curtz, Albert
Cysat, Johann Baptist
d’Agelet, Joseph
d’Ailly, Pierre
Petrus de Alliaco
Peter of Ailli
d’Alembert [Dalembert], Jean-Le-Rond
d’Arrest, Heinrich Louis [Ludwig]
d’Aurillac, Gerbert
Pope Sylvester II
d’Azambuja, Lucien
Daly, Reginald Aldworth
Damoiseau, Marie-Charles-Théodore de
Danjon, André-Louis
Danti, Egnatio
Rainaldi, Carlo Pellegrino
Dārandawī: Muḥammad ibn

Umar ibn

Uthmān al-Dārandawī
al-Ḥanafī
Darquier de Pellepoix, Antoine
Darwin, George Howard
Daśabala
Davis, Charles Henry
Davis Locanthi, Dorothy N.
Locanthi, Dorothy N.
Davis, Raymond Jr.
Dawes, William
Dawes, William Rutter
Dawson, Bernhard
De La Rue, Warren
Dee, John
Delambre, Jean-Baptiste-Joseph
Delaunay, Charles-Eugène
Delisle, Joseph-Nicolas
Delporte, Eugène-Joseph
Dembowski, Ercole [Hercules]
Democritus of Abdera
Denning, William Frederick
Derham, William
Descartes, René
Deslandres, Henri-Alexandre
Deutsch, Armin Joseph
Dick, Thomas
Dicke, Robert Henry
Digges, Leonard
Digges, Thomas
Dinakara
Dingle, Herbert
Diogenes of Apollonia
Dionis du Séjour, Achille-Pierre
Dionysius Exiguus
Dirac, Paul Adrien Maurice
Divini, Eustachio
Dixon, Jeremiah
Dollond, John
Dollond, Peter
Dombrovskij [Dombrovsky, Dombrovski],
Viktor Alekseyevich
Donati, Giovan Battista
Donner, Anders Severin
Doppelmayer [Doppelmayr], Johann Gabriel
Doppler, Johann Christian
Dörffel, Georg Samuel
Dôsitheus of Pêlousion
Douglass, Andrew Ellicott
Draper, Henry
Draper, John William
Dreyer, John Louis Emil
Dudits [Dudith, Duditus], András [Andreas]
Dufay, Jean
Dugan, Raymond Smith
Dunash ibn Tamim
Duncan, John Charles
Dunér, Nils Christoffer
Dungal of Saint Denis

xxviiTable of Entries
Dunham, Theodore, Jr.
Dunthorne, Richard
Dürer, Albrecht
Dymond, Joseph
Dyson, Frank Watson
Dziewulski, Wladyslaw
Easton, Cornelis
Eckert, Wallace John
Ecphantus
Eddington, Arthur Stanley
Edlén, Bengt
Eichstad, Lorenz
Laurentius Eichstadius
Eimmart, George Christoph
Einhard
Einstein, Albert
Elger, Thomas Gwyn Empy
Elkin, William Lewis
Ellerman, Ferdinand
Ellery, Robert Lewis John
Ellicott, Andrew
Ellison, Mervyn Archdall
Elvey, Christian Thomas
Emden, Robert
Empedocles of Acragas
Encke, Johann Franz
Engel, Johannes
Angelus
Engelhard, Nicolaus
Ensor, George Edmund
Ephorus
Epicurus of Samos
Eratosthenes of Cyrene
Erro, Luis Enrique
Esclangon, Ernest-Benjamin
Espin, Thomas Henry Espinall Compton
Euctemon
Eudemus of Rhodes
Eudoxus
Euler, Leonhard
Eutocius
Evans, David Stanley
Evans, John Wainright
Evershed, John
Evershed, Mary Acworth Orr
Fabricius, David
Fabricius, Johann
Goldsmid, Johann
Fabry, Marie-Paul-Auguste-Charles
Fallows, Fearon
Fārābī: Abū Naṣr Muḥammad ibn Muḥammad ibn
Tarkhān al-Fārābī
Alfarabius
Farghānī: Abū al-

Abbās Aḥmad ibn Muḥammad
ibn Kathīr al-Farghānī
Fārisī: Muḥammad ibn Abī Bakr al-Fārisī
Fath, Edward Arthur
Fauth, Philipp Johann Heinrich
Faye, Hervé
Fazārī: Muḥammad ibn Ibrāhīm al-Fazārī
Federer, Charles Anthony, Jr.
Feild, John
Fényi, Gyula
Finck, Julius
Ferguson, James
Fernel, Jean-François
Ferraro, Vincenzo Consolato Antonino
Ferrel, William
Fesenkov, Vasilii Grigorevich
Fèvre, Jean le
Finé, Oronce
Orontius Finaeus
Finlay, William Henry
Finsen, William S.
Fisher, Osmond
Fisher, Willard James
FitzGerald, George Francis
Fixlmillner, Placidus
Fizeau, Armand-Hippolyte-Louis
Flammarion, Nicolas Camille
Flamsteed, John
Flaugergues, Honoré
Fleming, Williamina Paton Stevens
Focas, John Henry
Fontana, Francesco
Fontenelle, Bernard le Bovier [Bouyer] de
Forbush, Scott Ellsworth
Ford, Clinton Banker
Foucault, Jean-Bernard-Léon
Fouchy, Jean-Paul
Fouchy, Grandjean de
Fowler, Alfred
Fowler, Ralph Howard
Fowler, William Alfred
Fox, Philip
Fracastoro, Girolamo
Franklin-Adams, John
Franks, William Sadler
Franz, Julius Heinrich G.
Fraunhofer, Joseph von
Freundlich, Erwin
Finlay-Freundlich, Erwin
Friedman, Herbert
Friedmann, Alexander Alexandrovich
Frisi, Paolo
Frisius, Gemma Reinerus
Regnerus
Fromondus, Libertus
Frost, Edwin Brant
Fu An
Furness, Caroline Ellen
Fusoris, Jean [Johanne]
Gaillot, Jean-Baptiste-Aimable
Galilei, Galileo
Galle, Johann Gottfried

xxviii Table of Entries
Gallucci, Giovanni Paolo
Gambart, Jean-Félix-Adolphe
Gamow, George [Georgiy] (Antonovich)
Gan De
Gaṇeśa
Gaposchkin, Sergei [Sergej] Illarionovich
Garfinkel, Boris
Gascoigne, William
Gasparis, Annibale de
Gassendi, Pierre
Gauss, Carl Friedrich
Gautier, Jean-Alfred
Geddes, Murray
Geminus
Gemma, Cornelius
Gentil de la Galaisière, Guillaume-Joseph-Hyacinthe
Jean-Baptiste le
Gerard of Cremona
Gerardus Cremonensis
Gerasimovich [Gerasimovič], Boris Petrovich
Gersonides: Levi ben Gerson
Gilbert, Grove Karl
Gilbert [Gilberd], William
Gildemeister, Johann
Giles of Rome
Aegidius Romanus
Aegidius Colonna [Columna]
Gill, David
Gillis, James Melville
Gingrich, Curvin Henry
Ginzburg [Ginsberg], Vitaly Lazarevich
Giovanelli, Ronald Gordon
Glaisher, James
Glaisher, James Whitbread Lee
Godin, Louis
Godwin, Francis
Gökmen, Mehmed Fatin
Goldberg, Leo
Goldschmidt, Hermann Chaim Meyer
Goodacre, Walter
Goodricke, John
Gore, John Ellard
Gorton, Sandford
Gothard, Jenõ [Eugen] von
Gould, Benjamin Apthorp
Graham, George
Grassi, Horatio
Gray, Stephen
Greaves, John
Greaves, William Michael Herbert
Green, Charles
Green, Nathaniel Everett
Greenstein, Jesse Leonard
Greenwood, Nicholas
Gregoras, Nicephoros
Gregory [Gregorie], David
Gregory, James
Gregory of Tours
Grienberger, Christopher
Grigg, John
Grimaldi, Francesco Maria
Groombridge, Stephen
Grosseteste, Robert
Grotrian, Walter
Grubb, Howard
Grubb, Thomas
Gruithuisen, Franz von Paula
Guiducci, Mario
Guillemin, Amédée-Victor
Guo Shoujing
Kuo Shou-ching
Guthnick, Paul
Gyldén, Johan August Hugo
Haas, Walter Henry
Ḥabash al-Ḥāsib: Abū Ja

far Aḥmad ibn

Abd Allāh al-Marwazī
Hadley, John
Hagen, Johann Georg
Hagihara, Yusuke
Hahn, Graf Friedrich von
Hájek z Hájku, Tadeá
Thaddaeus Hagecius
ab Hayck, Tadeá
Nemicus, Tadeá
Agecio, Tadeá
Ḥajjāj ibn Yūsuf ibn Maṭar
Halbach, Edward Anthony
Hale, George Ellery
Hall, Asaph
Hall, John Scoville
Halley, Edmond
Halm, Jacob Karl Ernst
Hansen, Peter Andreas
Hansteen, Christopher
Harding, Carl Ludwig
Haridatta I
Harkness, William
Haro Barraza, Guillermo
Harper, William Edmund
Harriot, Thomas
Hartmann, Johannes Franz
Hartwig, Carl Ernst Albrecht
Hārūn al-Rashīd
Hāshimī:

Alī ibn Sulaymān al-Hāshimī
Hatanaka, Takeo
Hay, William Thomson
Heckmann, Otto Hermann Leopold
Hegel, Georg Wilhelm Friedrich
Heis, Edward [Eduard, Edouard]
Helicon of Cyzicus
Heliodorus of Alexandria
Helmholtz, Hermann Ludwig Ferdinand von
Hencke, Karl Ludwig
Henderson, Thomas

xxixTable of Entries
Henry, Joseph
Henry of Langenstein
Henry of Hesse the Elder
Heinrich von Langenstein
Henry, Paul Pierre and Prosper-Mathieu
Henyey, Louis George
Heraclides of Heraclea
Heraclides of Pontus
Heraclides Ponticus
Heraclitus of Ephesus
Heraclitus the Riddler
Heraclitus the Obscure
Herget, Paul
Herman, Robert
Hermann the Dalmatian
Hermann the Lame
Reichenau, Hermann von
Hermannus Contractus
Herrick, Edward
Herschel, Alexander Stewart
Herschel, Caroline Lucretia
Herschel, John (Jr.)
Herschel, John Frederick William
Herschel, (Friedrich) William [Wilhelm]
Hertzsprung, Ejnar [Einar]
Herzberg, Gerhard
Hesiod
Hess, Victor Franz [Francis]
Hevel, Johannes
Hevelius
Hevelius, Catherina Elisabetha Koopman
Hey, (James) Stanley
Hicetus
Nicetus
Higgs, George Daniel Sutton
Hildegard of Bingen-am-Rhine
Hill, George William
Hiltner, William Albert
Hind, John Russell
Hinks, Arthur Robert
Hiorter, Olof
Hipparchus of Nicaea
Hippocrates of Chios
Hirayama, Kiyotsugu
Hire, Philippe de la
Hirst, George Denton
Hirzgarter, Matthias
Hoek, Martinus
Hoffleit, Ellen Dorrit
Hoffmeister, Cuno
Hogg, Frank Scott
Holden, Edward Singleton
Höll, Miksa
Hell, Maximilian
Holmberg, Erik
Holwarda, Johannes Phocylides [Fokkens]
Homer
Honda, Minoru
Honter, Johannes
Hooke, Robert
Hörbiger, Hanns
Horn d’Arturo, Guido
Hornsby, Thomas
Horrebow, Christian
Horrebow, Peder Nielsen
Horrocks [Horrox], Jeremiah
Hough, George Washington
Hough, Sydney Samuel
Houtermans, Friedrich Georg
Houzeau de Lehaie, Jean-Charles-Hippolyte-Joseph
Hoyle, Fred
Hubble, Edwin Powell
Huggins, Margaret Lindsay Murray
Huggins, William
Hulburt, Edward Olson
Humason, Milton Lassell
Humboldt, Alexander Friedrich Heinrich von
Humphreys, William Jackson
Ḥusayn, Ḥasan and Muḥammad
Hussey, William Joseph
Huth, Johann Sigismund Gottfried
Huygens, Christiaan
Hypatia
Hypsicles of Alexandria
Ibn Abī al-Fatḥ al-Ṣūfī: Shams al-Dīn Abū

Abd Allāh Muḥammad
ibn Abī al-Fatḥ al-Ṣūfī
Abī al-Fatḥ al-Ṣūfī
Ibn Abī al-Shukr: Muḥyī al-Milla wa-’l-Dīn Yaḥyā Abū

Abdallāh
ibn Muḥammad ibn Abī al-Shukr al-Maghribī
al-Andalusī [al-Qurṭubī]
Abī al-Shukr
Ibn al-A

lam:

Alī ibn al-Ḥusayn Abū al-Qāsim al-

Alawī al-Sharīf
al-Ḥusaynī
Ibn Bājja: Abū Bakr Muḥammad ibn Yaḥyā ibn al-Ṣā’igh al-Tujībī
al-Andalusī al-Saraqusṭī
Avempace
Bājja
Ibn al-Bannā’: Abū al-

Abbās Aḥmad ibn Muḥammad ibn

Uthmān
al-Azdī al-Marrākushī
al-Bannā’
Ibn Bāṣo: Abū

Alī Al-Ḥusayn ibn Abī Ja

far Aḥmad ibn Yūsuf Ibn Bāṣo
Bāṣo
Ibn Ezra: Abraham ibn

Ezra
Ezra
Ibn al-Hā’im: Abū Muḥammad

Abd al-Ḥaqq al-Ghāfiqī al-Ishbīlī
al-Hā’im
Ibn al-Haytham: Abū

Alī al-Ḥasan ibn al-Ḥasan
Alhazen
al-Haytham
Ibn

Irāq: Abū Naṣr Manṣūr ibn

Alī ibn

Irāq

Irāq
Ibn Isḥāq: Abū al-

Abbās ibn Isḥāq al-Tamīmī al-Tūnisī
Isḥāq

xxx Table of Entries
Ibn al-Kammād: Abū Ja

far Aḥmad ibn Yūsuf ibn al-Kammād
al-Kammād
Ibn Labbān, Kushyār: Kiyā Abū al-Ḥasan Kushyār ibn Labbān
Bashahrī al-Jīlī (Gīlānī)
Labbān, Kushyār
Ibn al-Majdī: Shihāb al-Dīn Abū al-

Abbās Aḥmad ibn Rajab ibn
Ṭaybughā al-Majdī al-Shāfi

ī
al-Majdī
Ibn Mu

ādh: Abū

Abd Allāh Muḥammad ibn Mu

ādh al-Jayyānī
Mu

ādh
Ibn al-Raqqām: Abū

Abd Allāh Muḥammad ibn Ibrāhīm ibn

Alī
ibn Aḥmad ibn Yūsuf al-Mursī al-Andalusī al-
Tūnisī al-Awsī ibn al-Raqqām
al-Raqqām
Ibn Rushd: Abū l-Walīd Muḥammad ibn Aḥmad ibn Muḥammad
ibn Rushd al-Ḥafīd
Averroes
Rushd
Ibn al-Ṣaffār: Abū al-Qāsim Aḥmad ibn

Abd Allāh ibn

Umar
al-Ghāfiqī ibn al-Ṣaffār al-Andalusī
al-Ṣaffār
Ibn Sahl: Abū Sa

d al-

Alā’ ibn Sahl
Sahl
Ibn al-Ṣalāḥ: Najm al-Dīn Abū al-Futūḥ Aḥmad ibn Muḥammad
ibn al-Sarī Ibn al-Ṣalāḥ
al-Ṣalāḥ
Ibn al-Samḥ: Abū al-Qāsim Aṣbagh ibn Muḥammad ibn al-Samḥ
al-Gharnāṭī
al-Samḥ
Ibn al-Shāṭir:

Alā’ al-Dīn

Alī ibn Ibrāhīm
al-Shāṭir
Ibn Sid: Isaac ibn Sid
Sid
Ibn Sīnā: Abū

Alī al-Ḥusayn ibn

Abdallāh ibn Sīnā
Avicenna
Sīnā
Ibn Ṭufayl: Abū Bakr Muḥammad ibn

Abd al-Malik ibn
Muḥammad ibn Muḥammad ibn Ṭufayl al-Qaysī
Abubacer
Ṭufayl
Ibn Yūnus: Abū al-Ḥasan

Alī ibn

Abd al-Raḥmān ibn Aḥmad ibn
Yūnus al-Ṣadafī
Yūnus
Ibrāhīm ibn Sinān ibn Thābit ibn Qurra
Ihle, Abraham
Ingalls, Albert Graham
Innes, Robert Thorburn Ayton
Ino, Tadataka
Irwin, John Henry Barrows
Isfizārī: Abū Ḥātim al-Muẓaffar ibn Ismā

īl al-Isfizārī
Isḥāq Ibn Ḥunayn: Abū Ya

qūb Isḥāq ibn Ḥunayn ibn Isḥāq
al-

Ibādī
Isidore of Seville
Isidorus Hispalensis
Jābir ibn Aflaḥ: Abū Muḥammad Jābir ibn Aflaḥ
Jacchia, Luigi Giuseppe
Jackson, John
Jacob ben Makhir ibn Tibbon
Don Profeit Tibbon
Profatius
Jagannātha Samrāṭ
Jaghmīnī: Sharaf al-Dīn Maḥmūd ibn Muḥammad ibn

Umar
al-Jaghmīnī al-Khwārizmī
Jai Singh II
Jansky, Karl Guthe
Janssen, Pierre Jules César
Jarry-Desloges, René
Javelle, Stéphane
Jawharī: al-

Abbās ibn Sa

īd al-Jawharī
Jeans, James Hopwood
Jeaurat, Edme-Sébastien
Jeffreys, Harold
Jenkins, Louise Freeland
Jia Kui
John of Gmunden
Krafft, Johann
John of Holywood
Johannes de Sacrobosco
Sacrobosco
John of Lignères
Johannes de Lineriis
John of [Juan de] Messina
John of Muris [Murs]
Jean de Meurs
Jehan de Murs
Johannes de Muris
John [Danko] of Saxony
John of Toledo
Johnson, Manuel John
Jonckheere, Robert
Jordan, Ernst Pascual
Joy, Alfred Harrison Jurjānī:

Alī ibn Muḥammad ibn

Ali al-Ḥusaynī al-Jurjānī
(al-Sayyid al-Sharīf)
Jūzjānī: Abū

Ubayd

Abd al-Wāḥid ibn Muḥammad
al-Jūzjānī
Jyeșţhadeva
Kaiser, Frederik [Frederick, Friedrich]
Kaluza, Theodor Franz Eduard Kamāl al-Dīn al-Turkmānī: Kamāl al-Dīn Mu
ḥammad ibn Aḥmad
ibn

Uthmān ibn Ibrāhīm ibn Muṣṭafā
al-Māridīnī al-Turkmānī al-Ḥanafī
Kamalākara
Kanka
Kant, Immanuel
Kapteyn, Jacobus Cornelius Kāshī: Ghiyāth (al-Milla wa-) al-Dīn Jamshīd ibn Mas

ūd ibn
Maḥmūd al-Kāshī [al-Kāshānī]
Kauffman, Nicolaus
Mercator, Nicolaus
Keckermann, Bartholomew
Keeler, James Edward
Keenan, Philip Childs
Keill, John
Kempf, Paul Friedrich Ferdinand
Kepler, Johannes

xxxiTable of Entries
Kerr, Frank John
Keśava
Keyser, Pieter [Petrus] (Theodori) Dirckszoon
Khafrī: Shams al-Dīn Muḥammad ibn Aḥmad al-Khafrī
al-Kāshī
Khaikin, Semyon Emmanuilovich
Khalīfazāde Ismā

īl: Khalīfazāde Çınarī Ismā

īl Efendi ibn Muṣṭafā
Khalīlī: Shams al-Dīn Abū

Abdallāh Muḥammad ibn Muḥammad
al-Khalīlī
Kharaqī: Shams al-Dīn Abū Bakr Muḥammad ibn Aḥmad
al-Kharaqī [al-Khiraqī]
Khayyām: Ghiyāth al-Dīn Abū al-Fatḥ

Umar ibn Ibrāhīm
al-Khayyāmī al-Nīshāpūrī
Omar Khayyām
Khāzin: Abū Ja

far Muḥammad ibn al-Ḥusayn al-Khāzin
al-Khurāsānī
Khāzinī: Abū al-Fatḥ

Abd al-Raḥmān al-Khāzinī (Abū Manṣūr

Abd al-Raḥmān, Abd al-Raḥmān Manṣūr)
Khujandī: Abū Maḥmūd Ḥāmid ibn al-Khiḍr al-Khujandī
Khwārizmī: Muḥammad ibn Mūsā al-Khwārizmī
Kidinnu [Kidin, Kidenas]
Kienle, Hans Georg
Kiepenheuer, Karl-Otto
Kiess, Carl Clarence
Kimura, Hisashi
Kindī: Abū Yūsuf Ya

qūb ibn Isḥāq al-Kindī
King, William Frederick
Kirch, Christfried
Kirch, Christine
Kirch, Gottfried
Kirch, Maria Margaretha Winkelman
Kircher, Athanasius
Kirchhoff, Gustav Robert
Kirkwood, Daniel
Klein, Hermann Joseph
Klein, Oskar Benjamin
Klinkerfues, Ernst Friedrich Wilhelm
Klotz, Otto Julius
Klumpke Roberts, Dorothea
Kneller, Andreas
Cellarius
Knobel, Edward Ball
Knorre, Viktor Carl
Kobold, Hermann Albert
Köhler, Johann Gottfried
Kohlschütter, Arnold
Kolhörster, Werner Heinrich Julius Gustav
Kolmogorov, Andrei Nikolaevich
Konkoly Thege, Miklós [Nikolaus]
Kopal, Zdenĕk
Kopff, August
Kordylewski, Kazimierz
Korff, Serge Alexander
Kovalsky, Marian Albertovich
Voytekhovich, Marian Albertovich
Kozyrev, Nikolai Alexandrovich
Krebs, Nicholas
Nicholas Cusanus
Nikolaus von Cusa
Nicholas of Cusa
Kremer, Gerhard
Gerardus Mercator
Kreutz, Heinrich Carl Friedrich
Krieger, Johann Nepomuk
Kron, Gerald Edward
Krüger, Karl Nicolaus Adalbert Kūhī: Abū Sahl Wījan ibn Rustam [Wustam] al-Kūhī

[al-Qūhī]
Kuiper, Gerard Peter
Kulik, Leonid Alexyevich
Küstner, Karl Friedrich
La Caille [Lacaille], Nicolas-Louis de
Lacchini, Giovanni Battista
Lacroute, Pierre
Lagrange, Joseph Louis
Lagrangia, Giuseppe Lodovico
Lalande, Joseph-Jérôme
de la Lande, Joseph-Jérôme
Lefrançois de la Lande, Joseph-Jérôme
Lalla
Lallemand, André
Lambert, Johann Heinrich [Jean Henry]
Lamont, John [Johann von]
Lampland, Carl Otto
Lanczos, Cornelius
Löwy, Kornel
Lane, Jonathan Homer
Langley, Samuel Pierpont
Langren, Michael Florent van
Langrenus
Lansbergen, Jacob
Lansbergen, Philip
Laplace, Pierre-Simon de Lārī: Mu
ṣliḥ al-Dīn Muḥammad ibn Ṣalāḥ ibn Jalāl al-Sàdī
al-
ʔ
Ibādī al-Anṣārī al-Lārī
Larmor, Joseph
Lassell, William
Lau, Hans Emil
Leadbetter, Charles
Leavitt, Henrietta Swan
Lebedev, Petr Nikolaevich
Leclerc, Georges-Louis
Comte de Buffon
Ledoux, Paul
Le Doulcet, Philippe Gustave
Comte de Pontécoulant
Lefrançois, Michel
Lefrançois de Lalande, Michel
Legendre, Adrien-Marie
Leibniz, Gottfried Wilhelm
Lemaître, Georges Henri-Joseph-Edouard
Leovitius, Cyprianus
Lepaute, Nicole-Reine
Étable de la Brière, Nicole-Reine
Lescarbault, Edmond Modeste
Leucippus of Miletus
Leuschner, Armin Otto

Le Verrier, Urbain-Jean-Joseph
Lexell, Anders Johan
Li Chunfeng
Liais, Emmanuel-Benjamin
Liddel, Duncan
Lin, Chia Chiao
Lindblad, Bertil
Lindemann, Adolf Friedrich
Lindsay, Eric Mervyn
Lipsky, Yuri Naumovich
Littrow [Littroff], Johann Joseph (Edler) von
Littrow, Karl Ludwig von
Liu Zhuo [Ch’o]
Lobachevsky, Nikolai Ivanovich
Locke, John
Lockyer, Joseph Norman
Lodge, Oliver Joseph
Lohrmann, Wilhelm Gotthelf
Lohse, Wilhelm Oswald
Lomonosov, Mikhail Vasilievich
Loomis, Elias
Lorentz, Hendrik Antoon
Lorenzoni, Giuseppe
Lovell, Alfred Charles Bernard
Lowell, Percival
Lower, William
Löwy, Maurice
Löwey, Moritz
Loys de Chéseaux, Jean-Philippe
Lubieniecki Stanislaw
Lubienitzley Stanislas
Lucretius (Carus), Titus
Ludendorff, Friedrich Wilhelm Hans
Lundmark, Knut Emil
Luther, Karl Theodor Robert
Luyten, Willem Jacob
Lyot, Bernard
Lyttleton, Raymond Arthur
If a name within the text appears in bold, there exists an entry on that astronomer elsewhere in the encyclopedia.
xxxii Table of Entries

Introduction
History is the essence of innumerable biographies.
Thomas Carlyle, Essays, “On History”
Astronomy has a long and rich tradition, and as the record shows, the history of that tradition is tied closely to collective biography.

The
present volumes represent a modern attempt to provide a comprehensive biographical encyclopedia of astronomers. The purpose of these
volumes is twofold. First, as ready reference, they are designed to provide easy access to biographical information in the history of astron-
omy. Cutting across space and time, biographical entries are international in scope and cover the period from classical Antiquity to the late
20th century. Second, drawing on a variety of specialized scholars, these volumes aim to serve as an “access point” for continuing research.
While individual entries “stand alone” as ready reference, taken collectively, they offer a map of the complex communities that gave sci-
ence shape.

The following introduction has two purposes: first, to sketch the origins of collective biography and its place in the history of
astronomy; second, to illustrate the design and use of collective biographies as reference and research tools.
Biography And History
There is properly no history, only biography.
Ralph Waldo Emerson, Essays, “History”
History—here I mean historical writing—traces its origins to classical Antiquity, to the celebration of heroes and the lives of great men.
Although lives were written before Plutarch’s aptly titled classic, the modern sense of biography—a fair-minded history of a particular
life—took mature form only in the 19th century.

The history of writing lives challenges the boundaries that currently separate history,
biography, literature, rhetoric, and political commentary. While the roots of modern biography can be traced to the Renaissance (includ-
ing early examples of science biography), sharp distinctions between “history and biography” are difficult to sustain, not only because the
categories continue to overlap but because both share a common ancestor—what we now call collective biography.

As background to the
present volumes, the following historiographic essay sketches these changing relations.

The origins of biography (literally, life writing) are found in classical Antiquity as part of a long tradition dedicated to the celebration of
heroes.

For two millennia, what we now know as history was often viewed as philosophy teaching by example. A brief glance at early writers
suggests that biography and collective biography share a complex evolution. While Damascius (sixth century) was the first writer to use the
Latin term biographia, John Dryden was the first to use biography in print (1683), this in reference to Plutarch’s Lives. Words are important
but much more was at work. Viewed over time, historical writing included what is now known as history, biography, and collective bio­
graphy, as well as elements from other branches of the humanities and social sciences.
Biography has served many masters. Between Antiquity and the Renaissance, its main role was to tell the lives of statesmen, philoso-
phers, and saints. As a display of literary and rhetorical skill, its principal aim was to instruct and inspire. Among ancient Greek and Latin
authors, the biographical art is evident in the Lives of Critias, the Memorabilia of Xenophon, the Lives of the Philosophers by Diogenes

I wish to thank the BEA Editorial Board for the invitation to write the Introduction. While I have contributed several articles in these volumes, I have had no role
in designing or editing the present work.

Collective biography invites the reader to explore the interplay of individuals, ideas, and groups. One scholar went further: “In group biography, one becomes
defined by the many. The group biography in fact becomes a protest against the erosion of a viable communal life and marks the socialization of biography as it incor-
porates several lives, not a single life.” Nadel, Ira Bruce (1984) Biography: Fiction, Fact & Form, New York, p. 192.

See Telling Lives: The Biographer’s Art, Marc Pachter, ed., Philadelphia, 1979; Telling Lives in Science: Essays on Scientific Biography, Eds. M. Shortland and M. Yeo,
Cambridge, 1996; Edmund Gosse, “Biography,” in Encyclopaedia Britannica, 11th Edition (New York, 1910) Vol. 3: 952–954; Virginia Woolf, “The Art of Biography,”
The Atlantic Monthly 163 (1939): 506–510; and Sidney Lee, “Principles of Biography.” Elizabethan and Other Essays. Oxford, 1927: 31–57.

Collective biography—short sketches of individual lives representing a group—is a recent term that might be applied to earlier traditions. Collective biography
is sometimes associated with prosopography, a method used by social scientists and social historians based on data from collective biography. For an overview, see
Helge Kragh, “Prosopography,” An Introduction to the Historiography of Science, Cambridge, 1987, pp. 174–181. As an example of trends in a specific historical field,
see Fifty Years of Prosopography: The Later Roman Empire, Byzantium and Beyond, Ed. Averil Cameron, Oxford, 2003.

Historiography—the history of historical writing—suggests that history, biography, and collective biography share common roots. For background, see Herbert
Butterfield, “Historiography,” Dictionary of the History of Ideas, Vols. 2, (New York, 1973): 464–498; for history of science, see John R. R. Christie, “The Development
of the Historiography of Science,” Companion to the History of Modern Science, London and New York, 1990, pp. 5–22, and Helge Kragh, An Introduction to the Histo-
riography of Science, Cambridge, 1987.

Over time, biography seized on the individual character of virtue and vice; collective biography celebrated group achievement by virtue of vocation. A counter
example is Catalogus Hereticorum (1522?) by Bernardus de Lutzenburg, which devotes two chapters to heretics and their errors.

xxxiv Introduction
­ Laertius, Plutarch’s Parallel Lives, and Suetonius’s Lives of the Twelve Caesars.

It should be noted that these authors are often not identified as
historians, but as scholars, poets, or letter writers. When we consider the best-known early historians—from Herodotus (circa 480–circa 430
BCE) and Thucydides (circa 460–400 BCE) to noted writers such as Pliny (23–79), Livy (59 BCE-17), and Vespasiano (1421–1498)—short
biography was an essential element in their annals and accounts.

Origins of Modern Biography
The origins of modern biography—the first sustained attempts to write the life of a single individual—can be traced to the Renaissance.
The earliest examples were literary. William Roper (1496–1578) wrote the life of Sir Thomas More, George Cavendish (1500–1561?), the
life of Cardinal Wolseÿ later, Izaak Walton published a series of biographies, including the life of John Donne (1640).

Collective biography
also found favor as poets, artists, and scholars joined ranks with statesmen, saints, and kings.
10
Thomas Fuller’s History of the Worthies of
England (1662) extended earlier traditions into more secular territory, while Aubrey’s Minutes of Lives (its working title) is still widely read
today. An early member of the Royal Society, John Aubrey (1626–1697) became interested in biography through his friend, Anthony à Wood
(1632–1695), in researching the latter’s Athenae Oxonienses (1691–1692), a “living and lasting history” of Oxford University based on group
biography.
11
The more widely read work is now known as Aubrey’s Brief Lives.
12
Although Wood judged him “credulous,” Aubrey wrote vivid
and often intimate biographical sketches, including a number of figures from the New Science—Robert Boyle, René Descartes, Edmond
Halley, Thomas Hobbes, Robert Hooke, Nicolas Mercator, and Christopher Wren. Aubrey interviewed many of his subjects. In retrospect, a
key problem was the scarcity of personal diaries and journals, as the publication of memoirs and letters was not yet fashionable.
13
Aubrey’s
contemporary, Thomas Sprat (1635–1713), wrote the Life of Cowley (1668) and his better-known History of the Royal Society (1667).
14
Draw-
ing on institutional registers and journals, Sprat sprinkled his History with short biographies. His aim was to provide living proof of the
“usefulness” of “true philosophy.” Institutional histories have since used collective biography as a key component in their ­narratives.
Biography—indeed “science biography”—took recognizable form with the work of Pierre Gassendi (1592–1655). A noted philosopher and
astronomer, Gassendi was among the first to write the lives of individual astronomers. An advocate of the New Science, Gassendi employed
his knowledge of nature and the language skills of a classical scholar. According to his English translator, Gassendi was “comparable to any
of the ancients.”
15
His versatility served him well in telling the lives of Nicolaus Copernicus and Tycho Brahe, as well as Georg Peurbach and

As one example of recent scholarly treatment of ancient biography, see Tomas Hägg and Philip Rousseau, Eds. Greek Biography and Panegyric in Late Antiquity.
The Transformation of the Classical Heritage, 31. Berkeley, 2000. Examples from other periods include David J. Sturdy, Science and Social Status: The Members of
the ­Académie des sciences, 1666–1750. Rochester, New York, 1995 and Frank A. Kafker, The Encyclopedists as a Group: A Collective Biography of the Authors of the
­ “Encyclopédie.” For an overview of key issues, see Clark A. Elliott, “Models of the American Scientist: A Look at Collective Biography.” Isis, Vol. 73, No. 1 (March,
1982): 77–93.

From preclassical times, the transition from oral traditions, epics, and story telling (understood as historical literature) was accompanied by the production of
records. In addition to annals and chronologies, the earliest forms of government required dynastic lists, while legal considerations of inheritance (as one example of
precedence) called for extended genealogies. Between Greek and Roman writers, early forms of historical writing would now be classified as political commentary,
contemporary history, or history of the times. Cicero expresses the Roman ideal of the historian as a writer who seeks motives, portrays individual character, analyzes
results, and who “supports the cause of virtue and moves the reader by literary artistry.” (Herbert Butterfield, “Historiography.” Dictionary of the History of Ideas, 5.
Vols., New York, 1973, Vol. 2: 464–498, p. 470.) Butterfield summarizes the view of Tacitus: “the deeds of good men ought not to be forgotten and that evil men ought
to be made to fear the judgment of posterity.” “Historiography,” p. 479.

He also wrote biographies of Henry Wotton (1651), Richard Hooker (1665), George Herbert (1670), and Robert Saunderson (1678).
10
A late 16th-century writer lamented: “For lives, I find it strange, when I think of it, that these our times have so little esteemed their own virtues, as that the
commemoration and writings of the lives of those who have adorned our age should be no more frequent. For although there be but few sovereign kings or absolute
commanders, and not many princes in free states (so many free states being now turned into monarchies), yet are there many worthy personages (even living under
kings) that deserve better than dispersed report or dry and barren eulogy.” Thomas Blundeville, The True Order and Method of Writing and Reading Histories, London,
1574 (no pagination), quoted in Versions of History from Antiquity to the Enlightenment, Ed. Donald R. Kelley, New Haven, 1991, 397–413, p. 407.
11
Wood’s History, prompted by his friend, Dr John Fell, dean of Christ Church, brought him much fame and notoriety. His grand project, the Athenae Oxonienses,
was essentially a biographical dictionary mixing historical narrative, collective biography, and bio-bibliography. Assisted by Aubrey and Andrew Allam (neither
adequately acknowledged), Wood drew on a variety of printed sources ranging from published works to institutional documents from libraries, archives, and govern-
mental offices. John Fell, influential with the university press, assisted with publication. Wood was eventually sued for libel and removed from the ­university.
12
Aubrey’s Lives, written between 1669–1696, exists in four folio manuscript volumes. The public appearance of the Lives has a complicated publishing history.
While early editions appeared in the late 18th century, an early standard edition appeared only in 1898. John Aubrey. “Brief Lives,” Chiefly Contemporaries, set down by
John Aubrey, between the years 1669 & 1696. Edited by Andrew Clark. 2 Vols. Oxford, 1898.
13
Diaries and letters are critical resources for biographers and historians. The best known diaries of this period, published centuries later, include The Diary of
­ Robert Hooke (Eds. H.W. Robinson and W. Adams, 1935); The Diary of Samuel Pepys, 11 Vols. (Eds. R. Latham and W. Matthews, 1970–1983); and The Diary of
John Evelyn, 6 Vols. (Ed. E.S. de Beer, 1955–). Publication of personal and scholarly letters began in the 17th century. Early efforts include the letters of N-C Fabri de
Peiresc, Galileo Galilei, Johannes Hevelius, and René Descartes, among others.
14
Thomas Sprat. The History of the Royal-Society of London, for the Improving of Natural Knowledge. London, 1667. Sprat’s polemic for the New Science is thematic,
philosophical, and passionate. His use of biography is not central to his arguments but ever-present in illustrating his claims.
15
Gassendi’s Vita, discussed more fully below, was translated by William Rand and published as The Mirrour of True Nobility & Gentility (London, 1657).

xxxvIntroduction
Johannes Regiomontanus.
16
In retrospect, Gassendi’s success was linked to an emerging biographical principle, to portray the “conjunction of
life and mind.”
17
Like other contemporaries, Gassendi used history to support his scientific claims while shedding light on the inner workings
of science.
18
His most cited biography is a tribute to his friend and patron, Nicolas-Claude Fabri de Peiresc (1580–1637). A noted humanist
scholar and amateur of science, Peiresc collaborated with Gassendi in astronomy and in conducting optical experiments. Gassendi’s biography
portrays Peiresc’s motives for studying nature and the relation between his personality and worldview. One of the first biographies translated
from Latin into English, Gassendi’s Mirrour of True Nobility (W. Rand, trans., 1657; Vita 1641) has been favorably compared to a later classic
biography, Boswell’s Life of Johnson (1791). Gassendi met Boswell’s strictest criteria: Boswell’s masterpiece is an intimate and telling portrait;
it clearly shows that the biographer and subject had “ate, drank, and communed.”
19
Boswell’s Life of Johnson established biography as a legitimate form of historical writing. Importantly, Boswell’s central interest in
­ Johnson’s life was to portray the “progress of his mind”—to tell his story accurately but not without passion. For Boswell, in “every picture
there must be shade as well as light,” and while not wishing “to cut his claws nor make a tiger a cat,” his portrait of Johnson included all the
“blotches and pimples.”
20
Boswell transformed biography into a conventional and fashionable form of historical writing.
By the 19th century, biography gained maturity and great prestige. It was here, in the Century of Science, that a new genre appeared. It
is now called “science biography.” In the century that followed, particularly after World War II, numerous science biographies appeared. They
celebrated traditional heroes as well as obscure figures. Classic studies of Isaac Newton, to take the oldest tradition, illustrate important
shifts in the objectives of science biography. Since his death, Newton has been the subject of dozens of studies, from early hagiographic
accounts to modern archive-based interpretations devoted to “Newton the Man.”
21
Newton posed problems for biographers from the outset,
­ particularly as unknown manuscripts came to light betraying his passion for alchemy, religion, and prophecy. Heralded as the “Splendid
Ornament of Our Time” by Sir Edmond Halley, “High Priest of Science” by Sir David Brewster, and “Last of the Magicians” by Baron John
Maynard Keynes, Newton’s many faces continue to challenge traditional assumptions about the proper relation between science and biogra-
phy. Despite differences and continuing debate, scholars agree that biography should leave readers less worshipful and more intrigued.
22
The distinction between biography and history is a modern development. Although both share a common ancestor—and a strong family
resemblance—each has a distinct physiognomy. To overstate a difference, biography stems from the belief that history is made by human
beings, not by abstract ideas or impersonal forces. Equally overstated, history emphasizes the view that larger themes, trends, and move-
ments account for change. In brief, if biography is a solo instrument, history is an orchestra. The limits of either perspective (assuming such
­distinctions can be sustained) are clear. In either case, authors assume a point of view. Biographers take the view that life is not encountered
16
Latin versions appeared in several editions, the first in Paris (1654), the second in The Hague: Pierre Gassendi, Tychonis Brahei, equitis Dani, astronomorum cory-
phaei, vita  … Accessit Nicolai Copernici, Georgi Peurbachii, and Ioannis Regiomontani, astronomorum celebrium, vita. Hagae Comitum (Vlacq) 1655.
17
See Gassendi’s introductory letter to Jean Chapelain in the Preface to Peurbach and Regiomontanus.
18
Chronology was an important element in the New Science. Practitioners include not only Johannes Kepler and Issac Newton but an extraordinary group that
mixed classical studies with advanced skills in astronomy, among them Joseph Scaliger, Wilhelm Schickard, Ismaël Boulliau, J-F Gronovius, John Greaves, Edward
Bernard, Nicolas Heinsius, John Bainbridge, Sir Christopher Heydon, J-H Boecler, Henry Savile, James Ussher (archbishop of Armagh), Vincenzo Viviani, and Ed-
mond Halley.
19
Pierre Gassendi. The Mirrour of True Nobility & Gentility, Being the Life of the Renowned Nicolaus Claudius Fabricius Lord of Peiresk, Senator of the Parliament at
Aix. Trans. W. Rand, London, 1657.
20
The phrase “warts and all” biography (perhaps derived from Boswell’s “blotches and pimples”) resonates with Walt Whitman’s charge to his biographer, “…  do not
prettify me: include all the hells and damns.”
21
The first full-scale biography of Isaac Newton was written by Sir David Brewster (1781–1868), the noted physicist and journalist. Brewster’s first excursions in
biography were popular. But as author of The Life of Sir Isaac Newton (1831) and Martyrs of Science: Lives of Galileo, Tycho Brahe and Kepler (1841), Brewster soon
found himself defending his principal hero. In 1822, the French astronomer J-B Biot (1822) made claims that Isaac Newton was intellectually crippled by mental
illness, and hinted at Newton’s questionable moral behavior. A decade later, Francis Baily made much of Newton’s unfairness in his Account of the Rev
d
John Flamsteed
(London, 1835). To defend Newton, Brewster gained access to little-known Newton manuscripts in the Portsmouth Collection (and Hurstbourne Collection). Much
to his surprise, Brewster unearthed evidence that linked Newton to unorthodox religious and alchemical views. The result was Brewster’s Memoirs of the Life, Writings
and Discoveries of Sir Isaac Newton 2 Vols. (1855). On balance, Brewster did little to respond to the substance of the claims by Biot and Baily, essentially ignoring
Newton’s alchemy while denying Newton’s illness of 1693. Some 80 years later, L.T. Trenchard More blasted Brewster’s approach in his Isaac Newton: A Biography
(1934). Charging him with playing the role of advocate to “The High Priest of Science,” More claimed that Brewster made “almost no attempt to present Newton as a
living man or to give a critical analysis of his character” (Newton, pp. vi–vii). Into this debate next came the noted economist, John Maynard Keynes (1883–1946). A
wealthy collector of rare manuscripts, Keynes acquired hitherto unknown manuscripts of Isaac Newton on alchemy and religion. On the basis of these documents,
Keynes famously proclaimed that “Newton was not the first of the age of reason. He was the last of the magicians” (“Newton the Man,” 1947, Newton Tercentenary
Celebrations, 1947, pp. 27–34). A generation later, the noted historian Frank Manuel published an important trilogy, Isaac Newton, Historian (1963), The Religion of
Isaac Newton (1974), and A Portrait of Isaac Newton (1968)—a brilliant but controversial psycho-biographical study. Two decades later, a Newtonian synthesis of sorts
appeared, Never at Rest, A Biography of Isaac Newton (Cambridge, 1980) by Richard S. Westfall. As Newton’s biographer, Westfall aimed to “present his science, not as
the finished product  … but as the developing endeavor of a living man confronting it as problems still to be solved” (p. x). Westfall’s credo captures the modern sense
of science biography. Subsequent biographers have followed suit. In his Isaac Newton, Adventurer in Thought (London, 1992), A.R. Hall suggests the problem with
earlier approaches was that the “mythical Newton, a new Adam born on Christmas Day and nourished by an apple from the tree of knowledge, came to obscure the
real man who had worked in dynamics, astronomy, and optics” (p. xii). A number of important studies continue to appear. Although the biographical tradition sur-
rounding Newton is longstanding, it shares important similarities with subsequent biographic traditions associated with Charles Sigmund Albert, Darwin, Freud, and
Einstein.
22
Thomas L. Hankins, “In Defence of Biography: The Use of Biography in the History of Science.” History of Science, 17: 1–16. See also Helge Kragh, “The
­ Biographical Approach,” in H. Kragh, An Introduction to the Historiography of Science, Cambridge, 1987, 168–173.

xxxvi Introduction
as a category or theme. Although it focuses on an individual life, biography can be used as an historical lens to refract the full range of human
experience—from individual aspirations to enduring achievements. Those who write “science biography” often aim to show how scientists
go about their business, how ideas and theories emerge, and how life and work make a coherent whole. In the end, most readers recognize
that biography can be honest without telling the whole truth.
Modern Collective Biography
A biography should either be as long as Boswell’s or as short as Aubrey’s.
Lytton Strachey
Collective biography—short sketches of individual lives representing a group—traces its roots to classical Antiquity, and since then it has
been popularized, institutionalized, and widely embraced.
23
Collective biography has a long tradition of telling the story about science “in
the making.” Since the time of Aristotle, authors have taken pains to record the efforts of predecessors (if only to show how misguided their
views) just as modern authors have summoned ancient authors to support new theories. Applied to astronomy, an important assumption of
collective biography is that “astronomy” is not only a body of knowledge but a body of people. It addresses individual lives as well as forms of
life. Taken collectively, most astronomers—observers, mathematicians, calculators, astrologers, speculative philosophers—were not heroic
figures. While few historians doubt the significance of Newton, many are persuaded of the importance of minor figures.
24
Scholars continue
to debate the appropriate balance between individuals and groups.
The history of astronomy—like other scholarly specialities—is inseparably linked to collective biography. Among the early pioneers in
this genre, two deserve brief mention: Giovanni Battista Riccioli (1598–1671) and Edward Sherburne (1618–1702). Echoing tradition in his
title, Riccioli’s Almagestum novum (Bologna, 1651) was not the first work to use history as evidence for his cosmological views.
25
Engaged
in the great debate over the Ptolemaic, Tychonic, and Copernican world systems, Riccioli used history to tip the scales in favor of an Earth-
centered model. A Jesuit by training, Riccioli published his two-volume work in defense of charges leveled against Galileo Galilei (1616
and 1633). Riccioli heaped new observations on old theories to support the Tychonic model.
26
To counter Copernicus’s claims, Riccioli
marshaled an army of believers in the immobility of the Earth, and not surprisingly, the Copernicans were vastly outnumbered.
27
Working
old arguments into a new narrative, Riccioli used history and biography in what amounted to a Copernican counter-reformation. Riccioli’s
collective biography contains some 400 astronomers from Antiquity to his own age. It fills 20 folio pages—in small type.
28
Appearing several decades later, Edward Sherburne’s Sphere of Marcus Manilius (1675) contains the first modern collective biography
of astronomers.
29
Responding to wide-spread interest in the ancient astrologer Manilius (flourished 10), Edward Sherburne (1618–1702)
presented the first English translation of Book One of the Astronomicon, and along with it, his remarkable “Catalogue of the Most Eminent
Astronomers, Ancient & Modern.” It was a model for future collective biographies. Following earlier traditions,
30
Sherburne’s Astronomical
23
As one recent scholar summarized, “Initially, the analytic life was a minority voice as large, multivolume biographies dominated Victorian lives. However, a tradi-
tion originating in short Latin lives, renewed by antiquaries of the 16th century, popularized by Aubrey’s Brief Lives in the seventeenth, dignified by Johnson’s Lives
of the Poets in the eighteenth, and culminating in works like Strachey’s Portraits in Miniature in the twentieth, reasserted the centrality of the brief life. In the 19th
­ century, the form reached its apogee in collective lives, biographies in series and biographical dictionaries. Their extraordinary sales and continued influence is
a measure of their importance.” Ira Bruce Nadel, Biography: Fiction, Fact & Form, New York, 1984, p. 13.
24
One reviewer of the Dictionary of Scientific Biography wrote, in some sense “obscure second-rate scientists are as important as, and probably even more significant
than, scientific geniuses” given (in his view) that “the real subject matter of the history of science is not the individual scientist, but the scientific community as a
whole.” Jacques Roger, “The DSB: A Review Symposium,” Isis, 71 (1980): 633–652, p. 650.
25
Giovanni Battista Riccioli. Almagestum novum, astronomiam veterem novamque complectens, (2 Vols.) Bologna, 1651.
26
The Tychonic model can be described as geocentric and geo-static, and more accurately as geo-heliocentric. A geo-heliocentric model has the planets to revolve
around the Sun, but in turn, the Sun revolves annually around the central and stationary Earth. Geo-heliocentric models were in principle observationally equivalent
to a heliocentric model. Viewed in context, they served as an intelligent alternative rather than as a “compromise” cosmology. See M.A. Hoskin and Christine Jones.
“Problems in Late Renaissance Astronomy.” Le Soleil a la Renaissance. Paris, 1965. Further details about the history and various mutations of the geo-­heliocentric
model can be found in Christine Schofield-Jones’ doctoral dissertation.
27
If theory selection is based on Numerus, Mensura, Pondus, historians have mused over the number, size, and weight of Riccioli’s arguments. By one reckoning,
J-B Delambre counted some 57 arguments against a moving Earth. For his part, Riccioli claims “40 new arguments in behalf of Copernicus and 77 against him.” See
J-B Delambre, Histoire de l’Astronomie Moderne, Vol. 1, Paris, 1821, pp. 672–681 and G-B-Riccioli, Almagest novum, 2 Vols., (Bologna, 1651). See Volume 2, Section 4,
Ch. 1, pp. 290 et seq., where Riccioli expands his list of Copernicans and non-Copernicans weighing arguments for and against a moving Earth; see also pp. 313–351.
For Riccioli’s reckoning of the number of arguments, see Apologia pro Argumento Physicomathematico contra Systema Copernicanum adiecto contra illud Novo
­ Argumento ex Reflexo motu Gravium Decidentium. Venice, 1669; Dorothy Stimson, The Gradual Acceptance of the Copernican Theory of the Universe, New York, 1917,
pp. 79–84, provides a general discussion.
28
Riccioli. Almagestum novum, Pt I. Following a historical narrative, Riccioli offers a chronological outline of astronomy (xxvi–xxviii) followed by an alphabetical
list of over 400 astronomers (xxviii–xlvii). Entry length varies from a few lines to nearly a full page in the case of Tycho Brahe. Though long and often laborious (over
1,500 pages), Riccioli’s volumes provide one of the best introductions to the history of astronomy up to his time. Technically skilled and historically inclined, Riccioli
provides useful perspectives on contemporary authors, including Copernicus, Brahe, Longomontanus, Kepler, Galilei, Boulliau, and others.
29
Edward Sherburne, The Sphere of Marcus Manilius made an English Poem with Annotations and an Astronomical Appendix (London, 1675).
30
The more noted early astronomer-historians include Schickard, Gassendi, Riccioli, Boulliau, Viviani, and eventually Halley.

xxxviiIntroduction
Appendix (pp. 1–126) contains some 1,000 biographical entries, varying from several lines to several pages. Less polemical than Riccioli,
Sherburne’s purpose was no less passionate. He aimed to tell the story of the “origins and progress” of astronomy from the very begin-
ning—literally, from Adam (5600 BCE). Sherburne’s Catalogue contains detailed information about a large number of his friends and col-
leagues, and it remains useful for historians evaluating contemporary issues and reputations. Young Isaac ­ Newton, as one example, receives
a surprisingly short entry—easily dwarfed by those of Tycho and Hevelius.
31
Collective biography came of age in the 17th century. Although writers continued to celebrate political and religious figures, a shift took
place with the appearance of works on artists and scholars as well as advocates of the New Science. During the previous century, Konrad
Gesner (1516–1565) published his pioneering Bibliotheca Universalis (Zürich, 1545–1549), Giorgio Vasari (1512–1574) his Lives of the
Artists, and extending a long tradition, the Acta Sanctorum (1643 et seq.) swelled to 68 folio volumes. This monumental work gave new
meaning to the word hagiography.
32
Toward the end of the century, men of learning again took center stage with the appearance of Charles
Perrault’s Les hommes illustres,
33
and soon thereafter, J-P Nicéron’s Mémoires pour servir à l’histoire des hommes dans la République des Lettres
(1729–1745, Paris). Both works included biographies of astronomers.
34
The most comprehensive work of the century was published by Louis Moréri (1643–1680), Le Grand Dictionnaire historique (Lyon,
1671).
35
Unprecedented in scope and rigor, Moréri established new possibilities. For present purposes, while it contained biographies of
all the major astronomers up to that day, Moréri’s Dictionnaire represented unprecedented opportunities for combining history and biog-
raphy.
36
First published in French, his Dictionnarie was soon translated into English, German, Italian, and Spanish, and within a century
(1671–1759), some twenty editions appeared.
37
The success of Moréri’s work was followed by an avalanche of encyclopedias and dictionar-
ies that constituted an intellectual movement in itself. Less widely noted, the encyclopedia movement was paralleled by the publication of
scholarly Ėloges, most notably by Bernard de Fontenelle (1657–1757) and subsequent secretaries of the French Académie des sciences.
38

Certainly one of the most influential works of the century was the Dictionnaire historique et critique (4 Pts, 2 Vols., Rotterdam, 1697) of
Pierre Bayle (1647–1706). Later called the “Arsenal of the Enlightenment,” Bayle’s Dictionnaire appeared in five editions over the next 50
years, not including an influential English translation (2nd Edition, 1734–1738).
39
Praised for its topical articles (particularly on reforming
religion, philosophy, and politics), Bayle’s Dictionnaire was less comprehensive than Moréri, and while prone to philosophical polemics,
its influence was immense. Like Moréri, Bayle included important biographies on noted thinkers, many associated with the New Science,
astronomy, and cosmology. By tradition, Bayle’s Dictionnaire foreshadowed the Encyclopédie, an Enlightenment showcase designed by Denis
Diderot (1713–1784), Jean D’Alembert (1717–1783), and other advocates of toleration and reform. The influence of the Encyclopédie in
transforming political, social, and intellectual institutions would be difficult to overstate. Aided by dramatic increases in literacy, the explo-
sive growth of the printing press, wider use of the vernacular, and the proliferation of learned journals, scholars joined the public sphere
as never before, often pointing to Bacon, Galilei, and Descartes as models of free thinking and useful knowledge.
40
­Historical ­ evidence and
philosophical principle soon became equal partners in political polemics. By the end of the century, collective works multiplied across
national boundaries, among the most important, the Encyclopaedia Britannica (3 Vols., Edinburgh, 1771) and Chamber’s Cyclopaedia
31
Sherburne, The Sphere, Brahe, p. 63; Hevelius, pp, 110–111; Newton, p. 116.
32
Hagiography can be described as a literary tradition devoted to telling the lives of ecclesiastical figures, notably martyrs and saints canonized by the Church of
Rome. Hagiography has since gained a heroic connotation associated with “secular saints” such as Newton, Darwin, Freud, and Einstein.
33
Charles Perrault. Les hommes illustres qui ont paru en France pendant ce siècle avec leurs portraits au naturel, 2 Volumes (1697 and 1700, Paris).
34
Jean-Pierre Nicéron. Mémoires pour servir à l’histoire des hommes dans la République des Lettres (1729–1745, Paris).
35
Louis Moréri. Le Grand Dictionnaire historique, ou le mélange curieux de l’histoire sacrée et profane, (Lyon, 1671 et seq.).
36
The Moréri edition of 1759, for example, contains biographies of astronomers from Antiquity through the early 18th century, among them, Boulliau 2: 137;
Copernicus 4: 105–106; Cunitz 4: 324; Descartes 4 (2): 115–119; Galilei 5 (2): 32–33; Kepler 6 (2): 17–18; Mersenne 7: 488; Brahe 10: 181–182; as well as Newton 8:
1001–1002 and other countrymen, Wallis 10: 756; and Ward 10: 764–765. Several articles are particularly noteworthy, for example, the early reception of Descartes’s
work in universities and subsequent controversies with church authorities is both thorough and unprecedented; the article on J-B Morin contains unique informa-
tion and is nuanced in interpretation; and Newton is already showing signs of icon status, heralded as one of “the most learned men of our age.” The Moréri edition is
noteworthy for high standards; articles often quote from primary sources and occasionally from unpublished letters and manuscripts.
37
Subsequent editions appeared under the editorship of C-P Goujet (1697–1767) and E-F Drouet (1715–1779).
38
The impulse to publish these éloges (biographies of deceased men of learning) came from several directions. The éloge of the French Académie des sciences show
similarities with earlier biographical traditions. As idealized portraits “extolling the moral virtues of the post-Renaissance sciences” (p. ix) they represent, as Charles
B. Paul has argued, a classic form of collected scientific hagiography. Re-inventing an old tradition, Fontenelle (1657–1757) and his successors (Mairan, Fouchy, and
Condorcet) published over 200 posthumous eulogies of Académie members during the 18th century. As commemorative pieces, they underscored societies’ debt and
popularized the belief that scientists were modest, dedicated, disinterested seekers after truth devoted to social improvement and human progress. See Charles B. Paul,
Science and Immortality: The Ėloges of the Paris Academy of Sciences (1699–1791). Berkeley, 1980.
39
Pierre Bayle. Dictionnaire historique et critique, Rotterdam, 1697, fol. 2 Vols. Many editions followed: a second edition (3 Vols., Amsterdam, 1702); the fourth
edition (4 Vols., Rotterdam, 1720), edited by Prosper Marchand; and a ninth edition in 10 Volumes appearing shortly thereafter. The second edition of the Diction-
naire was translated into English (4 Vols., London, 1709), and later the fifth edition (1730) was translated by Birch and Lockman (5 Vols., London, 1734–1740). Other
editions with supplements and additional translations followed, among them a German translation (4 Vols., Leipzig, 1741–1744), with a preface by J.C. Gottsched. It is
widely reported that Bayle undertook his Dictionnaire due to unacceptable errors and omissions found in Moréri. Later editions of Moréri show a remarkable level of
scholarship.
40
In his Preliminary Discourse to the Encyclopedia of Diderot (1751) d’Alembert rehearsed the “traditional litany” of heroes from the scientific revolution (traditionally
Copernicus to Newton) explaining how “a few great men … prepared from afar the light which gradually, by imperceptible degrees, would illuminate the world”
(Ed. R. Schwab, New York, 1963), p. 74. Voltaire echoed a similar view in his famous chapter on the “Academies” in his Age of Louis XIV (Le Siècle de Louis XIV, 1751).

xxxviiiIntroduction
(2 Vols., London, 1728).
41
By the end of the century, the publication of private letters of individuals—literary, political, philosophical—
became fashionable as learned conversation and salon gossip found its way into print.
The 19th century saw an explosion of multivolume publications. Among them, a new tradition began to emerge with the publication
of the complete works of individual scientists—opera omnia, collected papers, and published correspondence. Intellectuals increasingly
entered the public sphere. One of the early landmarks reflecting the Republic of Letters was the Biographie universelle ancienne et moderne
(52 Vols. Paris, 1810–1828), edited by J-F Michaud (1767–1839).
42
Spanning time and space, Michaud’s Biographie remains one of the
most enduring universal dictionaries of all time. Boasting high scholarly standards, it is composed of substantial articles signed by eminent
authors. As one example, the article on Newton, written by the well-known physicist, Jean-Baptiste Biot (1774–1862), became a symbol of
the international and increasingly controversial character of celebrity.
43
As local heroes gained international status, national reputations were
hotly disputed. Astronomers were well represented.
44
An extreme example—finally affecting reputations of both the living and the dead—involved the French mathematician, Michel Chasles
(1793–1880), the noted Copley Medalist and Member of the Académie des sciences.
45
In 1867, Chasles claimed that his celebrated country-
man, Blaise Pascal (1623–1662), had sent letters (hitherto unknown) to young Isaac Newton during the years 1654–1661. In effect, Chasles
suggested that the French mathematician had handed over the secret of the Universe—the law of universal of gravitation—to an English-
man. The dispute that followed involved two years of public wrangling and scholarly exchanges between Newton and Galilei experts—finally
followed by a trial and prison sentence. In the end, Chasles came to discover (along with an international audience) that his claims were
based on false documents forged by one Vrain-Denis Lucas (1818- circa 1871).
46
Chasles eventually acknowledged that he had been duped,
swindled, and humiliated.
47
The Affaire Vrain Lucas is an extreme example of historical celebrity and national pride gone awry, a dramatic
reminder that biography, like other forms of historical writing, is always written from a perspective.
A watershed in collective biography came with specialized dictionaries devoted to individual countries.
48
These “national biographies”
have since become showcases of scholarship and—increasingly—for international cooperation. Following a century of political conflict and
upheaval, the great national biographies stemmed from a sense of pride and patriotism. First appearing in the early decades of the 19th
century, major national biographies began to appear across Europe, from the great universal dictionary of Moréri in France (52 Vols., 1810–
1828) to the national dictionaries of Sweden (23 Vols., 1835–1857); the Netherlands (24 Vols., 1852–1879); Austria, 35 Vols., (1856–1891);
Belgium (35 Vols., 1866– ); Germany (45 Vols., 1875–1900); Great Britain (63 Vols., 1882–1900); the United States (30 Vols., 1928–1936; 1994);
France (19 Vols., 1933– ); and Italy (59 Vols., 1960– ).
49
Although defined geographically, national biographies can be an invaluable resource
of information on astronomers, whether major or minor figures.
Among the national biographies that dominated 19th-century scholarly publication, the most eminent was the widely celebrated
Dictionary of National Biography [DNB] (1882–1900). The DNB soon became a symbol of scholarly collaboration, not unlike the
41
Ephraim Chambers, Cyclopaedia; or an Universal Dictionary of Art and Sciences, containing an Explication of the Terms and an Account of the Things Signified
thereby in the several Arts, Liberal and Mechanical, and the several Sciences, Human and Divine, London, 1728, fol. 2 Vols. A noted example of publishing letters of the
learned is Angelo Fabroni, Lettre inedite di uomini illustri, 2 Vols. Florence, 1773 and 1776.
42
[Joseph-François] Michaud, Biographie universelle ancienne et moderne, 52 Vols., Paris, 1810–1828 (32 supplement Volumes); a good deal of the work was com-
pleted by his younger brother, Louis-Gabriel Michaud (1773–1858). A second revised edition appeared in 45 Volumes (Paris, 1843–1865).
43
J-B Biot, “Isaac Newton,” Biographie Universelle, Vol. 30: 366–404. As noted above, Biot raised important questions about Newton’s mental illness—hinting at his
beliefs in alchemy and religion—which later spurred a defense by Sir David Brewster as well as a growing tradition of scholarly debate.
44
Michaud and subsequent editors enlisted the most noted scholars of the day as contributors. Several noted biographies of astronomers were written by
J-B Delambre (Kepler; Boulliau; A-G Pingré) and by J-B Biot (Copernicus; Galilei; Newton).
45
Articles by Chasles, and the many responses, are found in the Comptes rendus des séances de l’Académie des sciences beginning in July 1867 (Tome LXV). Consist-
ing of hundreds of pages of text (involving extracts and complete transcriptions of “letters”), the appearance of these exchanges ran from roughly July 1867 to January
1868 (Tome LXVI). By this time, Sir David Brewster joined the fray, along with the English astronomer, Robert Grant. They were joined by scholars from Italy and
France, Galileo scholars, among them Pietro Angelo Secchi and Paolo Volpicelli, and French specialists, among them the Pascal scholar, A-P Faugère. The Affaire
Vrain Lucas, combined with the colossal theft of manuscripts by Guglielmo Libri (1802–1869), may have prompted European archivists to refine the inventories of
their manuscript collections. This dramatic display of scholarly effort, fueled by scandal and the loss of national treasures, likely gave impetus to the publication of
­Opera and Correspondence of major figures. On the Libri Affair, see P.A. Maccioni Ruju and Marco Mostert, The Life and Times of Guglielmo Libri (1802–1869), scien-
tist, patriot, scholar, journalist and thief, A 19th century story. Hilversum, 1995.
46
On the Vrain-Lucas affair, see Henri Bordier and Ėmile Mabille, Une fabrique de faux autographes, ou recit de l’Affaire Vrain Lucas. Paris, 1870; Le parfait secrétaire
des grands hommes ou Les lettres de Sapho, Platon, Vercingétorix, Cléopâtre, Marie-Madeleine, Charlemagne, Jeanne d’Arc et autres personnages illustres, Ed. Georges
Girard, Paris, 2003; and Joseph Rosenblum, Forging of False Autographs, Or, An Account Of The Affair Vrain Lucas. New Castle, Delaware, 1998.
47
Although Newton would have been 12 years old at the beginning of the exchange—and despite irregularities in other documents in his possession—Chasles
persisted in publishing his views in the prestigious Comptes rendus of the Académie des sciences. Overall, Vrain Lucas forged some 27,000 documents, including let-
ters purportedly written by Mary Magdalene, Aristotle, Alexander the Great, and Lazarus (both before and after his resurrection). Virtually all were written in French.
Lucas was fond of the scientific revolution; among his favorite figures were Pascal, Galilei, Louis XIV, and Boulliau.
48
Robert B. Slocum. Biographical Dictionaries and Related Works; An International Bibliography of More than 16,000 Collected Biographies, 2nd edition, 2 Vols.,
(Detroit, 1986) [First edition, 1967]. This volume lists major biographical dictionaries and encyclopedias according to standard categories, from national or area
designations to vocation and related thematic distinctions.
49
See Appendix for further bibliographic details.

xxxixIntroduction
Oxford ­ English Dictionary and Encyclopediae Britannica.
50
Drawing on hundreds of contributors, the DNB contained some 30,000 entries,
supplemented by 6,000 additions. The DNB was reprinted in 1908, and thereafter, future publication fell to Oxford University Press (1917).
Significantly, the DNB was viewed not as a completed project but as an ongoing enterprise. That was a century ago. Jumping forward in time,
plans were put in place in 1992 to publish the new Oxford Dictionary of National Biography [ODNB], which was completed in 2004.
51
This
modern edition, the most comprehensive biographical dictionary of its kind, contains some 54,922 lives filling 60 volumes. Foreshadowing
future efforts in collective biography, the ODNB has set new standards by providing electronic online access for subscribers, thus ensuring
easy updates and unprecedented capacity for searching and comparing individuals across traditional categories.
52
Since the Enlightenment
Since the Enlightenment, important developments have taken place in the theory and practice of historical writing. Like other special-
ized areas of research, the history of astronomy has benefited from increased access to manuscripts and primary sources, not to mention
profound changes in educational institutions and dramatic increases in the availability of printed works. These ongoing and often parallel
developments began to converge in the form of pioneering works in the history of science. Some of these early works are still available in
print, several in the history of astronomy.
A classic example was published by the noted astronomer, J-B Delambre (1749–1822). His impressive multivolume study, Histoire de
l’Astronomie (1817–1821; 1827) still shows exceptional talent as it moves across ancient, medieval, and modern astronomy.
53
Delambre’s
work combines the technical skills of an astronomer with the language skills of a classical scholar. Standing the test of time, his six-volume
Histoire skillfully weaves technical analysis with biographical references—most memorable are entire pages filled with elegant equations. A
work for specialists, Delambre’s Histoire is based squarely on the analysis of published works. Today, his approach might be called “technical
thick-description.” Although his narrative sails boldly across difficult seas (observation, data reduction, mathematical procedures, and the
calculation of tables), his travel-chart is organized around individuals, not concepts or historical periods.
But if Delambre’s approach is not thematic, neither is it about lives.
54
While his chapter titles and subsections bear the names of indi-
viduals, Delambre tells the reader little about his subjects.
55
Instead of a biographical or historical narrative, he offers technical analysis of
specific problems. For Delambre and his contemporaries, the use of a “thematic narrative” in the history of astronomy still lay in the future.
For now, chronology, bibliography, and technical analysis ruled the day.
56
Delambre’s mentor, Joseph-Jérôme de Lalande (1732–1807),
echoes the point,
57
and a similar transitional approach is equally evident in the work of a learned contemporary, Alexandre-Guy Pingré
50
Known initially by the working title of Biographia Britannica, much of the early work was undertaken by the first editor, Sir Leslie Stephen (1824–1901); he was
eventually replaced by Sir Sidney Lee (1859–1926). The first volume of the DNB appeared on 1 January 1885; the last, number 63, in 1900.
51
The ODNB has been widely reviewed by scholars, and was recently dubbed “the greatest reference work on earth” (Daily Telegraph). Stefan Collini, in “Our Island
Story,” London Review of Books, Vol. 27 (20 January, 2005) concludes his review suggesting that “In deeply unpropitious times, the Oxford Dictionary of National
Biography has refreshed and fortified our sense of what can still be meant by the collective endeavour of ‘scholarship.’  ”
52
Though widely discussed in recent decades, the advent of electronic texts and powerful search potential continue to change the scholarly landscape. After several
minutes searching all the entries in the ODNB, I present the following purposely mixed findings: From 50,000 individuals, 3,267 are linked with science; within the
entire ODNB, the word revolutionary appears 1,380 times; child prodigy 39 times; intellectually brilliant 7 times; arrogant 307 times; and quite mad 3 times. Overall, the
ODNB contains biographies on 231 astronomers of whom six are women. Searching religious affiliation among the astronomers (selecting from 20 categories) yields
two Lutherans (not further specified) and 33 Catholics (not refined here by seven subcategories). Electronic texts allow unprecedented capacities for linking words,
concepts, and categories.
53
Jean-Baptiste Delambre, Histoire de l’astronomie ancienne. 2 Vols. (Paris, 1817); Histoire de l’Astronomie du moyen age. (Paris, 1819); Histoire de l’astronomie mod-
erne. 2 Vols. (Paris, 1821); Histoire de l’astronomie au XVIII siècle. (Paris, 1827).
54
Delambre wrote a number of solid and lengthy biographical articles for the Biographie universelle, including articles on Hipparchus, Kepler, La Caille, Lalande,
Ptolemy, and Picard. For an overview of Delambre’s career, see the works of I. Bernard Cohen cited below.
55
Delambre’s Histoire de l’Astronomie Moderne, which lacks a traditional table of contents, contains 16 books; each chapter title except the first (Réformation du
Calendrier) is given a single individual name (Copernic, Tycho-Brahé, Képler, etc.) or the names of several individual astronomers (“Métius, Boulliaud, et Seth-
Ward”). Minor figures, to Delambre’s credit, receive substantial analysis.
56
A recent scholar suggested that Delambre’s “six volume Histoire is the greatest full-scale technical history of any branch of science ever written by a single indi-
vidual” further adding it “sets a standard very few historians of science may ever achieve.” (I. Bernard Cohen, “Delambre,” Dictionary of Scientific Biography. Vol. 4:
14–18, p. 17). Elsewhere Cohen explained that Delambre’s approach was to go through “each chronological period by describing and analyzing first one treatise and
then another [he] thereby avoids any attempt at a historical ‘synthesis,’ or generalization, largely confining himself to critical analyses and expositions of major and
minor contributions within the rigid framework  … .” “Introduction,” J-B-J Delambre, Historie de l’Astronomie Modern, Reprint, New York, 1969, p. xvi.
57
Jérôme de Lalande (1732–1807) published a similarly impressive work—again, still useful today—that followed the tradition of linking units of information along
a clean chronological line. It would now be known as annotated bibliography, Bibliographie astronomique avec l’histoire de l’astronomie depuis 1781 jusqu’à 1802. (Paris,
1803). Not a history but a reference tool, Lalande’s Bibliographie lists every known astronomical work from circa 480 BCE to 1802. Containing some 660 pages, it was
unrivaled as a chronological bibliography of the history of astronomy. By design, it also served as a chronological list of astronomers. At the end of his book, Lalande
provided a concise “history of astronomy” (1781–1802), in effect, a calendar of astronomical events and activities similar to the annual publications of the Académie
des sciences. A similar model was adopted by G. Bigourdan in publishing the work of A-G Pingré (see below).

xl Introduction
(1711–1796).
58
But organizational approaches to historical writing were changing. At the close of the century, Adam Smith (1723–1790),
the noted economist, developed a more thematic approach in his Principles Which Lead and Direct Philosophical Enquiries; Illustrated by
the History of Astronomy (1795).
59
As the title suggests, Smith used history to explore the roots of human progress. As an ancient form
of knowledge, astronomy provided Smith with an example that linked material and moral improvement.
60
Many of these early historical
writings mixed technical analysis with bio-bibliography. In varying degrees, each shows a shift toward narrative, from chronicling events
to evaluating themes. An important virtue of historical narrative is that it accommodates “time’s arrow” along with traditional interests in
analysis, biography, and bibliography.
61
Since the Enlightenment, research and reference tools have appeared in growing numbers, and as philosophy and science have became
more specialized, historical works have followed suit. In the history of science, the German physicist and bibliographer, Johann Christian
Poggendorff (1796–1877) published a pioneering biographical handbook. Poggendorff ’s evolving multivolume Biographisch-Literarisches
Handwörterbuch der exakten Naturwissenschaften (1863–1904, et seq.) initially contained some 8,400 biographical entries. It was the first
comprehensive bio-bibliographical work of its kind. Although it emphasized the physical and exact sciences, it covered all countries and
chronological periods.
62
Outside the physical sciences, William Munk (1816–1898) published his Roll of the Royal College of Physicians (3
Vols., 1878), one of many multivolume works showing increased specialization. An example: George Sarton (1884–1956), among the early
founders of the discipline, provided a detailed roadmap to ancient science in his Introduction to the History of Science (1927–1948, Balti-
more).
63
Continuing the journey (ancient to medieval) Pierre Duhem (1861–1916) published his monumental Le système du monde, 10 Vols.
(1913–1959, Paris), providing a detailed study of the physical sciences, including the history of astronomy.
64
Similarly styled encyclopedic
narratives appeared by Lynn Thorndike (1882–1965), History of Magic and Experimental Science (8 Vols., 1923–1958),
65
while R.T. Gunther’s
Early Science in Oxford (14 Vols. 1923–1945, Oxford) is more typical of institutional works. As pioneers, Sarton, Duhem, Thorndike, and
Gunther represent a transitional encyclopedic tradition that joined bio-bibliography with a thin chronological narrative. Finally, a more
recent trend in collective biography is evident in “Who’s Who” publications. These works have helped fill biographical gaps left by other
approaches, particularly in the professions. One of the most comprehensive works of collective science biography contains some 30,000
entries, The World Who’s Who in Science: A Biographical Dictionary of Notable Scientists, From Antiquity to the Present ­(Chicago, 1968),
edited by Alan Debus.
66
58
Pingré’s Annales céleste du dix-septième siècle (1901), as the title suggests, is based on a year-by-year celestial calendar; it offers a treasure trove of detailed informa-
tion about celestial events, observations, publications, and people. Like his predecessors, Pingré’s skeletal structure was never fleshed out; there is no narrative theme
and little life, although it sometimes offers exceptional biographical insight.
59
Two early historians of astronomy, James Ferguson (1710–1776) and Robert Grant (1814–1892), followed similar strategies of mixing biography and historical
narrative that echoed the interpretive themes of their day (Robert Grant, History of Physical Astronomy, From the Earliest Ages to the Middle of the Nineteenth Century
(London, 1852)). Grant’s title may be misleading. His 14-page introduction covers the period up to Newton; the following 13 chapters are devoted to the theory of
gravitation, particularly the genesis and reception of the “immortal discoveries of Newton” (p. 20). Although occasional flourishes of whiggism may jar the modern
reader, Grant’s History remains impressive. On the solid basis of primary sources, it shows admirable technical mastery, historical rigor, and remarkable rectitude of
judgment.
60
Striking a more traditional note, Joseph Priestley (1733–1804), a Unitarian minister, echoed a similar theme. Priestly saw the natural philosopher as “something
greater and better than another man” as his work involved the “contemplation of the works of God.” Joseph Priestley, The History and Present State of Electricity, with
Original Experiments. 2 Vols., 3rd ed. (London 1775): Vol. 1, p. xxiii.
61
Earlier historians with interests in other areas had been emphasizing topical and thematic approaches since the beginning of the 17th century, notably John
Selden (1584–1654) and the noted French historian, Jacques Auguste de Thou (1553–1617). In the nascent history of science, more thematic approaches are evident
in William Whewell, History of the Inductive Sciences (1837). Voltaire, their contemporary, is widely noted for stretching historical narratives from political concerns
to science, learning, and the arts. Although a trend toward historical narrative is evident in the history of science, two later classics, by Arthur Berry (1898) and J.L.E.
Dreyer (1906), continued to entitle chapter headings (and many subsections) with the names of specific individuals. Biography remains an important organizational
strategy in the history of astronomy.
62
Johann Christian Poggendorff (1796–1877), Professor at the University of Berlin (1834), served as editor of Annalen der Physik und Chemie (1824–1877) and was
a member of the Prussian Academy of Sciences (1839). Poggendorff ’s work first appeared in two volumes (1863) and gradually expanded into seven parts (“Band I”
to “Band VII,” 1863–1992; Part 8 was begun in 1999). Poggendorff is particularly strong for the physical sciences—astronomers, mathematicians, physicists, chemists,
mineralogists, geologists, naturalists, and physicians. An electronic version of Poggendorff ’s work is now available in database format. It reportedly contains entries
for some 29,000 scientists from ancient to modern times. The electronic edition (DVD) is under the auspices of Sächsische Akademie der Wissenschaften zu Leipzig.
See Appendix for bibliographic details.
63
George Sarton. Introduction to the History of Science. 3 Vols., Baltimore: Williams and Wilkins, 1927–1948.
64
Pierre Duhem. Le système du monde, Histoire des doctrines cosmologiques de Platon à Copernic. The volumes include I. La cosmologie hellénique; II. La cosmologie
hellénique; III. L’astronomie latine au Môyen Age; IV. L’astronomie latine au Moyen Age; V. La crise de l’aristotélisme; VI. Le refus de l’aristotélisme; VII. La physique parisi-
enne au XIV 
e
siècle; VIII. La physique parisienne au XIV 
e
siècle; IX. La physique parisienne au XIV 
e
siècle; IX. La cosmologie de XV 
e
siècle. Ecoles et universités.
65
Lynn Thorndike. A History of Magic and Experimental Science (8 Vols., New York, 1923–1958).
66
Several thematic reference works have appeared in recent decades, notably the Dictionary of the History of Ideas (1974), now in a new edition; Encyclopedia of
Philosophy (1967); Companion to the History of Science (1990); and particularly useful for identifying minor figures, the Isis Cumulative Bibliography (1971–).

xliIntroduction
An important scholarly tradition—which continues today—emerged in the 19th century with the publication of the complete works of
noted scholars and scientists.
67
No discussion of science biography would be complete without mentioning the significance of these scholarly
monuments. Among the oldest and most powerful research tools for historians of science, these works first appeared as opera omnia, oeuvres
complètes, or as Lettres or Complete Correspondence of the traditional heroes of our discipline. Contemporary interest in heroic individu-
als reflects the philosophy of science at the time, not to mention nationalistic tendencies and expressions of local pride.
68
Challenging in
scope and complexity, the extant body of letters and manuscripts of leading scientists required exceptional scholarship, collective effort, and
substantial institutional support. Arguably, these requirements help define modern collective biography as well as the character of private,
institutional, and national funding. Because these works have appeared over the course of several centuries, it is instructive to consider
changing standards of scholarship.
69
Heralded as “one of the most ambitious projects ever undertaken in studies of the history of science,” the Dictionary of Scientific Biogra-
phy (DSB) (1970–1980) occupies an important place at the end of this brief historical introduction.
70
The DSB, sponsored by the American
Council of Learned Societies and supported by the National Science Foundation, has been identified as a collaborative work that at once
asserted and affirmed the identity of a discipline.
71
Published with remarkable speed and regularity in the course of a decade (1970–1980),
the original 16-volume set includes over 5,000 biographical entries in the history of science from Antiquity to the 20th century.
72
Overall,
the scholarly response to the DSB was extremely positive. Some proclaimed it “magnificent” and “triumphantly executed,” others offered
detailed criticism and useful suggestions.
73
In the end, despite the unprecedented scope of a project this size, most reviewers returned to
time-honored ­ principles that define the design and use of collective biography—inclusion criteria, entry length, and issues of coverage. By
tradition, key areas of concern turn on the relative importance of historical figures—their positive contributions, contemporary influence,
subsequent significance, and their role in representing or typifying a group. Difficult decisions are involved. To suggest the size of the prob-
lem, what weight does a Leviathan like Isaac Newton have compared to a small fry like John Newton (a contemporary almanac writer)?
Scholarly reviews of the DSB reconfirm a diversity of opinion—and sustained acceptance—of collective biography.
74
Classified by field, the
DSB contains articles on some 750 astronomers, most from the modern period.
75
67
A selected list, considered chronologically, includes Pierre Gassendi, Opera Omnia (6 Vols., Lyon, 1658); Benedict de Spinoza, Opera Posthuma (Amsterdam
1677), Dutch edition, Die nagelate Schriften van B. d. S. (n.p., 1677); J. Bernoulli (1744); René Descartes (1824–1826 et seq.); Johannes Kepler (Opera, 1858–1871; GW,
1935–); A- L. Lavoisier (6 Vols., 1862–1893); C. F. Gauss (12 Vols., 1863–1933); J- L. Lagrange (14 Vols., 1867–1892); P-S Laplace (14 Vols., 1878–1912); A- L. Cauchy
(26 Vols., 1882–1970); Christiaan Huygens (22 Vols., 1888–1950); René Descartes (12 Vols., 1897–1913); Galileo Galilei (20 Vols., 1890–1910); Blaise Pascal (14 Vols.,
1904–1914; 1964–1992, et seq.); Leonard Euler (43; 72 Vols., 1909; 1911–1996); Tycho Brahe (15 Vols., 1913–1929); G-W Leibniz (1923–); Isaac Newton (7 Vols.,
1959–1977); Nicolaus ­Copernicus (4 Vols., 1978–); Robert Boyle (1999–2000; 2001); and Albert Einstein (1987–). Similar volumes have recently appeared for Thomas
Hobbes (1994), John ­Flamsteed (1995–2003), and John Wallis (2003 et seq.). Taken separately, less heroic figures have attracted scholarly interest, savants such as N-C
Fabri de Peiresc (1888–1898; 1972), Marin Mersenne (1932–1986), and Henry Oldenburg (1965–1986). The Discepoli di Galilei (1975–1984) was designed to shed
light not only on individuals but working groups. See Appendix for bibliographic details.
68
On the title pages of one edition of Galilei’s works, for example, one finds in over-sized colored type the name of Benito Mussolini. In France, Philippe Tamizey de
Larroque, editor of the Lettres of N-C Fabri de Peiresc, was a enthusiastic but unrepentant promoter of his hero, the glory of Provence.
69
As an example, Johannes Kepler has two major editions dedicated to his work. Christian Frisch edited the first major edition, Joannis Kepleri opera omnia 8 Vols.
(Frankfort and Erlangen, 1858–1871); the more recent appeared as Gesammelte Werke (22 Vols., Munich, 1938–). The differences are notable. As an example, Frisch
presents Kepler’s letters unsystematically, sometimes appended to various parts of his relevant published works. The modern Gesammelte Werke, by contrast, supplies
the complete text of all known correspondence organized and annotated in familiar modern format. A second example involves the Lettres of N-C Fabri de Peiresc.
In more than one instance, the editor of Peiresc’s letters, Tamizey de Larroque, combined various versions of letters (originals, drafts, copies) in a well-meaning effort
to provide a more complete text—but alas, without alerting the reader. Larroque sometimes omitted portions of Peiresc’s published letters (and on occasion entire
­letters) judging them “too scientific.”
70
Another reviewer proclaimed the DSB the “greatest contribution to scholarship in the history of science of the second half of the 20th century.”
71
The DSB was “designed to make available reliable information on the history of science through the medium of articles on the professional lives of scientists. All
periods of science from classical Antiquity to modern times are represented, with the exception that there are no articles on the careers of living persons.” (Preface).
DSB entries are signed and usually include a bibliography; geographical coverage is international, although China, India, and the Far East are not treated as exten-
sively as others.
72
The DSB appeared in 16 Volumes during the years 1970–1980, followed by supplements. Entries provide the subject’s birthplace and date, family information and
background, education and intellectual development, treatment of growth and directions of the subject’s scientific work and scientific personality in relation to prede-
cessors, contemporaries, and successors. Inclusive across time and space, entry length was in three categories (300–700; 700–1300; and 1300–3600 words), reflecting
the individual’s contribution and influence.
73
A brief survey suggests three principal concerns: thematic boundaries defining the group; inclusion criteria; and relative length of entries. As general principles,
collective biography should be inclusive, symmetrical, authoritative, and where possible, based on primary sources. In practice, editors wisely supply contributors
with an editorial “boiler plate” to ensure symmetry (date and place of birth and death; parents and siblings; birth order position; religion; education; publications;
friends; students; appointments and honors; institutional affiliations; contemporary influence; personal finance; work habits; motives for pursuing science; etc.). One
reviewer of the DSB suggested editors request “guideposts” to cue readers: “the subject’s most significant work is X,” or “a critical influence was Y.” Editorial decisions
are particularly acute when major collective biographies (such as the DNB and DSB) are reduced to a single comprehensive volume. The Concise Dictionary of Na-
tional Biography (Pt. 1, Oxford, 1903; 2nd Ed. 1906) consists of entries one-fourteenth the number of words from the parent edition. Entries in the Concise Dictionary
of Scientific Biography (New York, 1981) are 10 percent the length of those in parent volumes.
74
The DSB is currently being revised and expanded to include individuals from the 20th century and those previously omitted. The new DSB will be in electronic
format and fully searchable.
75
The Concise DSB contains “Lists of Scientists By Field” (749–773) which facilitates this rough estimate; arguably, a more accurate reckoning would be 500 “astronomers.”

xlii Introduction
Conclusion
Readers of the BEA will find a familiar format aimed at easy access. The only notable departure from tradition is that individual entry length
shows less dramatic variation than in earlier works. With an eye toward supplying specialists and laymen with appropriate references, indi-
vidual entries vary from 100 to 1500 words. Readers may note that entries for the likes of Newton and Einstein may be rivaled by less-known
astronomers. The rationale is twofold: First, entry length helps rescue a number of astronomers from relative oblivion; second, it provides
readers with scarce information not readily found in secondary works, sometimes not available in English or in modern languages. Major
figures continue to receive substantial entries but with less lengthy largesse. This strategy also reflects the wider availability of source mate-
rial for major figures.
As we look to the past, collective biography has not only proven adaptable to changes in historical writing, it has been central to the story
from the start. Like other forms of scholarship, individual works of collective biography will continue to be judged by their rigor, utility, and
scholarly merit. But while readers have come to expect increasingly higher levels of expertise, inclusion, and ease of access, most modern
readers remain curiously consistent—even old fashioned—in their expectations about biography. As in the past, readers will continue to
appreciate an appropriate anecdote, particularly if it puts a face on a thought or makes a life and career more coherent. In the end, the lives
of scientists are human lives, and if biography is about an individual life, collective biography is about forms of life. Biography, like astronomy,
has a long and rich tradition. It tells the story of forgotten constellations; it contemplates patterns of human acheivement and human aspira-
tion. Those now distant worlds—puny and brief—seem no less majestic, no less alluring.
Robert Alan Hatch
University of Florida

xliiiIntroduction
Appendix
Reference and Research Resources
This list of biographical sources is suggestive, not exhaustive. It aims to provide selected sources that may be useful for identifying biographi-
cal sources in the history of astronomy and cosmology. Additional detailed research can be pursued by means of specialized scholarly stud-
ies found in the second section, which includes the complete works, correspondence, and cumulative bibliographies of noted figures. For
further information on biographical reference sources, see Robert B. Slocum. Biographical Dictionaries and Related Works: An International
Bibliography of Approximately 16,000 Collective Biographies, 2 Vols., 2nd ed., Detroit, 1986.
Selected Reference Sources
ADB (Allgemeine Deutsche Biographie). 56 Vols., Leipzig, 1875–1912; reprinted Berlin, 1967–1971.
ANB (American National Biography). 24 Vols., Oxford University Press, 1999.
AMWS (American Men and Women of Science: A Biographical Directory). New York, 1906–. (Prior to 12th edition (1971) entitled American Men of Science).
AO (Athenae Oxonienses), A New Edition. A facsimile of the London edition of 1813, Anthony Wood, 4 Vols., Reprint, New York and London, 1967.
B-DH (Dictionnaire historique et critique), Pierre Bayle, 4 Vols., Rotterdam, 1720.
BDAS (Biographical Dictionary of American Science: The Seventeenth Through the Nineteenth Centuries.), edited by Clark A. Elliott, Westport, 1979.
BDS (Biographical Dictionary of Scientists), 3rd ed., edited by Roy Porter and Marilyn Bailey Ogilvie, 2 Vols., New York, 2000.
BGA (Bibliographie générale de l’astronomie), edited by J.C. Houzeau de Lehaie and A.B.M. Lancaster, 3 Vols., Brussels, 1887–1889.
BK (Bibliografia Kopernikowska 1509–1955), edited by Henryk Baranowski, Reprint, New York, 1970.
BLH [P] (Biographisch-literarisches Handworterbuch zur Geschichte der exakten Wissenschaften.), edited by J. C. Poggendorff, Leipzig and Berlin, 1863–1926. Band
VIIa -Supplement. Berlin, 1969.
BNB Académie Royale de Belgique. (Biographie Nationale Belgique), 20 Vols., Brussels, since 1866–.
BU (Biographie Universelle, Ancienne et Moderne) ou (Histoire, par ordre alphabétique : de la vie publique et privée de tous les hommes qui se sont fait remarquer par
leurs écrits, leurs actions, leurs talents, leurs vertus ou leurs crimes.), J-F Michaud, 85 Vols., in 45 Vols. Paris: Michaud Frères, 1811–1862. Second, revised edition.
(variants)
BWN (Biographisch Woordenboek der Nederlanden), 21 Vols., Haarlem,1852–1878.
CBD (Chambers’ General Biographical Dictionary), 32 Vols., London, 1812–1817 (1984)
CA (Alumni Cantabrigienses: A Biographical List of All Known Students, Graduates and Holders of Office at the University of Cambridge to 1900), J. Venn, 10 Vols., Camb-
ridge University Press, Cambridge, 1922–1954.
DAB (Dictionary of American Biography), 20 Vols., New York, 1928–1936; reprinted in 10 Vols. with supplements, New York.
DBF (Dictionnaire de Biographie Française), edited by J. Balteau et al., with supplements, Paris, 1932–.
DBI (Dizionario Biografico Degli Italiani) (currently 59 Vols., Rome, 1960–).
DNB (Dictionary of National Biography), edited by Sir Leslie Stephen et al., 72 Vols., 1885–1912 (1964); See ODNB below.
DSB (Dictionary of Scientific Biography). Charles Scribner’s Sons, New York, edited by Charles Coulston Gillispie (Vols. I-XVI) and Frederic L. Holmes (Vols. 17–18).
(Volumes I-XIV: 1970–1976; Volume XV: Supplement I, 1978; Volume 16: Index, 1980; Volumes 17–18: Supplement II, 1990.)
EC (Encyclopedia of Cosmology), edited by Norriss S. Hetherington, New York, 1993.
FS (Les Femmes dans la Science). Notes Recueillies by Alononse Rebiere, 2nd Edition, Paris, 1897.
G-HC (A Historical Catalogue of Scientific Periodicals) (1665–1900), New York, 1985.
HEA (History of Astronomy: An Encyclopedia), edited by John Lankford, New York, 1997.
ICB (ISIS Cumulative Bibliography). A Bibliography of the History of Science formed from ISIS Critical Bibliographies 1–90, 1913–1965, Vols., 1–2 (Personalities). London,
1971, et seq. (Critical Bibliographies 1–90 (1913–1965), 6 Vols.; 91–100 (1966–1975), 2 Vols.; 101–110 (1976–1985), 2 Vols.; (1986–1995), 4 Vols.
M (Biographie universelle ancienne et moderne, publiée par Michaud), Joseph-François Michaud, Paris, 1810–1828, 52 Vol. in-8, plus 32 Vols. supplément.
ML (Louis Moréri, Le grand Dictionaire historique, ou le mélange curieux de l’histoire sacrée et profane), Lyon, 1671 et seq.
N (Jean-Pierre Nicéron, Mémoire pour servir a l’histoire des hommes illustres dans la République des Lettres, avec un catalogue raisonne de leurs ouvrages), 43 Vols.,
Paris, 1727–1745.
NBG (Nouvelle Biographie Générale, Depuis les temps les plus reculés jusqu’à nos jours), 46 Vols. in 24, Paris: Firmin Didot, 1853–66, edited by F. Hoeffer, variants.
NBU (Nouvelle Biographie Universelle) (title variants) 46 Vols., Paris, 1852–1866; reprinted in 23 Vols., Copenhagen, 1963–1969.
NDB (Neue Deutsche Biographie), edited by Historischen Kommission of the Bayerischen Akademie der Wissenschaften, 7 Vols., et seq., Berlin, 1953–.
ODNB (Oxford Dictionary of National Biography), 61 Vols., Oxford, 2004.
P-BLH (Biographisch-literarisches Handworterbuch der exakten Naturwissenschaften), Johann C. Poggendorff et al., Leipzig: Barth, 1863–1904; Leipzig, 1925–1940;
Berlin, 1955–. (Variant titles), Reprinted: Band 1–6, to 1931. Ann Arbor, 1945.
RS (Royal Society of London, Catalogue of Scientific Papers, 1800–1900). London, 1867–1902; Cambridge, 1914–1925, 19 Vols.
SBB (Scientists since 1660: A Bibliography of Biographies), edited by Leslie Howsam, Brookfield, Vermont, 1997.
SCB-l (A Short-title Catalogue of Books printed in England . . . 1475–1640), edited by A.W. Pollard and G.R. Redgrave, London, 1926.
SCB-2 (Short-title Catalogue of Books printed in England . . . 1641–1700), edited by D.G. Wing, 3 Vols., New York, 1945–1951.
W-BD (The Biographical Dictionary of Women in Science), edited by Marilyn Ogilvie and Joy Harvey, 2 Vols., New York and London, 2000.
WS (Women in Science, Antiquity through the Nineteenth Century: A Biographical Dictionary with Annotated Bibliography), edited by Marilyn Bailey Ogilvie. Boston,
1986.
WS-A (American Women in Science: A Biographical Dictionary), edited by Martha J. Bailey, Santa Barbara, 1994.
WSI (Women Scientists From Antiquity to the Present: An Index), edited by Caroline L. Herzenberg, West Cornwall, CT, 1986.

xliv Introduction
Selected Research Sources
AO (Oeuvres complètes de d’Alembert), Alembert, Jean Le Rond d’, Paris, 1821–1822, Reprint 1967.
AOP (Oeuvres philosophiques, historiques et littéraires de d’Alembert), Alembert, Jean Le Rond d’, 18 Vols., Paris, 1805.
BBO (Jacobi Bernoulli, Basileenis, Opera), Jacob Bernoulli, (1654–1705), 2 Vols., Geneva, 1744.
BF-W (Works of Francis Bacon), Francis Bacon, edited by J. Spedding, R.C. Ellis, and D.D. Heath, 14 Vols., London, 1857–1874.
BRC (The Correspondence of Robert Boyle), Robert Boyle, edited by Michael Hunter, Antonio Clericuzio, and Lawrence M. Principe, 6 Vols., London, 2001.
BRW (The Works of Robert Boyle), Robert Boyle, edited by Michael Hunter and Edward B. Davis, Pickering and Chatto Ltd, 14 Vols., London, 1999–2000.
BRW-B (The Works of the Honourable Robert Boyle), To which is prefixed The Life of the Author, Robert Boyle, edited by Thomas Birch, 5 Vols., in folio, London, 1744;
“A New Edition,” 6 Vols., London, 1772.
C (Nicholas Copernicus’ Complete Works), Nicolas Copernicus, edited by Jerzy Dobrzycki, translation and commentary by Edward Rosen, 4 Vols., London and
Basingstoke, 1978–.
CC (Carteggio), Bonaventura Cavalieri, edited by Giovanna Baroncelli, Florence, 1987.
COO (Opera Omnia), Girolamo Cardano, 10 Vols., Reprint, New York and London, 1967.
DC (Correspondance), René Descartes, edited by Charles Adam and Gaston Milhaud. 8 Vols., Paris, 1936–1963.
DGG (Le Opere dei Discepoli di Galileo Galilei), Carteggio, Edizione Nazionale, Vol. 1 (1642–1648), Vol. 2 (1649–1656), edited by Paolo Galluzzi and Maurizio Torrini,
Florence, 1975, 1984.
DO (Oeuvres de Descartes), René Descartes, edited by Charles Adam and Paul T. Tannery, 13 Vols., 1897–1913.
DSP (Scientific papers), George Howard Darwin, Cambridge, 1907–1916.
EC (Correspondance mathématique et physique de quelque célèbres géomètres du XVIII
eme
siècle), Leonard Euler, edited by P.H. Fuss, 2 Vols., St. Petersburg, 1843.
ECP (The Collected Papers of Albert Einstein), Princeton University Press, Princeton, 1987–.
EO (Leonhardi Euleri Opera Omnia), Leonard Euler, edited by Charles Blanc, Asot T. Grigorijan, Walter Habicht, Adolf P. Juskevic, Vladimir I. Smirnov, Ernst Trost,
3 Vols. Basil, 1975 (1911).
EO-2 (Leonhardi Euleri Opera Omnia), Series prima (Opera mathematica, 29 in 30 Vols.), Series secunda (Opera mechanica et astronomica, 31 in 32 Vols.), Series tertia
(Opera physica et Miscellanea, 12 Vols.), Series quarta A (Commercium epistolicum, 9 Vols.), and Series quarta B (Manuscripta, approx. 7 Vols.), Basel, Birkhäuser,
1911–1996.
ESO (Early Science in Oxford ), edited by R.T. Gunther, 14 Vols., Oxford, 1923–1945.
FGL (The Gresham Lectures of John Flamsteed), John Flamsteed, edited by Eric G. Forbes, London, 1975.
FO (Oeuvres de Fermat), Pierre Fermat, edited by Paul Tannery, Charles Henry, and Cornelis de Waard, 5 Vols., Paris, 1891–1922.
FOM (Varia opera mathematica D. Petri de Fermat / accesserunt selectae quaedam ejusdem epistolae, vel ad ipsum a plerisque doctissimis viris Gallice, Latine, vel Italice,
de rebus ad mathematicas disciplinas, aut physicam pertinentibus scriptae), Pierre Fermat, Toulouse, 1679.
GAC (Amici e corrispondenti di Galilei), Galileo Galilei, edited by Antonio Favaro, with introductory notes by Paolo Galluzzi, 3 Vols., Florence (reprinted) 1983.
GGO (Le Opere di Galileo Galilei), Galileo Galilei, Edizione Nazionale, edited by Antonio Favaro, 20 Vols., Florence, 1890–1939.
GOO (Petro Gassendi, Opera Omnia, hactenus edita auctor ante obit recensuit), Pierre Gassendi, edited by H.L. Habert de Montmor and F. Henry, 6 Vols., Lyon,
1658–1675.
HC (The Correspondence of Thomas Hobbes), 2 Vols., Oxford, 1994.
HCP (Correspondence and papers of Edmond Halley), Edmond Halley, Oxford, 1932.
HD. (The Diary of Robert Hooke MA., M.D., F.R.S. 1670–1680), Robert Hooke, London, 1935.
HEW (The English Works of Thomas Hobbes of Malmesbury), Thomas Hobbes, edited by Sir William Molesworth, 11 Vols., London, 1839–1845.
HOC (Oeuvres Complètes de Christiaan Huygens), Christiaan Huygens, publiées par la Société Hollandaise des Sciences, 22 Vols., The Hague, 1888–1950.
HP (The Hartlib Papers), Samuel Hartlib, The Hartlib Project, directed by Michael Leslie, Mark Greengrass, Michael Hannon, Patrick Collinson, with assistance from
Timothy Raylor, Judith Crawford and others, University of Sheffield. (CD-ROM edition)
IB (Institut de France: index biographique des membres et correspondants de l’Académie des Sciences de 1666 a 1954), Institute de France, Gauthier-Villars, Paris,
1954.
IBAC (Académie des sciences. Index Biographique des Membres et Correspondants de l’Académie des Sciences), Paris, 1968.
KA (Joannis Kepleri astronomi opera omnia), Johannes Kepler, edited by Christian Frisch, 8 Vols., Frankfurt, 1858–1871.
KGW (Gesammelte Werke), edited by Walther van Dyck, Max Caspar, and Franz Hammer. Munich, 1937–.
L (The Correspondence of John Locke), John Locke, edited by E.S. de Beer, 8 Vols., Oxford, 1976–1989.
L-CIl (Carteggio Linceo), 3 parts, Atti della Reale Accademia Nazionale dei Lincei, Memorie della Classe di Scienze Morali, Storiche e Filologiche (Part I anni 1603–1609)
pp 1–120, (Part II, anni 1610–1624, Sezione I, 1610–1615) Vol. 7, 1938 (XVI), pp 123–535; Part II, Sezione II (anni 1616–1624), pp 537–993; Part III (anni 1621–
1630), pp 999–1446.
L-PG (The Lives of the Professors of Gresham College), John Ward, London, 1740; Reprint, New York and London, 1967.
LBO (Bibliographie des Oeuvres de Leibniz), edited by Emile Ravier, Hildesheim, 1966.
LCC (Catalogue critique des manuscrits de Leibniz), Gottfried Wilhelm Leibniz, edited by A. Rivaud, Poitiers, 1914–1924.
LMN (Mathematischer Naturwissenschaftlicher und Technischer Briefwechsel ), Gottfried Wilhelm Leibniz, 2 Vols., (1663–1683) Berlin, 1976–1987.
LO. (Oeuvres de Lagrange), Joseph-Louis Lagrange, Paris, 1867–1892. Also, Oeuvres, Paris, 1973.
LOC (Oeuvres complètes), Pierre-Simon Laplace, 14 Vols., Paris, 1878–1912.
LR (Register zu Gottfried Wilhelm Leibniz Mathematische Schriften und Der Briefwechsel mit Mathematikern), Gottfried Wilhelm Leibniz, edited by Joseph Ehrenfried
Hofman, Hildesheim and New York, 1977.
LSB (Samtliche Schriften und Briefe), Gottfried Wilhelm Leibniz, Damstadt, Leipsig, Berlin, 1923–.
LUI (Lettre inedite di uomini illustri), edited by Angelo Fabroni, 2 Vols., Florence, 1773 and 1776.
MAS (Mémoires de l’Académie Royale des sciences depuis 1666 jusqu’à 1699), 9 Vols., Paris, 1729–1732.
MC (Correspondance du P. Marin Mersenne), P. Marin Mersenne, edited by Paul Tannery, Cornelis de Waard, and Armand Beaulieu, 16 Vols., Paris, 1932–1986.
M-CL (Collected letters of Colin MacLaurin), Colin MacLaurin, Nantwich, Cheshire, England, 1982.

xlvIntroduction
MCL (Carteggio Magliabechi, Lettere di Borde, Arnaud e associati Lionesi ad Antonio Magliabechi (1661–1700)), Antonio Magliabechi, edited by Salvatore Ussia,
Florence.
MO (Oeuvres de Malebranche), Nicolas de Malebranche, Vols. 18–19, (Correspondance actes et documents), edited by André Robinet, Paris, 1978.
MP (The Mathematical Practitioners of Tudor & Stuart England), E.G.R. Taylor, Cambridge, 1954.
MP2 (The Mathematical Practitioners of Hannoverian England), E.G.R. Taylor, 1714–1840, Cambridge, 1966.
MPBS (Manuscript Papers of British Scientists, 1600–1940), London, 1982.
NC (The Correspondence of Isaac Newton), Isaac Newton, edited by H.W. Turnbull, J. F. Scott, and A. Rupert Hall, Cambridge, 7 Vols., 1959–1977.
NMP (The Mathematical Papers of Isaac Newton), Isaac Newton, edited by Derek T. Whiteside, 8 Vols., Cambridge, 1967–1981.
OC (The Correspondence of Henry Oldenburg), Henry Oldenburg, edited by. A. Rupert Hall and Marie Boas Hall, 9 Vols., Madison, 1965–1973; Vols., 10 and 11, Man-
sell, London, 1975–1977; Vols., 12–13, Taylor and Francis, 1986.
P-C. (Les Correspondants de Peiresc, Lettres inédites), Nicolas-Claude Fabri de Peiresc, 2 Vols., Reprint, Geneva, 1972.
P-L (Lettres de Peiresc), Nicolas-Claude Fabri de Peiresc, edited by Philippe Tamizey de Larroque, 7 Vols., Paris, 1888–1898.
PDC. (Diary and Correspondence of Samuel Pepys, F.R.S.), Samuel Pepys, edited by Richard Braybrooke, 4 Vols., London, 1848–1849.
PHI (Les Hommes illustres qui ont paru en France pendant le XVIIe siècle), Charles Perrault, 2 Vols., Paris, 1696–1700.
PO (Oeuvres de Blaise Pascal ), Blaise Pascal, edited by Leon Brunschvicg, Pierre Boutroux, and Felix Gazier, 14 Vols., Paris, 1908–1914.
POC (Oeuvres complètes), Blaise Pascal, preface by Henri Gouhier, notes by Louis Lafuma, editions du Seuil, Paris, 1963.
PT (Philosophical Transactions: giving some Accompt of the present Undertakings, Studies and Labours of the Ingenious in many considerable parts of the World ), edited
by Henry Oldenburg, London and Oxford, 1665–1677.
S-C (The Correspondence of Spinoza), Benedict de Spinoza, edited and translated by Abraham Wolf, London, 1928.
S-OP (Opera Posthuma) Benedict de Spinoza, edited by J. Jellis, Amsterdam 1677; Dutch edition, Die nagelate Schriften van B. d. S. (n.p., 1677).
SS (The Principal Works of Simon Stevin), Simon Stevin, edited by E.J. Dijksterhuis, D. J. Struik, A. Pannekoek, Ernst Crone, and W.H. Schukking, 4 Vols., Amsterdam,
1955–1964.
TBO (Tychonis Brahe Dani Opera Omnia), Tycho Brahe, edited by J.L.E. Dreyer, 15 Vols., Copenhagen, 1913–1929.
TO (Opere di Evangelista Torricelli), Evangelista Torricelli, edited by Gino Loria and Giuseppe Vassura, 4 Vols., in 5 pts, Faenza, 1919–1944.

Geographical Place Names in Biography Headers
Birth and death places are given as [city], [country] when well known, e. g., London, England and Rome, Italy. Lesser-known places are often
accompanied by regional/provincial/county/state names, e. g., Beverley, Humberside, England and Lusigny, Aube, France. States in the USA,
Canadian provinces, and Australian states are included.
All place names are given as they are found on current maps. Where city names have changed historically, the modern version follows
the original within parentheses, e. g., Constantinople (Istanbul, Turkey) and Pitschen (Byczyna, Poland). In cases where cities have disap-
peared, the nearest modern place is given, e. g., Colophon (near Selcuk, Turkey).
Regional/provincial/county/state names as well as country names are placed within parentheses if they did not exist at the time of the
subject’s birth or death. Place names are given in the original language except where common English versions exist, e. g., Milan, Germany,
Bavaria, Tuscany, Munich, etc.
Richard A. Jarrell

A
© Springer-Verlag Berlin Heidelberg 2007
A
ab Hayck
> Hájek z Hájku, Tadeá

Abbās Wasīm Efendi
Born Bursa, (Turkey), 1689
Died Istanbul, (Turkey), 1760

Abbās Wasīm Efendi was a scholar who made many valuable con-
tributions to Ottoman astronomy. These included writing a Turkish
commentary on the famous astronomical handbook (Zīj) of Ulugh
Beg as well as translating

Abd al-

Alī al-Bīrjandī’s work on solar
and lunar eclipses into Turkish. In addition to being an astronomer,
he was a physician, a calligrapher, and a poet; he was also a member
of the Khalwatiyya and Qādiriyya religious orders. Besides know-
ing Turkish,

Abbās Wasīm Efendi knew a number of languages that
included Arabic, Persian, Latin, French, and ancient Greek.

Abbās Wasīm Efendi, whose father’s name was

Abd al-Raḥmān
and whose grandfather’s name was

Abdallāh, was known as Kambur
(Humpback) Vesim Efendi and as Dervish

Abbās Ṭabīb. He pursued
his education with eminent scholars; apparently his teachers appreci-
ated his cleverness, aptitude, and open-minded attitude. His studies and
research took him to Damascus, to Egypt, and to Mecca and Medina
(where he performed the ḥajj or pilgrimage). Upon his return to Istan-
bul,

Abbās Wasīm Efendi opened a pharmacy and a clinic at the Yavuz
Selīm Bazaar in the Fatiḥ district of Istanbul, where he treated patients
for almost 40 years. He wrote and translated many works on medicine
and pharmacology, incorporating the information he obtained through
his many contacts with European physicians coming to Istanbul. From
these contacts

Abbās Wasīm Efendi was able to learn Latin and French,
translate Italian medical texts into Turkish, and closely follow advance-
ments in medical science in Europe.

Abbās Wasīm Efendi’s main contribution to Ottoman astronomi-
cal literature is his translations and ­commentaries. Without any doubt,
his most important work is his Turkish commentary on Ulugh Beg’s
Zīj (astronomical handbook), which was originally written in Persian
and was used as the main reference book by the chief astronomers
and timekeepers of the Ottoman State for their astrological and astro-
nomical studies.

Abbās Wasīm Efendi began working on this book
in 1745, at the request of the historian and astronomer Aḥmad Miṣrī,
who convinced him of the importance of a Turkish translation. Upon
completion,

Abbās Wasīm Effendi presented it to the Ottoman Sultan
Maḥmūd I (reigned: 1730–1754). His ­commentary is written in clear
­ Turkish, in the same style as Mīram Chelebī’s (died: 1525) commen-
tary on the same work. The exam­ples given in the book are all based on

Abbās Wasīm Effendi’s own calculations for the longitude and latitude
of Istanbul. He has included findings from ancient Turkish, Hebrew,
and Roman ­Calendars, which were not in the original. He has also
explained Ulugh Beg’s method for finding the sine of 1°, which was
based on the work of Jamshīd al-Kāshī. One may deduce that

Abbās
Wasīm Effendi was interested and well-informed on astrology since he
dedicates a separate and large section of the book to the subject.
A valuable work on solar and lunar eclipses that

Abbās Wasīm
Efendi also translated into Turkish was Chapter Ten of Bīrjandī’s
Ḥāshiya

ala sharḥ al-Mulakhkhaṣ fī al-hay’a (which was a supercom-
mentary on Jaghmīnī’s elementary astronomical textbook). He titled
his book Tarjamat kitāb al-Bīrjandī min al-khusūf wa-’l-kusūf.
Another astronomical work concerns lunar crescent visibility,
which is important for religious observance.

Abbās Wasīm Efendi
also wrote a work entitled Risāla al-wafq dealing with prognostica-
tion and astrology.
Salim Aydüz
Selected References
Adıvar, A. Adnan (1982). Osmanlı Türklerinde İlim. Istanbul: Remzi Kitabevi,
pp.  187–197.
Ahmet Cevdet Paşa (1892). Tarih-i Cevdet. Vol. 7, p. 98. Istanbul: Matbaa-i
­Osmaniye.
Akıncı, Sırrı (1961). “Hekim Abbas Efendi.” Istanbul Tip Fakultesi Mecmuası 24:
695–700, (Istanbul Üniversites).
Baltaci, Cahit (1989). “Abbas Vesim Efendi.” In Diyanet İslâm Ansiklopedisi. Vol. 1,
pp. 29–30. Istanbul: Türkiye Diyanet Vakfı.
Bursalı, Mehmed Tahir (1923). Osmanlı Müellifleri. Vol. 3, pp. 242–243. Istanbul:
Matbaa-i Âmire, 1342 H.
İzgi, Cevat (1997). Osmanlı Medreselerinde İlim. Vol. 1, p. 419; Vol. 2, pp. 35–38.
Istanbul: İz Yayıncılık.

Kurdoğlu, Veli Behçet (1967). Şâir Tabîbler. Istanbul: İstanbul Fetih Derneği,
pp.  203–206.
Müstakimzade Süleyman Sadeddin (1928). Tuhfe-yi Hattatin. Istanbul: Türk
Tarih Encümeni, pp. 668–669.
Şevki, Osman (1925). Beş Buçuk Asirlik Türk Tababeti Tarihi. Istanbul: Matbaa-i
Âmire, pp. 169–170.
Uzunçarşılı, İsmail Hakkı (1988). Osmanlı Tarihi. Vol. 4, pt. 2, pp. 530–531.
Ankara: Türk Tarih Kurumu.
Abbe, Cleveland
Born New York, New York, USA, 3 December 1838
Died Chevy Chase, Maryland, USA, 28 October 1916
A practical astronomer, mathematician, and meteorologist,
­Cleveland Abbe is perhaps best noted as the father of weather fore-
casting in the United States, having produced the first storm ­ forecasts
while director of the ­ Cincinnati Observatory. Abbe was the son of
George Waldo, a dry-goods merchant and broker, and ­ Charlotte
(née Colgate) Abbe. The Abbe family emigrated from England in
1635, settling first in Connecticut. The family was prominent in the
American Revolution and the American Civil War.
Cleveland Abbe’s mother presented him with a copy of William
Smellie’s Philosophy of Nature when he was eight years old. This book
awakened in the young boy a lifelong interest in the natural sciences.
A‑voracious reader for his entire life, Abbe’s early education was at a
private school in New York City. He entered the New York Free Acad-
emy (now the City College of New York) at age ­thirteen, received his
B.A. in 1857, and an M.A. in 1860.
Abbe became seriously interested in astronomy while he was a
tutor in engineering at the University of Michigan in 1860. Inspired
by Franz Brünnow, director of the Detroit Observatory, Abbe took
up the study of astronomy.
However, Abbe’s service at the University of Michigan was inter-
rupted when he responded to President Lincoln’s first call for ­volunteers
for the American Civil War. Unfortunately, after several weeks in train-
ing Abbe was rejected because of his extreme myopia. Instead, Abbe
went to Cambridge, Massachusetts, where he assisted Benjamin Gould
in the telegraphic longitude work of the United States Coast Survey.
At the end of the war, Gould suggested that Abbe go to Pulkovo
Observatory in Russia to study astronomy under Otto Wilhelm
Struve. Abbe applied to Struve, who welcomed him with an invi-
tation written in such warm terms that the document became one
of Abbe’s most treasured possessions. He spent 1865 and 1866 as a
supernumerary astronomer (the equivalent of the modern postgrad-
uate ­fellowship) at Pulkovo, where the Struves treated him as a family
member. Abbe seriously considered settling at Pulkovo and marrying
Struve’s youngest half sister, Ämalie. However, Struve rejected Abbe’s
petition on the grounds that in the Struve’s ­German culture, Ämalie,
the youngest daughter, was expected to remain at home to care for her
elderly stepmother. Within a few weeks, Abbe returned to the United
States. He regarded his years at Pulkovo as the highlight of his career.
Upon his return to the United States, Abbe filled a short appoint-
ment at the United States Naval Observatory before assuming duties
as director of the Cincinnati Observatory. During the 19th century,
astronomical observatories often served as dispensers of more ­general
scientific information to the public. In addition to astronomy, the citi-
zens of Cincinnati wanted authoritative information on meteorology,
geology, mathematics, chemistry, and physics. Abbe formulated an
ambitious plan to embrace all of these disciplines during his tenure.
However, he soon focused his activities on meteorology.
While working for Gould, Abbe saw how the telegraph could be
a valuable modern tool in making precision simultaneous scientific
observations. With the cooperation of the Cincinnati Chamber of
Commerce and the Western Union Telegraph Company, he began
to collect simultaneous weather observations from over 100 stations
in 1869. Building a database from this information, he was soon
able to make weather predictions for the eastern and midwestern
United States. Abbe’s work constituted the world’s first large-scale
weather prediction system. The predictions were published daily in
hundreds of newspapers. The results of the network were so favor-
able that within 6 months Western Union took the system over
as one of its services. Shortly after that, the United States govern-
ment assumed control of the operation, assigning it to the United
States Army Signal Corps. The service was known as the United
States Weather Bureau. Abbe edited weekly and monthly weather
reports for the bureau for 45 years, beginning in 1871. The bureau
eventually evolved into today’s National Oceanic and Atmospheric ­Administration.
Abbe was a man of great modesty, never touting his achieve-
ments. He was always willing to give encour­agement and advice to
those who worked or corresponded with him. He was particularly
talented at mediating between the rigid hierarchy of the military
Abbe, ClevelandA

chain of command and the more casual working methods of the
scientists. His colleagues noted that he was totally devoid of any hint
of envy or jealousy, a rare characteristic for a modern scientist!
Abbe was a skilled mathematician, geodesist, chemist, physicist,
and engineer though his primary impact on science was in the field
of meteorology. He was active in the field of astronomy for his entire
life. Abbe was particularly interested in the effects of the atmosphere on
astronomical observations. He was multilingual, and many of his most
important contributions were compilations of translated materials on
astronomy and meteorology. He was an early advocate of the standard
time system, and represented the United States at the International
Meridian and Time Standard Congress in Washington in 1884.
Abbe received an honorary Ph.D. from the College of the City of
New York in 1891, honorary LL.D.s from the University of Michigan
(1889) and the University of Glasgow (1896), and an honorary S.B.
from Harvard University (1900). He received many medals, awards,
and other honors, including the Franklin Institute’s Longstreth Medal
of Merit, the United States National Academy of Sciences’ Marcellus
Hartley Memorial Medal, and the American Philosophical Society’s
Franklin Medal. He was an ­Officier d’Académie of the French ­Republic,
and a fellow of the Royal Astronomical Society.
Intensely intellectual, Abbe continued to work on his papers and
correspondence until the week of his death. He was a prolific writer.
There are over 5,500 items in his collected articles, papers, and books,
which occupy 15 feet of shelf space in the Library of Congress.
Professor Abbe married Frances Martha Neal of Ohio (1870),
and after her death, Margaret Augusta ­Percival (1909). He had three
sons, Cleveland, Jr., Truman, and William. His brother, Richard, was
a prominent New York surgeon who pioneered the use of radium and
catgut sutures. Abbe was a devout Christian, and attended services of
several Protestant denominations at different periods of his life.
Leonard B. Abbey
Selected References
Batten, A. H. (1987). Resolute and Undertaking Characters: The Lives of Wilhelm
and Otto Struve. Dordrecht: D. Reidel.
Humphreys, W. J. (1919). “Biographical Memoir of Cleveland Abbe.”
­Biographical Memoirs, National Academy of Sciences 8: 469–508.
Reingold, N. (1963). “A Good Place to Study Astronomy.” Quarterly
­Journal of Current Acquisitions, Library of Congress 20 (4): 211.
——— (1963). “Acquisition Notes.” Information Bulletin, Library of Congress
22 (29): 357–358.
Abbo of [Abbon de] Fleury
Flourished France, circa 945–1004
Abbo of Fleury constructed a novel diagram showing planetary
positions as a function of time.
Selected Reference
Thomson, R. B. (1985). “Two Astronomical Tractates of Abbo of Fleury.” In
The Light of Nature, edited by J. D. North and J. J. Roche, pp. 113–133.
­ Dordrecht: Martinus Nijhoff Publishers.
Abbot, Charles Greeley
Born Wilton, New Hampshire, USA, 31 May 1872
Died Washington, District of Columbia, USA, 17 December
1973
Charles Abbot refined the value of the solar constant and signifi-
cantly improved the technology of its measurement, but failed in his
long-term effort to correlate small variations in the solar constant
with terrestrial weather patterns. Abbot provided critically needed
encouragement and financial support from both institutional and
private sources to Robert H. Goddard’s early research and develop-
ment of liquid-fueled rocket technology.
The son of Harris and Carol Ann (née Greeley) Abbot, Charles
studied chemistry and physics at Phillips Andover Academy,
­Massachusetts, and at the Massachusetts Institute of Technology,
receiving an M.S. degree in 1895 for a thesis on osmotic pressure.
Although he knew nothing about astronomy at the time, Abbot
was employed following his graduation by Samuel Langley, director
of the Smithsonian Astrophysical Observatory [SAO] and secretary of
the Smithsonian Institution. Abbot’s work as Langley’s aide at the SAO
was focused on determination of the solar constant, a measure of the
amount of energy received per unit area of the Earth’s surface. Langley’s
preoccupation with this measurement reflected his intent to not only
detect variations in that important physical parameter, but also establish
correlations between variations in the solar constant and changes in the
Earth’s weather if possible. Toward that end, Langley had developed the
bolometer and other measurement devices and made preliminary mea-
surements of the solar constant, establishing a value of 3 cal cm
−2
min
−1
.
Abbot replaced Langley as the SAO director upon the latter’s death in
1905 and continued his mentor’s research programs until his own retire-
ment in 1944. An ingenious experimenter, Abbot developed a series of
highly specialized instruments for measuring and characterizing solar
energy reaching the Earth, and deployed these instruments at stations
located on several continents. His first efforts in the city of Washing-
ton concentrated on eliminating sources of error in the measurement
of the solar constant through improvements in the measuring device,
which Claude Pouillet had named the ­pyrheliometer. Measurements
with a refined pyrheliometer from Mount Wilson and Mount Whitney,
both in California, led Abbot to reduce Langley’s value to 2.1 cal cm
−2

min
−1
in 1907, with an eventual further reduction to 1.94 cal cm
−2
min
−1

after several decades of refined measurements and analysis of the data.
Abbot recognized that daily measurements were essential to establish
any correlation with weather, and further that measurements had to
be made in elevated locations with a maximum of cloudless days and
atmospheres clear of any pollution. This led to the establishment and
operation of a series of SAO stations on mountains in Chile, Mexico,
Algeria, South Africa, and the Sinai Desert as well as in New Mexico
and California, USA.
Although Abbot’s program of data gathering was endorsed at vari-
ous times by distinguished scientists, including astronomers George
Hale, William Campbell, and Walter Adams, as well as physi-
cists Robert ­Millikan and Karl Taylor Compton (1887–1954), and
­meteorologists C. F. Marvin and H. H. Clayton, there was little agree-
ment that his efforts to correlate small variations in the measured solar
constant with weather patterns showed any significant results.
Abbot, Charles GreeleyA

Abbot also developed powerful spectrographs with Langley’s
bolometers as sensitive radiation detectors. Using these spectro-
graphs, Abbot mapped the solar spectrum in significant detail. On the
basis of his results, by 1911 Abbot had concluded, correctly, that the
continuous spectrum of the Sun could only be attributed to gas under
high pressure, and further that the opacity of that gas would account
for the apparent sharp edge of the solar photosphere. Abbot’s finding
contradicted a previous widely held belief that the photosphere con-
sisted of incandescent solids and liquids.
In his role as home secretary of the United States National
Academy of Sciences, Abbot arranged the 1920 William Ellery Hale
lectures on the distance scale of the Universe, now known as the
Curtis-Shapley debate. Hale was the father of George Hale, who
had suggested the topic to Abbot.
In 1928, Abbot accepted additional administrative responsibility
as the secretary of the Smithsonian Institution, which he undertook
without yielding his position as director of the SAO. Abbot’s tenure
as secretary was dominated by the financial uncertainty endemic in
all such institutions during the world economic depression and later
during World War II. As a result of both these financial problems
and to some extent from Abbot’s benign neglect in favor of solar
research, development of the Smithsonian Institution was largely
stagnant during his service as secretary.
During these years, however, Abbot managed to arrange
l­imited financial support for the rocket research of Robert H.
Goddard, who had first contacted the Smithsonian Institu-
tion in 1916. Working both with Smith­sonian Institution funds
and with private support from philanthropist John A. Roebling,
Abbot managed to eke out sufficient funds to support Goddard’s
research until military as well as scientific applications of the liq-
uid-fueled rocket became attractive. Goddard served as a director
of ­Roebling’s foundation, The Research Corporation, in New York
City from 1928 to 1945.
The practical aspect of Abbot’s abilities was revealed in his
record of inventions. He patented at least 16 inventions, many of
which involved applications of solar energy. Abbot actively pro-
moted the use of solar energy in his popular lectures and popular
writing. His commitment to popularizing science was also reflected
in the publication of the Smithsonian Scientific Series of popular
books on science and technology.
In 1915 Abbot was elected to membership in the National
Academy of Sciences, having received the Academy’s Draper
Medal in 1910. His peers in the American Academy of Arts and
Sciences [AAAS] honored him with the Rumford Medal in 1916
and elected him as AAAS fellow in 1921. Abbot was the recipient
of honorary doctorates from a number of universities including D.Sc.s from the University of ­Melbourne (1914), the Case School
of Applied Science (1930), and George Washington University
(1937), and an L.L.D. from the University of Toronto (1933).
In 1897, Abbot married Lillian E. Moore, who died in 1944. He
was survived by his second wife, Virginia A. Johnston, whom he
married in 1954.
Thomas R. Williams
Selected References
DeVorkin, David H. (1990). “Defending a Dream: Charles Greeley Abbot’s Years
at the Smithsonian.” Journal for the History of Astronomy 21: 121–136.
——— (1999). “Abbot, Charles Greeley.” In American National Biography, edited
by John A. Garraty and Mark C. Carnes, Vol. 1, pp. 9–10. New York: Oxford
University Press.
Hufbauer, Karl (1991). Exploring the Sun: Solar Science since Galileo. Baltimore:
Johns Hopkins University Press.
Jones, Bessie Zaban (1965). Lighthouse of the Skies: The Smithsonian Astro-
physical Observatory: Background and History, 1846-1955. Washington, DC:
Smithsonian Institution.
Kidwell, Peggy Aldrich (1981).  “Prelude to Solar Energy: Pouillet, Herschel, Forbes
and the Solar Constant.”  Annals of Science 38: 457–476.
Warner, Deborah Jean (1976). “Charles Greeley Abbot (1872–1973).” In The
American Philosophical Society Year Book 1975, pp. 111–116. Philadelphia:
American Philosophical Society.
Abbott, Francis
Born Derby, Derbyshire, England, 12 August 1799
Died Hobart, Tasmania, (Australia), 18 February 1883
Francis Abbott’s important contributions to Tasmanian and Austra-
lian astronomy and meteorology were overshadowed by his contro-
versial claim to have observed shrinkage of the η Carinae nebula
that he believed was evidence of the evolution of a stellar system like
our Solar System.
Abbott, the son of John and Elizabeth Abbott, was baptized on 12
August 1799. Trained as a watchmaker in Derby, he established his busi-
ness there and, in 1825, married Mary Woolley; they had seven chil-
dren. In 1831 Abbott moved to Manchester where he ran a successful
business manufacturing clocks, watches, and astronomical machinery
until 1844 when he was found guilty of obtaining two watches under
false pretences. Sentenced to penal servitude, he arrived in Hobart in
June 1845, and after 4 years obtained his ticket-of-leave and set up as a
watch- and clockmaker in Hobart. With the passage of time his business
expanded to include photography and the supply and repair of optical
and other instruments. Despite his less than auspicious arrival in the
colony, Abbott and his family (who arrived in 1850) became respected
members of Tasmanian society, with three of his sons rising to positions
of prominence.
During the 1840s Hobart lacked an astronomical observatory, but
it did boast of a geomagnetic and meteorological observatory. While
still a convict, Abbott became involved in the Rossbank Observatory’s
meteorological program. When the observatory closed at the end of
1854, Abbott – by now a free man – immediately established a private
observatory at his home in Hobart and continued his meteorologi-
cal observations. For the next 25 years he authored monthly reports
on his thrice-daily readings, and six monographs that documented
Hobart’s weather from 1841 to 1879 inclusive. These volumes were
published, with funding from the government, by the Royal Society
of Tasmania [RST]. Abbott’s private observatory included, apart from
its full suite of meteorological instruments, a small transit telescope
and an astronomical clock. For nearly 30 years he provided a local
time service.
Abbott’s observatory was best known for its astronomical out-
put. With the aid of three small refracting telescopes (the largest with
Abbott, FrancisA

an aperture of about 13 cm), he observed a succession of comets and
current phenomena including the variable star η Carinae. Abbott
published 35 papers in Monthly Notices of the Royal Astronomical
Society, Papers and Proceedings of the Royal Society of Tasmania, and
the ­Astronomical Register on the 1861 and 1868 transits of Mercury,
the 1874 transit of Venus, sunspots and aurorae, a lunar occulta-
tion of ­Jupiter, meteors, the open cluster κ Crucis, and a number of
comets. Apart from providing invaluable data on the Great Comet
of 1861 (C/1861 J1), which was discovered by John Tebbutt, Abbott
also wrote three papers about the Great Comet of 1865 (C/1865 B1),
of which he made an independent discovery – although he is gener-
ally not given credit for this.
In contrast to his comet work, it was his observations of η
Carinae that brought Abbott international notoriety. He began
recording the declining magnitude of this enigmatic variable star
in 1856. However, in an 1863 paper in Monthly Notices, Abbott
postulated that the nebulosity surrounding the star had changed
in shape and size since Sir John Herschel first observed the region
in the 1830s. Abbott’s claim ran counter to the prevailing wisdom
and elicited objections from Herschel and other distinguished
Northern ­Hemisphere astronomers, including Astronomer Royal
George Airy. Abbott continued to press his claim in 13 further
papers published until 1871, when the respected astronomer–pop-
ularizer, Richard Proctor, was asked to adjudicate on the matter.
Proctor’s report was damning:
Mr. Abbott has supposed the dark spaces (shown in Sir J. Herschel’s
Monograph) to correspond to the lemniscate, which would unquestion-
ably imply a complete change in the whole aspect of the Nebula. [But]
On the scale of Mr. Abbott’s drawings, the lemniscate would be about
2/5ths of an inch long; it would, in fact, be a minute and
scarcely discernible feature (Richard Proctor).
In spite of Proctor’s finding, Abbott published two further
papers on the topic before finally bowing to international pressure.
Although he did record one of the contact times for the 1874 tran-
sit of Venus, the unfortunate η Carinae episode all but terminated
Abbott’s credibility. After 1873 no further papers by him appeared
in European astronomical journals.
Instead, Abbott turned his considerable energy and enthusiasm
to the popularization of astronomy. In quick succession he published
three short booklets privately to bring recent international develop-
ments in astronomy before an Australian audience. Spectroscopy in
general and astronomical spectroscopy in particular feature promi-
nently in the first two works, while the third booklet highlights Sir
William Herschel’s important overall contribution to astronomy. In
view of the aforementioned η Carinae controversy, it is interesting
that this star is scarcely mentioned in any of the booklets. Abbott
resisted introducing any semblance of a local flavor into these book-
lets, not mentioning either his own astronomical endeavors or those
of Tebbutt and some of Australia’s leading professional astronomers.
Apart from his prominence as a maker of public clocks, from
1855 to 1880, Abbott served as Tasmania’s de facto government
astronomer and meteorologist. It was only when advancing age
made him relinquish this gratuitous role that the RST argued for the
urgent need for a colonial observatory. As a result, the government
opened the Hobart Observatory in 1882 under the directorship of Captain Shortt; its charter included timekeep­ ing, meteorology, and
astronomy.
Abbott was an active member and councilor of the Royal Soci-
ety of Tasmania, and was elected a fellow of both the Royal Astro-
nomical Society and the Royal Meteorological Society.
Wayne Orchiston
Selected References
Abbott, Francis (1863).  “Notes on η Argus.”  Monthly Notices of the Royal Astro-
nomical Society 24: 2–6.
——— (1865).  “On the same Comet.”  Monthly Notices of the Royal Astronomical
Society 25: 197–199.
——— (1878).  Modern Astronomy. Hobart: printed for the author.
——— (1879).  Bibliographical Contribution to the Resumé on Modern Astron-
omy. Hobart: printed for the author.
——— (n.d.).  Sidereal Systems of Modern Astronomy. Hobart: printed for the
author.
Anon. (20 February 1883). “The late Mr. Abbott.” Mercury (Hobart, Tasmania).
Orchiston, Wayne (1992). “The Contribution of Francis Abbott to Tasmanian
and Australian Astronomy.” Vistas in Astronomy 35: 315–344.
——— (1997). “The Role of the Amateur in Popularizing Astronomy: An
­Australian Case Study.” Australian Journal of Astronomy 7: 33–66.
——— (1997). “The ‘Tyranny of Distance’ and Antipodean Cometary Astron-
omy.” Australian Journal of Astronomy 7: 115–126.
Proctor, Richard A. (1871). “Note on Mr. Abbott’s imagined Discovery of great
Changes in the Argo Nebula.” Monthly Notices of the Royal Astronomical
­ Society 32: 62.
Rimmer, Gordon (1969). “Abbott, Francis (1799–1883).” In Australian Dictionary
of Biography. Vol. 3, 1851–1890, pp. 2–3. ­ Melbourne: Melbourne Univer-
sity Press.
Savours, Ann and Anita McConnell (1982). “The History of the Rossbank Obser-
vatory, Tasmania.” Annals of Science 39: 527–564.

Abd al-Wājid: Badr al-Dīn

Abd al-
Wājid [Wāḥid] ibn Muḥammad ibn
Muḥammad al-Ḥanafī
Born Mashhad, (Iran)
Died Kütahya, (Turkey), 1434

Abd al-Wājid was a mudarris (teacher) who wrote several works
on astronomy that indicate that he was greatly influenced by the
astronomical educational tradition of the Marāgha circle of scholars
(including Ṭūsī and Shīrāzī). He traveled to Anatolia from his native
region of Khurāsān in Iran, and became a student of Muḥammad
ibn Ḥamza al-Fanārī (died: 1431) during the reign of Germiyānoğlu
Süleymān Shāh (1368–1387).

Abd al-Wājid later settled in Küta-
hya and taught at the Wājidiyya Madrasa (known as the Demirkapi
Madrasa during the Ottoman Period) until his death. The influence
of the Marāgha circle had previously been felt in Anatolia because of
Shīrāzī, who had also worked at various centers and schools there.
Local traditions indicate that the Wājidiyya Madrasa was a place
where astronomical observation and instruction took place, often
associated with

Abd al-Wājid in the 14th century. According to its
foundation inscription, this madrasa was built in 1308 by Mubāriz
­ al-Dīn ibn Sāwjī.

Abd al-Wājid must have been a very ­prominent

ʕ
Abd al-WājidA

Abetti, AntonioA
professor at this madrasa in as much as it seems to have been
renamed in his honor; clearly, he was not one of its founding profes-
sors. Because

Abd al-Wājid had astronomical interests and was the
author of ­several books on astronomy, the local tradition connecting
the school with astronomy gains some credibility. This probably con-
sisted of ­astronomical instruction and some practical applications. It
is unlikely, though, that there was a large-scale observatory, such as
those at Marāgha and Samarqand, associated with the school.
Among

Abd al-Wājid’s works on astronomy, Sharḥal-
Mulakhkhaṣ fī al-hay’a is a commentary on Jaghmīnī’s famous
astronomical textbook;

Abd al-Wājid dedicated it to Sultan Murād
II (1404–1451). Sharḥ Sī faṣl is a commentary on Ṭūsī’s Persian
work on practical astronomy, which consists of 30 chapters. This
text was translated into Turkish by Ahmed-i Dā

ī, but it cannot be
precisely dated. Ma

ālim al-awqāt wa-sharḥuhu is a work about the
astrolabe and its uses. It was written in verse and consisted of 552
couplets. It was dedicated to Muḥammad Shāh (died: 1406), the son
of

Abd al-Wājid’s teacher al-Fanārī.
Hüseyin Topdemir
Selected References
Baltacı, C. (1976). XV–XVI. Asırlarda Osmanlı Medreseleri. İstanbul.
İhsanoğlu, Ekmeleddin et al. (1997). Osmanlı Astronomi Literatürü Tarihi (OALT)
(History of astronomy literature during the Ottoman period). Vol. 1,
pp.‑22–24 (no. 7). Istanbul: IRCICA.
Sayili, Aydin (1948). “The Wâjidîya Madrasa of Kütahya, A Turkish Medieval
Observatory?”.12 (47).
——— (1960). The Observatory in Islam. Ankara: Turkish Historical Society, esp.
pp. 246, 254–255.
Abetti, Antonio
Born Gorizia, (Friuli-Venezia Giulia, Italy), 19 June 1846
Died Arcetri near Florence, Italy, 20 February 1928
Italian astronomer Antonio Abetti revived the Arcetri Observatory
south of Florence and made it one of the leading astrophysical institu-
tions in Europe. He was a civil engineer and an architect but turned his
interest to astronomy in 1868, almost immediately after he received a
degree in mathematics and engineering from the University of Padua.
He began his career at the local observatory, then headed by Giovanni
Santini, as an ­assistant until 1893. After an examination Abetti was
appointed director of the Arcetri Observatory and professor of astron-
omy at the University of Florence. In 1921, aged 75, he had to retire
from the posts but continued his researches at the observatory.
The main field of Abetti’s work was positional astronomy. During
the 25 years in Padua he made many observations of small planets,
comets, and star occultations, which he published in the Memoirs
and Observations of the Observatory of Arcetri and in the Astron-
omische Nachrichten. On an expedition led by Pietro ­Tacchini to
Muddapur, Bengal, India, in 1874, he observed the transit of Venus
across the Sun’s disk through a spectroscope. It was the first time
that such an instrument was used for this purpose.
The Arcetri Observatory, founded by Giovanni Donati in
1872, had been partially abandoned after Donati’s death. Then one
of the first major tasks for Abetti was to erect a telescope that he
had built in the workshops at Padua. The objective lens he used
was the 28-cm (11 in.)-diameter achromatic doublet with 533 cm
focal length constructed by Giovanni Amici in 1839. With this
instrument Abetti and others obtained many observations on the
positions of minor planets, comets, and stars.
Abetti was a member of the Accademia Nazionale dei ­ Lincei
(Rome), associate member of the Royal Astronomical Society
(London), and a member of several other Italian academies. In
1879 he had married Giovanna Colbachini, of Padua; they had two
sons. The younger son, Giorgio Abetti, shared his father’s interest
in ­astronomy and became an astronomer himself, succeeding his
father as director of the Arcetri Observatory in 1921.
A lunar crater and minor planet (2646) Abetti are named to
honor Antonio Abetti and his younger son.
Christof A. Plicht
Selected References
Abetti, Giorgio (1970).  “Abetti, Antonio.”  In Dictionary of Scientific Biography,
edited by Charles Coulston Gillispie.  Vol. 1, p. 19. New York:    Charles Scrib-
ner’s Sons.
Camera, L. (1929).  “Antonio Abetti.”  Vierteljahresschrift der Astronomischen
Gesellschaft 64:  2.
Fowler, W. A. (1929).  “Antonio Abetti.”  Monthly Notices of the Royal Astronomical
Society 89:  325–327.
Abetti, Giorgio
Born Padua, Italy, 5 October 1882
Died Florence, Italy, 24 August 1982
Giorgio Abetti is most closely associated with detailed measure-
ments and interpretation of the Evershed effect, sometimes called
the Evershed–Abetti effect. He also played an important part in
the development of astrophysics in Italy in the 1920s and 1930s,
when most of the Italian observatories were focused on positional
astronomy. Abetti obtained his degree in physics at the ­ University
of Padua in 1904, where his primary teacher had been his father,
Antonio Abetti. He spent time at Yerkes, Heidelberg, Mount
Wilson (where George Hale was one of his mentors), and Rome
observatories (1910–1919). In 1921, he accepted appointments as
professor of astronomy at the University of Florence and director of
the nearby Arcetri Observatory, where he remained until his retire-
ment in 1953.
While at Rome, Abetti made use of observations from many loca-
tions to show that the true diameter of Neptune is only 2.3², and the
density of the planet therefore is larger than had been supposed up to
that time (1912). His primary interest was, however, in solar surface
phenomena, and he managed to have built a 24-m-high solar tower at
Arcetri in 1924. This was used to obtain spectra of small regions on the
solar surface, particularly in and around sunspots. The Doppler shifts of
the hydrogen and metallic lines from gas in and around the spots, when

AbharīA
observed for spots at different locations on the Sun (so that the Doppler
shift provides information about motions both perpendicular and par-
allel to the solar surface), showed the pattern of gas flows in solar active
regions. In particular, Abetti’s work revealed that the flow outward in
spot areas is extremely variable in both space and time, ranging from
almost 0 km s
−1
to about 6 km s
−1
, rather than being constant and regu-
lar as had previously been supposed. The Doppler shifts caused by these
flows are now generally called the Evershed effect, but sometimes the
Evershed–Abetti effect. Abetti’s solar and other work appeared in more
than 250 scientific papers and several books.
Abetti was one of the founders of the International Astronomi-
cal Union [IAU] at its first formal meeting in Rome in 1922, par-
ticipating in several of the commissions devoted to solar studies. He
later served as vice president of the IAU. Abetti was elected a corre-
sponding member of the Accademia dei Lincei in 1926 and a national
member in 1938 and was a founder (1920) and later president of the
Società Astronomica Italiana. He was also active in early work in the
attempt to understand solar–terrestrial relations – the relationship
between solar activity and the magnetic field, aurorae, weather, and
other earthly phenomena. Abetti was the first chair of an IAU com-
mittee, organized in 1928, to monitor various solar-activity indicators
and to collect and publish the data.
Abetti’s influence in Italian astronomy and astrophysics contin-
ued through his students and junior colleagues. These (and the obser-
vatories they later directed) have included, in chronological order, Attilio Colacevich ­(Naples), Guiglielmo Righini (Arcetri, in succes
-
sion to Abetti), Giulio Calamai, Mario Fracastoro (Catania and Pino
Torinese), Vinicio Barocas, Maria Ballario, Margherita Hack (Trieste),
Giovanni Godoli (Catania), and Mario Rigutti (Catania).
Margherita Hack
Selected References
Abetti, Giorgio (1954).  The History of Astronomy.  London:  Sidwick and Jackson.
——— (1956).   Le stelle e i Pianeti.  Turin: Einaudi.
——— (1957). The Sun. New York: Macmillan.
Abetti, Giorgio and Margherita Hack (1965). Nebulae and Galaxies. New York:
Thomas and Crowell.
Hack, Margherita (1984). “Giorgio Abetti (1882–1982).” Quarterly Journal of the
Royal Astronomical Society 25: 98–100.
Tagliaferri, G. (1982). “Giorgio Abetti.” Giornale di astronomia delle Società astro-
nomica italiana 298.
Abharī: Athīr al-Dīn al-Mufaḍḍal ibn

Umar ibn al-Mufaḍḍal al-Samarqandī
al-Abharī
Born probably Mosul, (Iraq)
Died Shabustar, (Iran), possibly 1265
Abharī, sometimes referred to as “Athīr al-Dīn al-Munajjim” (the
astrologer), was a well-known philosopher who wrote influential texts
in logic, mathematics, and astronomy. There has been diverse specu-
lation about where and when Abharī was born, with the ­predominant
opinion being that he was born in Mosul. “Samarqandī” in his name
indicates that either he or his ancestors originally stemmed from
there, most likely belonging to the Abhar tribe.
Little information is known about Abharī’s education. It is
thought that he attended primary school in Mosul and later trav-
eled to the scientific and cultural centers in Khurāsān, Baghdad,
and Arbil to continue his studies. The biographer Ibn Khallikān
reports that Abharī took part in the assemblies of the famous
scholar Kamāl al-Dīn ibn Yūnus (died: 1242) and even worked as
his assistant at the Badriyya School in Mosul. Other reports claim
that Abharī was a student of the renowned theologian Fakhr al-
Dīn al-Rāzī (died: 1210), that he taught at the Sharafiyya School
in 1248 in Baghdad, that he traveled to Iran from Mosul, that he
lived for a time in Sivas in Anatolia, and that he eventually died of
paralysis in Azerbaijan.
Abharī was an important figure in Islamic intellectual history
not only because of his writings but also because of his teaching
and interactions with scholars of the period. Among his students
were the famous historian Ibn Khallikān (already mentioned), the ­philosopher Najm al-Dīn al-Kātibī, and Shams al-Dīn Mu
ḥammad
al-Iṣfahānī. He also had fruitful exchanges with the cosmolo-
gist

Imād al-Dīn Zakariyyā ibn Maḥmūd ­al-Qazwīnī and the
famous astronomer and polymath Naṣīr al-Dīn al-Ṭūsī.
Abharī studied astronomy under Kamāl al-Dīn ibn Yūnus, and
his keen interest in the subject, as well as a desire to produce text-
books, led Abharī to deal with astronomy in several of his works.
For example, he devoted the second part of the third chapter of his
work, Kashf al-ḥaqā’iq fī taḥrīr al-daqā’iq, to astronomy. There he
accepts the widely held view that the celestial bodies do not undergo
the changes found in the sublunar realm, such as division or rejoin-
ing, diminution or growth, expansion or contraction, and so forth.
He also maintains that stars are alive and have volition, which was
the ultimate source of their motion.
Abharī’s independent astronomical works include treatises on
the astrolabe, commentaries on earlier zījes (astronomical hand-
books with tables), and compendia on astronomy. In the latter cat-
egory, we find a Risāla fī al-hay’a (Treatise on astronomy; extant
in Istanbul, Süleymaniye, H. Hüsnü MS 1135) and a Mukhtaṣar fī
al-hay’a (Epitome of astronomy, extant in Istanbul, Süleymaniye,
Carullah MS 1499). Both contain standard expositions of the
cosmography of the orbs (aflāk), spherical astronomy, planetary
motion, and the characteristics of the terrestrial climes. This
Mukhtaṣar includes 22 sections and 119 figures, and is said to be
an epitome of astronomical works by Kūshyār ibn Labbān and
Jābir ibn

Aflaḥ.
Abharī wrote several mathematical works, including a “Correc-
tion” (Iṣlāḥ) of Euclid. Among the “corrections” is an attempt to
prove the parallels postulate. This was quoted in later works, in par-
ticular by Samarqandī, who was critical of Abharī’s proof. In both
mathematics and astronomy, Abharī seems to have had a significant
influence on science during the Ottoman Period.
Hüseyin Sarıoğlu
Selected References
Al-
ʕ
Abharī, Athīr al-Dīn (2001).  Kashf al-haqā’iq fī tahrīr al-daqā’iq, edited by
H. Sarıoğlu. Istanbul.
Aygen, M. Sadettin (1985).  Büyük Filozof Esîrüddîn Ebherî. Afyon.

Bingöl, Abdülkuddüs (1994).  “Ebherî, Esîrüddin.”  In Diyanet İslâm Ansiklopedisi. 
Vol. 10,   pp. 75–76. Istanbul.
Ibn Khallikān (1977). Wafayāt al-a
ʕ
yān wa-anbā’ abnā’ al-zamān, edited by
Ihsān
ʕ
Abbās. 8 Vols. Beirut. (English translation by MacGuckin de Slane
as Biographical Dictionary. 4 Vols. Paris, 1842–1871. Facsimile reprint, New
York: Johnson Reprint Corp., 1961.)
Muwahhid, Samed (1994).  “Athīr al-dīn Abharī.” In Dā’irat al-ma
ʕ
ārif-i Buzurg-i
İslāmī. Vol. 6, p. 586. Tehran.
Rosenfeld, B. A. and Ekmeleddin Ihsanoğlu (2003). Mathematicians, Astrono-
mers, and Other Scholars of Islamic Civilization and Their Works (7th–19th‑c.).  ­
Istanbul:  IRCICA, pp. 209–210.
Abney, William de Wiveleslie
Born Derby, England, 24 July 1843
Died Folkestone, Kent, England, 2 December 1920
Sir William Abney was a notable pioneer in scientific photogra-
phy, and his interests included the application of photography to
astronomy. He was the son of Canon E. H. Abney, and was edu-
cated at the Rossall School. William received military training in the
British army at the Royal Military Academy from 1861, entered the
Royal Engineers as a lieutenant in 1861, and served briefly in India.
After his return, Abney was employed as an instructor at the School
of Military Engineering, Chatham, Kent, where he came to be in
charge of a photographic and chemical laboratory. Here his pio-
neering experiments in scientific photography were initiated, and
also his deep interest in astronomy was kindled from this time. He
became a fellow of the Royal Astronomical Society in 1870, and was
promoted to the rank of captain in the Royal Engineers in 1873.
Abney, along with Hermann Vogel and others, pioneered the
introduction of dry-gelatin photographic plates in astronomy, and
Abney attempted using them for the transit-of-Venus observations of
1874, from Egypt. His most famous scientific work was undoubtedly
his development of infrared-sensitive photographic emulsions, pro-
duced by mixing gum resins with collodion, for a silver bromide emul-
sion. This work was undertaken at Chatham from 1875 and allowed
Abney to photograph the solar spectrum to 1.2-μm wavelength and
catalog lines to beyond 1 μm. The labeling of several strong solar
spectral lines, including labeling of the infrared calcium triplet as x
1
,
x
2
, and x
3
, are from this work, as is the first use of the term “infrared.”
The Bakerian Lecture to the Royal Society, London, in 1880 reported
on this achievement in solar-spectrum photography.
One further notable astronomical paper of these years concerns
Abney’s prediction, in 1877, that fast-­rotating stars should have broad-
ened nebulous lines, as a result of the opposite signs of the line-of-sight
velocities from each limb causing the overall effect of Doppler line
broadening. This hypothesis was at first rejected by the distinguished
German astronomer Vogel in Potsdam, who believed line broadening
was limited to selected lines in stellar spectra and therefore could not
be caused by rotation, which would affect all lines. Moreover, Vogel
argued that equatorial speeds of over 300 km s
−1
for some stars seemed
implausible. Vogel, however, retracted his hasty objections in 1899, by
which time Abney’s ideas had become generally accepted.
In 1877 Abney left Chatham for the Royal College of Science,
South Kensington, where he served for 26 years. He continued his
photo­graphic researches there, and in particular explored the relation-
ship between density and exposure in photographic emulsions, and
the phenomenon of reciprocity failure in photographic photometry.
He also expanded his researches into color vision, spectrophotometry,
and the transmission of sunlight through the Earth’s atmosphere.
Abney’s hobbies were nature studies in the Swiss Alps, where
he took regular summer holidays, and watercolor painting. From
his first marriage, to Agnes Matilda Smith in 1864, he had one son
and two daughters. After her death in 1888, he married Mary Louisa
Meade in 1890, by whom he had another daughter.
Abney served as president of several learned societies, includ-
ing the Royal Astronomical Society (1893–1895). During the years
1899–1903 he also served as principal assistant secretary to the ­British Board of ­Education. He was knighted in 1900.
John Hearnshaw
Selected References
Abney, W. de W. (1870). Instruction in Photography. London: Piper and Carter.
——— (1874). “Dry Plate Process for Solar Photography.”  Monthly Notices of
the Royal Astronomical Society 34: 275–278.
——— (1876).  A Treatise on Photography. London: Longmans, Green and Co.
——— (1877).  “Effect of a Star’s Rotation on its Spectrum.”  Monthly Notices of
the Royal Astronomical Society 37: 278–279.
——— (1878). Emulsion Processes in Photography. London: Piper and Carter.
(Subsequent editions published as Photography with Emulsions.)
——— (1880). “On the Photographic Method of Mapping the least Refrangible
End of the Solar Spectrum.” Philosophical Transactions of the Royal Society
of London 171: 653–667.
——— (1887). Thebes and Its Five Greater Temples. London: Sampson Low,
Marston, Searle, and Rivington. (Includes discussion of transit of Venus
observations of 1874.)
Abney, William de WiveleslieA

Other documents randomly have
different content

Der Wildgänse Flug in
Katata nachschauen
In der alten Hauptstadt Kioto, in der ältesten Künstler-, Tempel- und
Kaiserstadt Japans, hatten im Mittelalter viele Maler den Auftrag
erhalten, die Gemächer eines Bergtempels zu bemalen. In diesen
Tempel zog sich die kaiserliche Familie in den Sommertagen zurück
und pflegte dort einige Wochen unter der Obhut der reichen Mönche
zu wohnen.
Die Maler begannen ihr Werk. Einer malte einen Saal, wo Sperlinge
in Scharen über die Wände flogen und sich in Reisfeldern und
Bambushainen auf Halmen und Rohren schaukelten. Ein anderer
Maler malte auf Silberpapiergrund einen Saal, wo große
Meereswellen aufrauschten und die vier Wände umschäumten.
Wieder ein anderer Maler malte einen Saal voll von Katzenmüttern
und jungen Katzen, die in Blumenkörben spielten und die
Blütenköpfe großer Päonien zerzupften.
Der erste Saal wurde der Sperlingssaal genannt, der zweite der Saal
der schäumenden Wellen, der dritte der Saal der spielenden Katzen.
Der Kaiser und die Kaiserin, die an der Ausschmückung viel Anteil
nahmen, ließen sich jedesmal, wenn ein Saal beendet war, in

Sänften und mit großem Pomp zu dem Bergtempel tragen und
verbrachten eine Teestunde in dem neuen Saal. Und sie nahmen
öfters ihre jungen Prinzessinnen mit, drei an der Zahl. Und der
Kaiser sagte zur ältesten eines Tages, als sie den Tempel wieder
besichtigten:
«Wünsche dir einen gemalten Saal, mein Kind! Vielleicht haben die
Maler die Freundlichkeit und werden von glücklichen Augenblicken
begünstigt, dir einen Saal zu malen nach deinem Einfall.»
Die älteste Prinzessin, die einen kleinen japanischen Seidenpinscher
auf ihrem Arm trug, mit dem sie spielte, wünschte sich einen Saal
voll Schoßhündchen, die um sie spielen sollten. Und die Maler
malten ihr diesen Saal.
«Nun wünsche du, mein Kind, was du gemalt haben willst!» sagte
der Kaiser zur zweitältesten Prinzessin.
Diese wünschte sich etwas ganz Unmögliches: einen Saal, wo der
Mondschein käme und ginge, und in welchem keine Farben sein
sollten.
Die Maler brachten auch diesen Saal zustande. Sie teilten einen Saal
in zwei Teile. Die eine Hälfte sah nach Osten, die andere nach
Westen, und jeder Saalteil hatte einen Altan. Von dem einen Altan
sah man den Mond aufgehen, von dem andern Altan den Mond
untergehen. Und weil das Auge der Prinzessin und das Auge des
Mondes keine der sieben Regenbogenfarben dulden wollten, hatten
die Maler Pflanzen und Bäume in jeden Saal mit brauner Sepia
gemalt.

Nun wurde die dritte Prinzessin von dem Kaiser und der Kaiserin
gefragt, was sie sich in ihrem Saal von den Malern gemalt wünschte.
O, sagte sie, sie wünsche sich nicht viel, nur einen Zug Wildgänse,
die durch die Luft flögen, graue und weiße Wildgänse, im
Zickzackflug, rund um den Saal. Aber jede Gans müsse so hinter der
anderen fliegen, daß sie alle zusammen ein japanisches
Schriftzeichen in ihrem Flug bildeten. Dieses Zeichen würde von
einem bestimmten Baum und einer bestimmten Hügellinie und der
Fluglinie der Gänse gebildet. Nur in Katata am Biwasee könnten die
Maler den Gänseflug, den Baum und den Hügel zusammen treffen.
Nur einmal, an einem Frühlingsabend, habe die Prinzessin bei einem
Ausflug in Katata die Wildgänse so fliegen sehen, daß sich das
wunderbare Schriftzeichen zwischen Himmel und Erde aus der
Fluglinie der Gänseschar, aus der Silhouette eines Hügels und aus
einer Baumlinie bildete.
«Und das nennst du ganz einfach?» sagte der Kaiser.
«Es war ganz einfach, als ich es sah», antwortete die Prinzessin.
«Es wird nicht zu malen sein», sagte die Kaiserin.
«Dann wünsche ich keinen gemalten Saal», sagte die Prinzessin.
«Und wie hieß das Schriftzeichen?» fragte der Maler Oizo, als der
Kaiser und die Kaiserin ihm den Wunsch der Prinzessin erklärten.
«Das hat die Prinzessin vergessen», wurde ihm zur Antwort.
Die Maler zogen mit Reispapier und Tusche, mit Silberpapier und
Goldpapier beladen nach Katata, um den Flug der Wildgänse zu
studieren. Aber da es Juli war und keine Wildgänse um diese Zeit

vorüberziehen, mußten sie warten bis Oktober. Und Oizo suchte
inzwischen die Hügellinie und die Baumlinie. Aber da es Sommer war
und die Bäume belaubt, und da die Hügel voll hoher Gräser wehten,
fand er nirgends die Linie freiliegend.
Die Maler und der Maler Oizo studierten inzwischen die Fische, die in
Rudeln im klaren Wasser stehen, und Bäume am Ufer, welche wie
Schriftzeichen ins Wasser tauchen und sich in der Wasserspiegelung
krümmen, und Wachteln, die in den Reisfeldern brüten, und
Wachtelmütter, die mit ihren Jungen unter den Reishalmen picken.
Sie brachten diese Bilder nach Kioto in den Bergtempel und dachten:
Vielleicht gibt sich die Prinzessin zufrieden mit einem Wachtelsaal
oder mit einem Saal voller Uferbäume und Fische.
Aber die Prinzessin schwieg und gab keinen Beifall, und auch der
Kaiser und die Kaiserin schwiegen.
Da wurde der große Maler Oizo traurig und kehrte wieder nach
Katata zurück. Dort wohnte er in dem Hause eines Töpfers auf
einem Hügel. Der formte aus dem Ton der Katataerde Vasen,
einfache weiße Vasen, die er mit grüner und blauer Glasur überzog,
so daß sie spiegelten wie das grüne und blaue Uferwasser des
Biwasees in den Frühlingstagen.
Der Töpfer hatte eine Tochter. Die war so jung und lebendig wie ein
Aprilwind. Sie saß am Töpferofen, darinnen die Vasen und
Tonschalen ihres Vaters gebrannt wurden. Sie hatte die Glut zu
schüren und die Holzkohlen aufzufüllen, und davon war sie stets
schwarz im Gesicht und schwarz an den Händen, daß der Maler Oizo
sie eigentlich noch niemals gesehen hatte.

Oft saß er am Ofen bei ihr, wenn sie die Flammen schürte, und er
zeichnete nachher die roten Korallenäste des Feuerflackerns.
Natürlich wußte ganz Katata, daß die kaiserlichen Maler auf den
Herbst warteten, bis die Wildgänse in den Oktoberabenden
fortflögen. Und auch «Graswürzelein», wie die Tochter des Töpfers
hieß, wußte, daß Oizo jetzt traurig war, weil er den Wunsch der
Prinzessin noch nicht befriedigen konnte.
Eines Abends, als der Mond aufging und der Altan des Töpfers
zwischen dem Mondschein und dem roten Schein, der aus dem Ofen
fiel, zweifarbig beleuchtet, rot und blau wurde und Graswürzelein
mondblau und feuerrot, zweifarbig beschienen, vor dem Ofen im Hof
bei dem Altan saß, seufzte der Maler in seiner Altanecke ärgerlich
und trotzig darüber, daß der Prinzessin nicht der Wachtelsaal und
nicht der Saal der Fische gefallen hatte und auch der Kaiser und die
Kaiserin darüber geschwiegen hatten.
Da kam die blau und rot beschienene Tochter des Töpfers und
sagte:
«Seufze nicht, Oizo! Ich will dir sagen, was die kaiserliche Prinzessin
denkt, und was sie will, und will dir auch das Schriftzeichen des
Fluges der Wildgänse zeigen.»
Und Graswürzelein nahm eine Holzkohle, die neben dem Ofen lag,
und zeichnete auf einen weißen ungebrannten Tonkrug ein paar
Linien.
«Sieh her, Meister!» sagte sie. «Was heißt das auf japanisch, was ich
hier schrieb?»

«Das heißt», sagte Oizo und betrachtete flüchtig den Krug mit dem
Schriftzeichen, «ich liebe dich, wenn ich dir nachsehe. Aber du liebst
mich nicht, weil du fortsiehst.»
«Sieh, Oizo», sagte Graswürzelein, «dies denkt die Prinzessin, denn
sie ist wahrscheinlich in einen Mann verliebt, der sie nicht ansieht.
Und sie will das Schriftzeichen durch den Gänseflug in ihren Saal
gemalt haben und will den Mann dann in den Saal führen und ihn
von den Wänden ihren Willen lesen lassen. Denn sieh: das
Schriftzeichen besteht aus drei Teilen. Sieh hier die Gabel eines
vielfach gewundenen Baumes. Waagrecht durch die Gabel hindurch
siehst du die Brustlinie eines ansteigenden Hügels und darüber die
vielfach zackige Fluglinie einer unendlich langen Reihe von grauen
und weißen Wildgänsen. Aber zugleich siehst du: die grauen Gänse
verschwinden in der Dämmerung und unterbrechen die Linie,
wogegen die weißen sich als Schriftzeichen vom Abendhimmel
abheben.»
Oizo fragte erstaunt und mit ganzem Herzen zuhörend:
«Und woher weißt du, daß die Prinzessin gerade diesen Schriftzug
meint: ich liebe dich, wenn ich dir nachsehe, aber du liebst mich
nicht, weil du fortsiehst?»
«Das ist ganz einfach», lachte Graswürzelein. «Mein Vater machte
einmal eine Vase. Ich hatte aber den Ofen schlecht geheizt, so daß
die Glasuren nicht gleichmäßig trockneten und sich seltsamerweise
dieses Schriftzeichen bildete, indem der weiße Grund der Vase in
Zickzacklinien durch die blaugrüne Glasur schimmerte. Flüchtig
hingesehen, erschienen die weißen Linien wie ein Flug Wildgänse,
die in einer Landschaft über Baum und Hügel hinflogen.

Die Vase gefiel einem Mönch, der sie sah und ausnehmend schön
fand, da sie zugleich Bild und Schriftzeichen deuten ließ. Die
Prinzessin hat wahrscheinlich diese Vase in einem Tempel gesehen,
und man hat ihr gesagt, daß das Bild darauf den Flug der Wildgänse
in Katata darstellt. Aber ich denke mir, daß das Schriftzeichen ihr
mehr wert ist, als der Flug der Wildgänse», lachte Graswürzelein.
Oizo schlug sich mit der Hand vor die Stirn und lachte:
«Also dieser Baum und dieser Hügel sind gar nicht in Katata? Und
nur die Wildgänse fliegen hier vorüber im Frühling und im Herbst?»
«O ja», sagte Graswürzelein nachdenklich. «Der Baum lebt wohl hier
irgendwo und der Hügel auch irgendwo, denn nichts ist Zufall auf
der Welt. Es war auch kein Zufall, daß ich das Feuer damals schlecht
schürte, und daß die Vase schlecht trocknete. Nichts ist Zufall, sagen
die Götter hier bei uns in Katata.»
Und während Graswürzelein das sagte, öffnete sie die Feuerluke,
zerschlug den Krug am Boden, auf den sie das Schriftzeichen gemalt
hatte, sammelte die Scherben und warf sie ins Feuer.
«Was machst du da?» sagte Oizo verblüfft.
«Ich habe zuviel geredet, und das ärgert mich», sagte
Graswürzelein. «Deshalb zerbrach ich den Krug.»
Der Maler verstand sie nicht, reichte ihr ein Geldstück hin und sagte:
«Nimm dies einstweilen als Dank für deine Aufklärung. Ich gebe dir
später mehr, wenn mir der Kaiser den Wildgänsesaal bezahlt hat.»

Und Oizo ging und packte seine Zeichnungen ein, um am nächsten
Morgen nach Kioto zu reisen.
Aber Graswürzelein warf, als er sich abwandte, das Geldstück in das
Feuer des Ofens, geradeso, als wäre es eine Tonscherbe. Und als ihr
Oizo Lebewohl sagte und ihr nochmals dankte, sagte sie:
«Warum soll ich dir Lebewohl sagen! Ich weiß ja doch, daß du
wiederkommen mußt.»
«Das wäre nur ein Zufall, wenn ich wiederkäme», sagte Oizo.
«Die Götter von Katata kennen keinen Zufall», murmelte
Graswürzelein und blies in das Feuer. –
Der Maler ging nach Kioto und malte den Saal nach dem
Gedankengang des Schriftzeichens auf silbergrauen Grund: den
dämmernden Baum im Abend, die Hügellinie und grau und weiß die
große Zackenschleife in der Luft, welche die fliegenden Wildgänse
beschreiben.
Wie Oizo noch am Malen war, kam einer seiner Kameraden, ein
anderer Maler, der auch draußen in Katata gewohnt hatte, und
lachte ihn aus, weil er sich immer so geheimnisvoll in den Saal
einschloß, den er malte, und die andern nicht wissen lassen wollte,
wie der Schriftzug des Gänsefluges hieße.
«Du machst dich lächerlich, daß du dich hier einschließt und nichts
von der Welt wissen willst als nur deine Malerei. Komm heute abend
mit mir in die Theaterstraße von Kioto. Ich verspreche dir, daß ein
Besuch in der Theaterstraße deiner Malerei mehr nützen wird, als du
glaubst.»

Oizo, der die Aufrichtigkeit seines Freundes kannte, gab diesem nach
und ging mit ihm schweigend in der Nacht vom Bergtempel hinab
über die Brücke in die Stadt zur Theaterstraße, wo erleuchtete
Budenreihen und farbige Lampen waren und große
Leinwandmalereien in der Nachtluft wie Fahnen flatterten und
Szenen aus den Theaterstücken schilderten.
Verblüfft blieb Oizo am Eingang der Straße stehen. Da war ein
Papierlaternenverkäufer. Der hatte Lampen aus ölgetränktem
Pflanzenpapier, und auf jeder Lampe war das Schriftzeichen des
geheimnisvollen Gänsefluges gemalt, das er aus Katata mitgebracht
hatte, das Schriftzeichen der Wildgänse, des Hügels und des
Baumes, von dem er geglaubt hatte, daß es nur allein ihm, der
Tochter des Töpfers und der Prinzessin bekannt sei.
Oizo schwieg und verbiß sich sein Erstaunen und dachte an
irgendeinen spitzbübischen Verrat.
Nun kamen sie weiter, sein Freund und er, zu dem größten Theater
in der Mitte der Straße. Da zeigten auch die Theaterbilder außen an
der Zeltbude rund um die Zeltwand den Flug der Wildgänse. Zugleich
kam ein Straßenverkäufer zu den beiden Malern und bot ihnen ein
Spielzeug an: aus Seidenwatte gearbeitete kleine Wildgänse, die an
einer Seidenschnur hingen und, durch die Luft geschleudert, in
Schleifenform dahinflatterten. Ein Perlmutterarbeiter zeigte ihm
Lackkästchen, darauf der Flug der Wildgänse über Baum und Hügel
ging, und alle diese Dinge prägten das Schriftzeichen aus, das wie
eine Liebeserklärung jene Worte sagte:
Ich liebe dich, wenn ich dir nachsehe. Aber du liebst mich nicht, weil
du fortsiehst.

Ganz verstört, schwieg Oizo immer noch. Seine Stirn verfinsterte
sich, und er blieb im Menschengedränge stehen und wollte seinem
Freund entlaufen. Dieser hielt ihn am Ärmel fest und rief ihm zu:
«Laß dir doch erklären, woher ganz Kioto den Flug der Wildgänse
und das Bild, das du malen willst, kennt.
Du weißt, ich wohnte in Katata bei einem Fruchthändler. Dessen
Tochter brachte mir eines Tages in einer Porzellanschale einen
kleinen Zwerggarten in mein Zimmer. Darin blühte ein ganz winziger
Kirschbaum. Der Baum war nicht höher, als mein halber Arm. Hinter
dem Baum war ein künstlicher Hügel aus Erde. Diesen kleinen
Garten stellte sie am Abend hinter einen weißen Papierschirm, auf
welchem mit schwarzer Tusche kleine Wildgänse im Schleifenflug
gemalt waren. Sie zündete eine Lampe hinter dem Schirm an, so daß
der Schatten des Zwerggartens, des Baumes und des Hügels, auf
den weißen Schirm fiel und sich darauf abzeichnete und Garten und
Gänse ein einziges Schattenbild zu sein schienen. Aber zugleich
konnte man das Ganze auch für ein Schriftzeichen halten.
Ich verstand sofort, daß sie mich liebte, und daß dieses Bild eine
Liebeserklärung sein sollte.
Ich kümmerte mich nicht um ihre Erklärung, nachdem ich den
gesuchten Wildgänseflug von Katata, der eine Liebeserklärung
darstellt, so deutlich gesehen hatte, daß ich ihn malen konnte.
Ich wollte am nächsten Tag abreisen, ging aber am Abend noch ins
Teehaus, wo ich fünf von unseren Malern traf. Dem einen hatte eine
Tänzerin den Wildgänseflug von Katata bereits erklärt, dem andern
ein Fischermädchen, bei dessen Vater er wohnte, dem dritten und
vierten und fünften andere Mädchen von Katata, so daß wir alle

merkten: das Schriftzeichen des Gänsefluges war ein öffentliches
Geheimnis der jungen Mädchen in Katata und wurde immer
angewendet, als Zeichnung auf einer Vase, als Wandschirmbild und
so weiter, wenn ein Mädchen von Katata einem Manne eine
Liebeserklärung machen wollte.
Wir hatten das bis damals in Kioto nicht gewußt. Aber jetzt kennen
das Schriftzeichen des Wildgänsefluges von Katata alle Kinder von
Kioto, weil alle Maler das Geheimnis hier verbreitet haben, alle, die
in Katata waren. Auch der kaiserliche Hof weiß es längst, und die
junge Prinzessin ist bereits von dem ganzen Hof als lächerlich
erklärt. Der Kaiser und die Kaiserin sollen sehr ärgerlich sein, und du
selbst wirst deinen Kopf verlieren, wenn du den Saal fertig gemalt
hast und dir einbildest, von der Prinzessin geliebt zu sein.»
Oizo dachte einen Augenblick nach, dann lachte er und sagte:
«Da ich die Prinzessin nicht liebe, wird mir der Hof doch nicht böse
sein, weil ich den Wildgänseflug mit Lust an meiner Malerei malen
wollte, und nicht mit Lust an der Liebeserklärung des
Schriftzeichens.»
«Doch, doch», sagte sein Freund. «Du mußt fliehen, du mußt dich
verstecken, bis der Tempel eingeweiht ist. Man wird den Saal der
Prinzessin verschlossen halten und garnicht zeigen. Aber du mußt
fortbleiben, bis man die Liebeserklärung der Prinzessin vergessen
hat.
Ich rate dir, nimm ein Segelboot und halte dich einen Monat lang auf
dem Biwasee versteckt. Auf dem weiten Wasser draußen wird dich
niemand suchen, und du kannst den Booten ausweichen.»

«Ich trenne mich nur schwer von meiner Malerei», sagte der Maler
Oizo. «Aber du hast recht. Ich will fliehen und will mich verstecken,
bis der Saal der Prinzessin vergessen ist.»
Oizo verließ Kioto noch in derselben Nacht, kaufte sich ein Boot, das
er mit Nahrungsmitteln versah, und zog dann hinaus auf den See.
Aber die Tage waren unfreundlich: es war Vorfrühling. Viele Tage
lang lagen die Nebel wie Binden vor Oizos Augen, und er sah nichts
und hörte nichts im Nebel als das Knirschen seines Bootes.
Eines Tages ließ er sein Boot treiben und sagte zu sich: «Ich will
aussteigen, wo das Boot landet. Wenn ich nicht malen kann, tötet
mich die Langeweile. Ich will wenigstens wieder einmal malen
dürfen. Und wo jetzt das Boot landet, weiß ich auch, werde ich ein
Bild finden, das mir längst in der Seele vorgeschwebt hat.»
Das Boot des Malers trieb im Abend an den Strand von Katata.
«O, unglücklicher Ort», sagte Oizo. «Soll ich also wirklich das Bild
vom Flug der Wildgänse noch einmal malen? Ich will noch abwarten
und sehen, was mit mir geschieht, wenn ich ans Land steige. Die
Götter haben das Boot gelenkt, die Götter werden auch meine
Schritte lenken.»
Der Maler stieg ans Land und ging über den leeren Strand, auf dem
kein Schilf wuchs, sondern nur die gelben Schilfstoppeln vom Vorjahr
standen.
«Hier sang das Schilf im Vorjahr, als ich fleißig war und Fische malte.
Jetzt ist der Strand faul und tot, vom Winter verdammt, so wie man
mich zur Faulheit verdammt hat.»

Plötzlich bückte sich der Maler und hob eine unscheinbare
Seemuschel auf, die blau irisierend und rot irisierend mit weißer
Innenschale und schwarzer Außenschale wie eine Blume hier
zwischen den leeren Kieselsteinen am Strand leuchtete. Oizo
wendete die Muschel in der Hand hin und her, schüttelte den Kopf,
hielt die Hand an die Stirn und dachte nach und meinte zu sich:
«Wo habe ich nur diesen blau irisierenden Schein neben dem rot
irisierenden Feuerschein hier in Katata schon einmal gesehen? Ich
weiß gewiß, daß es in Katata war, wo ich diese beiden Farben
unvergeßlich nebeneinander sah.»
Wie er noch dachte und seinem Gedächtnis noch nicht auf den
Grund kommen konnte, kam ein japanisches Mädchen hügelabwärts
zum Seewasser hin. Sie trug auf dem Kopf einen flachen Korb und
schüttete den Inhalt des Korbes, der wie Erde aussah, ungefähr
zwanzig Schritte von Oizo entfernt in den See.
«Was machst du da?» rief der Maler ihr zu.
Das Mädchen sah sich nach ihm um, streckte plötzlich die Arme von
sich, stieß einen zischenden Schreckenslaut aus, als ob sie einem
Geist oder einem Gott ins Gesicht sähe, hüllte ihr Gesicht in ihre
Ärmel, kniete am Seerand nieder und steckte ihren Kopf ins Wasser.
Oizo rief: «Haben denn die Götter dir deinen Verstand genommen,
weil du dich ertränken willst, Mädchen?»
Oizo sprang hin, und als er näher kam, sah er, daß das Mädchen sich
eifrig das Gesicht wusch, und er erkannte an der einen
Gesichtshälfte, die noch voll Ruß war, die Tochter des Töpfers,

Graswürzelein, die aus dem Brennofen ihres Vaters die Asche in
einem Korb an den See getragen hatte.
«Was machst du da?» fragte Oizo noch einmal. «Ich hätte dich
beinah nicht erkannt, Graswürzelein, weil du zur Hälfte schwarz und
zur Hälfte weiß bist.»
Graswürzelein prustete das Wasser aus ihrer Nase, wusch sich die
andere Gesichtshälfte rein, und während sie sich mit dem
Innenfutter ihres Ärmels Gesicht und Hände trocknete, fuhr sie den
Maler ärgerlich an:
«Ich wollte gar nicht, daß du mich erkennen solltest. Als ich dich hier
so plötzlich am Strand stehen sah, nachdem ich die Ofenasche in
den See geworfen hatte, und ich dir nicht ausweichen konnte, wollte
ich mir den Ruß vom Gesicht waschen, damit ich dir unkenntlich
bliebe. Denn du hast mich ja nur ein einziges Mal gewaschen
gesehen.»
Und wirklich, Oizo konnte das weiß gewaschene Mädchen kaum
erkennen.
«Du sagst, ich hätte dich einmal gewaschen gesehen? Ich habe dich
immer nur schwarz gekannt.»
«Doch, doch», nickte Graswürzelein. «Erinnerst du dich nicht,
Meister, da ich dir auf einer Tonvase den Flug der Wildgänse von
Katata beschrieb? Erinnerst du dich nicht? Es war im Mondschein. Du
saßt auf dem Altan und ich am Ofen im Hof.»
«Du warst rot und blau beschienen», sagte Oizo, «wie die Muschel
hier, die mondblau und feuerrot in meiner Hand irisiert und leuchtet.

Das ist das Bild, das ich hier malen will. Ich will dein Gesicht malen,
blau vom Mond und rot vom Feuer beleuchtet. Und darum bin ich
nach Katata gekommen.»
Graswürzelein lachte einen Augenblick. Dann aber wurde sie sehr
ernst.
«Nein», sagte sie und schüttelte den Kopf. «Du darfst nicht mehr in
unser Haus kommen. Ich habe das Feuer zu schlecht geschürt, so
lange du da warst, und ich habe meinem Vater zu viele Tonvasen
verbrannt.»
«Du hast noch einen Grund, den du nicht sagst», meinte Oizo. «Die
Tonvasen will ich deinem Vater alle bezahlen, während ich dich male.
Rede und sage deinen Grund, warum ich nicht mehr in dein Haus
kommen soll?»
Graswürzeleins Wangen erröteten, und sie hielt rasch ihre Hände an
die Wangen, um die Wangenröte mit den Händen zu verbergen.
Oizo sah staunend, wie schön das Mädchen war, und hörte, wie ihre
Stimme wisperte und rhythmisch sang, während sie sprach, als ob
das Schilf vom Vorjahr wieder um ihn sänge.
«Willst du nicht eine Bootfahrt mit mir machen, Graswürzelein? Es
kommt eine lauwarme Luft über den See, und die Abende sind schon
lang und hell. Ich glaube, die Wildgänse müssen bald
wiederkommen.»
«Ja, bei den Göttern, das ist wahr», seufzte das kleine Mädchen.
«Die Wildgänse möchte ich dir auf dem See zeigen, Meister.» Und
ein Lachen blitzte in ihren Augen, so wie die nassen schwarzen

Seekiesel blitzten. «Das ist die Luft der Wildgänse heute abend. Du
hast sie nie vom See aus kommen sehen, Meister?»
«Nein, ich sah den Wildgänseflug nur vom Land, über Hügel und
Baum.»
«Dann will ich ihn dir vom See aus zeigen», nickte das Mädchen
eifrig; und ihr blasses Gesicht und ihre zitternden Hände redeten
schnelle Sätze, die sie nicht aussprach.
Sie kletterte vor Oizo ins Boot, ergriff die Ruder und ruderte, ohne
ein Wort mehr zu sprechen, lenkte das Boot, ohne den Maler zu
fragen, wohin er wolle. Oizo fühlte und verstand natürlich an der
Röte und Blässe des Mädchens, daß sie eine Herzensregung verbarg.
Er blieb lautlos sitzen und horchte auf sein eigenes Herz, das ihm bis
an den Hals schlug. Denn das Mädchen wurde in seinen Augen
immer schöner, und er hätte es gern umarmt.
Der Biwasee lag wie Öl so glatt, und auch die Luft war wie Öl. Als
legte man zwei Spiegel aufeinander, so lag der Spiegel des
abendlichen Vorfrühlingshimmels auf dem Spiegel des Sees.
Graswürzelein legte plötzlich die Ruder ins Boot und sagte: «Still! Sie
kommen!» Und gleich darauf wiederholte sie:
«Still! Sie kommen!»
Oizo wunderte sich, warum er denn still sein solle, da er nicht
sprach. Er wußte nicht, daß seine Stimme fortwährend in den Ohren
des Mädchens summte und ihr Blut unausgesetzt mit ihm redete.
Ihm selbst geschah jetzt das gleiche. Er fuhr auf und sagte:

«Still! Sie kommen!» Denn auch er hörte das Mädchen in seinem
Blut reden, – sie, die kein Wort sprach.
Dann war es, als wenn Ruderkähne hoch in der Luft mit großen
Ruderschlägen herbeiführen, und als ob Mühlen sich drehten mit
unsichtbaren Rädern. Und Laute, die nicht Musik, nicht
Menschenstimmen und nicht Tierstimmen glichen, die aber feierliche
Akkorde in die Stille über den See schufen, klangen irgendwo im
unermessenen Abendraum, kreiselten, waren da, wurden im
Abendgrau zu weißen fliegenden Erscheinungen, bildeten dann eine
Kette über den Köpfen des Mädchens und des Mannes, zogen ein
Spiegelbild im Wasser nach, wie eine Reihe weißer winkender
Tücher. Die weiße Geisterkette beschrieb eine weiße Schleife am
Himmel und eine weiße Schleife im Wasserspiegel und verrauschte
wie ein musikalischer Windton und hinterließ Atemzüge von
Befremdung, von Sehnsucht, als wäre die Luft mit unerfüllten
Wünschen noch lange nach dem Vorbeizug der Wildgänse von
Katata angefüllt.
Es war jetzt so dunkel auf dem See, als wäre die Dunkelheit wie ein
zweites Wasser aus der Tiefe gestiegen und stünde über den Köpfen
der beiden Menschen im Kahn. Es war nur noch ein Rest von der
Tageshelle, klein wie ein durchsichtiges Ei, im Westen über dem
Strand.
Oizo konnte nicht Graswürzeleins Gesicht sehen. Er tastete nach der
Bank im Schiff, suchte ihre Hände, die er streicheln wollte. Aber sie
hatte ihre beiden Hände in die weiten Ärmel ihres Kleides gewickelt,
als hätte man ihr die Hände abgeschlagen.
«Gib mir deine Hände! Ich will sie dir wärmen, wenn du frierst. Oder
fürchtest du dich vor bösen Seegeistern, daß sie dich an der Hand

nehmen könnten? Hab keine Furcht, Graswürzelein! Du bist zu
schön. Alle Götter müssen dich beschützen. Auch die bösen Götter
werden gute Götter, wenn du sie ansiehst.»
«Was willst du von mir?» sagte das Mädchen. «Habe ich dir nicht
den Flug der Wildgänse über den See gezeigt? Hast du nicht ihr
Schriftzeichen lesen können, ihre Schrift aus Himmel und
Wasserlinie?»
«Die Liebeserklärung?» fragte Oizo.
«Die Liebesabsage», flüsterte erregt und hastig die Tochter des
Töpfers.
Und nun verstand Oizo, der Schriftzug hatte sich durch die
Spiegelung, die im Seewasser dazu kam, in ein anderes
Schriftzeichen verwandelt; und wenn die Mädchen von Katata dieses
einem Liebhaber zeigten, so war er abgewiesen. Die Fluglinie der
Wildgänse im Wasser und am Himmel, vom See aus gesehen,
bedeutete in Sprachzüge übersetzt:
«Ich liebe nicht, daß du dich nach mir umwendest. Ich wende mich
auch nicht nach dir um.»
Welch sonderbarer Zufall, daß der Wildgänseflug sich doppelt deuten
ließ, je nachdem die Wasserspiegelungslinie sich einfügte oder nicht.
Daß Graswürzelein ihn liebte und ihn nur necken wollte, als sie ihm
die Absage gab und ihn vielleicht zur Annäherung reizen wollte,
begriff Oizo sofort, denn die Luft um sie und ihn war wunderbar
geschwängert von Verlangen und schweigender Zuneigung.

Ohne sich zu besinnen, legte er seinen Arm um das kleine Weib und
fand keine Abwehr. Graswürzelein versteckte nur beschämt ihr
Gesicht in des Malers Brustgewand.
Oizo erzählte ihr rasch:
«Du weißt nicht, Graswürzelein, daß ich wie ein totes Holz draußen
auf dem See seit Tagen herumtreiben mußte, daß ich es endlich
nicht aushalten konnte, daß mir das Land verboten war, weil ich vor
der Liebeserklärung der Prinzessin fliehen mußte. Aber jetzt, seit ich
die Doppeldeutung des Fluges der Wildgänse weiß, kann ich den
Saal der Prinzessin fertig malen, wenn ich die Spiegellinie im Wasser
hinzufüge. Und niemand im Land wird mehr sagen können, daß die
Prinzessin sich lächerlich gemacht hätte, sondern daß sie sich
unnahbar machen wollte, wie es einer Prinzessin geziemt. Alle sollen
dann im Saal das Schriftzeichen lesen:
Ich liebe nicht, daß du dich nach mir umsiehst. Ich sehe mich auch
nicht nach dir um.
Dann komme ich wieder und baue in Katata mein Haus. Und du
sollst nicht mehr den Ofen deines Vaters schüren. Du sollst neben
mir sitzen bei meinem eignen Feuer. Und ich will dich malen, immer
wieder malen, in dem Kleide des Vorfrühlings, am Strand, im Haus,
im Mond, im Wasser, am Feuer. Und alle sollen sagen: das ist das
glücklichste Mädchen von Katata. Sie ist auf allen Bildern im
Vorfrühling gemalt, zur warmen Abendstunde, in der man den Flug
der Wildgänse erwartet und verliebt sagt, auch wenn niemand redet:
Still! Sie kommen!»
Da wickelte Graswürzelein ihre Hände aus den Ärmeln und
umschlang Oizo.

Von Ishiyama den
Herbstmond aufgehen
sehen
Unter den zehn Teehausmädchen im Teehaus von Ishiyama war
«Hasenauge» eines der unscheinbarsten. Sie war nicht feurig, sie
tanzte auch nicht sehr lebendig, sie schminkte sich unordentlich und
trug die vier Schleppen ihrer vier Seidenkleider nicht in der richtigen
Abstufung übereinander. Aber sie konnte Geschichten erzählen,
kleine winzige Geschichten, die nur fünf Minuten dauerten, aber fünf
Tage zum Nachdenken gaben. Deshalb war sie in aller
Unscheinbarkeit eine Kostbarkeit für das Teehaus in Ishiyama.
«Hasenauge» kannte dreitausend Geschichten allein über den
aufgehenden Herbstmond, der, von Ishiyama gesehen, als eines der
herrlichsten Schauspiele über den Biwasee gilt.
Ich will drei dieser nachdenklichen Geschichten hier wiedererzählen,
die alle den Herbstmond von Ishiyama teils als Hauptperson, teils als
Hintergrund haben.
Stellt euch vor, wir hätten eben in einem der kleinen Gemächer, im
ersten Stock des Teehauses, auf den geglätteten Strohmatten des
Fußbodens, auf dünnen, nur fingerdicken seidenen Kissen an der

Diele Platz genommen. Die Schiebefenster zum See sind weit offen.
Hinter dem roten Lackgeländer der kleinen Veranda liegt die Seeflut,
wie ein Wasser, das bis ans Ende der Welt reicht. Zu beiden Seiten
der Fenster zischeln Wassereschen. Ihre Blätter sind in der
Abenddämmerung lang und schmal und flirren wie Libellenschwärme
vor dem perlmutterfarbigen Seeglanz.
Es liegen auch ein paar Hügellinien hinter den Bäumen, die sind im
Abend wie grünliche Glasglocken. Der Himmel ist spinnwebgrau und
scheint hinter einem Zipfel des Sees leicht zu brennen, wie wenn
man ein Streichholzflämmchen an einen Schleier hält. Die Helle
kommt vom aufgehenden Mond, den deine und viele Augen jetzt auf
den Altanen der Häuser von Ishiyama erwarten.
Vor dir auf der Diele stehen offene Lackschachteln. In diesen sind
gebackene Fische, Reis, Makronen, Wurzelgemüse und
Geflügelstücke soeben heiß vor uns aufgetischt. Elfenbeinerne
Eßstäbe liegen, wie lange Damenhutnadeln, daneben; und
Hasenauge, welche dir Gesellschaft leisten soll, verpflichtet sich, dir
eine ihrer Geschichten vom aufgehenden Mond zu erzählen, ehe das
Essen kalt ist, ehe sich der Essensdampf verflüchtigt hat und ehe die
große goldene Mondscheibe so hoch über den Seerand gestiegen ist,
daß sie die Seelinie losläßt. Dabei sollst du dazwischen von den zwei
Eßstäbchen, die sie ergreift, und aus der dünnen Porzellanschale, die
sie mit Reis und anderen Speisen füllt, von Hasenauge selbst wie ein
Kind immer mit ein paar Bissen gefüttert werden, und du bekommst
aus einer Fingerhuttasse Tee und aus einer Fingerhuttasse
Reisschnaps oder aus einem europäischen Glas japanisches Bier aus
einer Flasche eingegossen, von bayerischen Brauern in Tokio
gebraut. Vom Fenster kommt die Abendluft und der Fischgeruch des

Sees herein, aber der parfümierte Puder von Hasenauges
weißgetünchtem Gesicht ist stärker als der Seegeruch.
Hasenauge erzählt:
Der König hatte einst in Hakatate im Norden Japans einem Fischzug
beigewohnt, bei dem man unter anderen großen Fischen auch ein
Meerweib fing. Aber nicht eines jener guten Meerfräulein, die am
Strand mit den Fröschen und Unken singen, sondern ein
Tiefseeweib, das noch nie an der Wasseroberfläche gewesen war,
das nie Land, nie Sonne, Mond und Wolken gesehen hatte.
Das gefangene Meerweib hatte einen mächtigen Goldfischschweif
statt der Füße, ihr Haar war schwarz wie Schreibtusche und ihre
Augen rot wie Kaninchenaugen. Es war dem König geweissagt
worden, daß er drei Nächte ein Weib lieben müßte, das weder Sonne
noch Mond gesehen hätte. Deshalb war er zum Fischzug mit seinen
Leuten nach Hakatate ausgezogen, hatte besonders große Netze
auswerfen lassen, um ein Meerweib der Tiefsee zu fangen. Der
König wird sein Reich verlieren, wenn er ein solches Weib nicht drei
Tage lieben will, lautete eine alte Prophezeiung.
Aber damit, daß man das Weib gefangen hatte, war nicht die größte
Sorge vom König genommen. Jenes Weib, das ihn mit den roten
Augen scheinbar blind ansah, das mit dem roten Schweif um sich
schlug und ein paar Kähne des Königs zertrümmerte, jenes Weib,
das nicht sprechen, nicht lachen und nicht seufzen konnte, drei Tage
zu lieben, – dies war eine so heroische Aufgabe, daß sich alle, die
um den König waren, entsetzten.
Nur der König war ruhig, stellte sich am Ufer vor die Weisen seines
Landes hin und fragte:

«Wie weit reicht meine Macht?»
«Deine Macht, o Herr, reicht über Himmel, Erde und Wasser.»
«Über alles, was darinnen ist?» fragte der König.
«Über alles Männliche, was im Himmel, auf der Erde und im Wasser
ist», sagten die Weisen. «Nur das Weibliche läßt sich nicht
regieren.»
«Gut, dann soll der Mond, der dort aufgeht, untergehen», rief der
König. «Wenn ich allen gebieten kann, dann soll der Mond nie mehr
in meinem Reich erscheinen, ehe er mir geholfen hat, dieses
Fischweib hier in ein Menschenweib zu verwandeln.»
Der König ließ das Fischweib binden und in sein Zelt legen, ließ
Essen und Trinken in das Zelt stellen und ließ die Zeltvorhänge fest
hinter sich zuschließen, so daß es finster im Zelt war wie in der
Meerestiefe.
Die Weisen des Königs aber setzten sich mit des Königs
Mannschaften rings um das Zelt draußen und waren sicher, daß der
Mond nicht in dieser und in keiner Nacht mehr aufgehen werde.
Aber der Mond kam wie immer und teilte sanfte Schatten und gelben
Feuerschimmer über die Weisen und über das Zelt aus.
Der Mond kam auch in der zweiten Nacht und in der dritten Nacht.
Am Anfang der vierten Nacht rief der König drinnen im Zelt, man
solle die Zelttüren öffnen. Und der König trat heraus, und neben ihm
an seiner Hand ging ein gesittetes schönes Weib. Das hatte Augen,
so dunkel wie die mondleere Nacht, und hatte keinen Fischschweif,

sondern zierliche Füße und war frisiert und in seidene
Schleppenkleider gehüllt, wie es einer Königin geziemt.
Die Weisen waren erstaunt, daß der König ohne Hilfe des Mondes
das Seeweib in ein Menschenweib verwandelt hatte. Denn während
der Mond drei Nächte lang auf- und untergegangen war und sich
nicht um den Befehl des Königs gekümmert hatte, hatten die Weisen
drei Nächte lang für ihr Leben gezittert, weil sie des Königs Macht
übertrieben hatten und in dem König den Glauben an eine Allmacht
erweckt hatten, die er nicht besaß.
Jetzt aber waren die königlichen Weisen zufrieden, übertrieben des
Königs Macht noch mehr und sagten zungenfertig:
«O König, Eure Macht ist noch größer, als wir dachten. Ihr habt ohne
Hilfe des Mondes das Meerweib in ein Menschenweib verwandelt.»
Der König antwortete ihnen nicht, führte das Weib zu seinem Boot
und befahl, daß man die Segel lichte, um von Hakatate heim nach
Süden zur Königstadt zu ziehen und dort den Einzug der Königin zu
feiern.
Auf dem roten Lackaltan des goldenen Boothauses saß die neue
Königin schweigend neben dem König, sie, die noch keine Sonne
und keinen Mond hatte aufgehen sehen, sie, die von ihrem
Menschenleben nur die Liebesumarmungen des Königs kannte, sie,
die drei Nächte und drei Tage an des Königs Brust gelegen hatte
und, von des Königs Wunsch und Sehnsucht durchdrungen, aus
einem Meerweib in ein Menschenweib verwandelt worden war.
Ihre Haare hatten sich von selbst geflochten, um dem König zu
gefallen; in der Finsternis hatten sich Kleider um sie gewebt, damit

sie für den König geschmückt erscheine. Sie hatte sich aus ihrem
Fischleib Füße gebildet, um dem König folgen zu können, denn das
starke Herz des Königs hatte drei Nächte über ihr gelegen und hatte
sechzigmal in der Minute das Wort «Liebe» zu ihr gesagt.
Von der Liebe jetzt verwandelt, sah die Königin noch nicht das
schaukelnde Schiff und noch nicht des Königs Gefolge und noch
nicht sich selbst. Sie ahnte noch nichts von ihrer Verwandlung und
saß noch in liebestrunkenem Zustande unbewußt neben dem König.
Da tauchte, rot wie ein großer Berg aus rotem Lack, die Mondkugel
aus der Meerestiefe und zog im Wasser einen feuerroten Widerglanz
hinter sich her wie einen feuerroten Schweif.
Die Weisen des Königs, welche unter dem Altanrand des Boothauses
in der Bootstiefe saßen, hätten sich längst gerne bei der Königin
eingeschmeichelt, fanden aber noch keine passende Anrede. Jetzt
aber warf sich einer der Weisen vor dem König nieder und rief:
«Seht, Herr, der Mond trägt die Farbe der Scham, weil er zu schwach
war, Euch zu helfen.»
Nun hob die Königin die Augen, und der Mond warf seinen Schein
wie eine Umarmung über sie. Und der König wurde fast eifersüchtig,
daß jemand im Weltraum wagte, sein Weib anzurühren, das er sich
selbst geschaffen hatte.
Aber ein anderer Weiser, der den ersten überbieten wollte, warf sich
vor der Königin nieder und rief:
«Seht, der Mond, o Königin, hat, um Euch zu gefallen, den Fischleib
angezogen, den Ihr abgelegt habt. Er hat Euern roten Schweif und

Eure roten Augen angenommen, die der König in die Meerestiefe
schickte.»
Da ging über der Königin Gesicht ein zuckender Schreck; sie sah an
sich herab und wußte nicht, wer sie verwandelt hätte, und sie
erkannte sich als Menschenweib und schauderte über ihre
Verwandlung.
Der König wurde über die Rede des Weisen vor Zorn rot wie die
Mondscheibe.
Da warf sich rasch ein dritter Weiser vor ihm nieder, ihn und die
verwirrte Königin zu beschwichtigen:
«Nein, hoher Herr, hohe Herrin, das ist nicht der Mond, den Ihr dort
aufgehen seht. Das ist des Königs Herz, das nicht in des Königs
Brust, sondern in des Königs Reich wohnt, des Königs Nachtherz,
das abends rot aus dem Meere steigt, und das nur Euch gehört, o
Königin. Aber der König hat auch ein Tagherz. Das werdet Ihr
morgen früh sehen, o Königin. Das gehört uns, uns Weisen, denn es
ist hell wie die Weisheit selbst und teilt Klarheit aus und nennt sich
die Sonne.»
Als dieser Weise so gesprochen hatte, daß ihn keiner mehr
überbieten konnte, zog er sich selbstzufrieden mit den andern in die
Bootstiefe zurück. Dort saßen sie in langer Reihe, jeder mit dem
Kopf auf der Schulter des andern und schliefen ein.
Der König aber legte seine Brust an die Brust der Königin, und
während das Schiff mit gespannten Segeln durch die Nacht strich,
nach Süden, umarmte der König die Königin wie ein brünstiger Adler.

Das Meer aber zischte und raschelte, als wären die Wellen bis an
den Weltrand des Königs Flügel, und als schlügen sie laut an den
Himmel, während der König die Königin umschlungen hielt.
Gegen Morgen wurde das Meer still. Der König schlummerte ein, und
seine Arme ließen im Schlaf die Königin los. Diese richtete sich auf,
als eben der Mond gelblich-grau vom Himmelsbogen herabstieg und
im Meer verschwinden wollte.
Da des Königs Augen geschlossen waren und er schlief, erkannte ihn
die Königin nicht mehr, denn sie hatte nie einen schlafenden
Menschen gesehen. Weil auch die Weisen unten im Schiff sich nicht
rührten und die Bootswachen lautlos unter dem Mast kauerten,
glaubte sich die Königin ganz allein und verlassen. Und sie sprach
zum Monde, der schon zur Hälfte im Meer versunken war, und den
sie für des Königs Herz hielt:
«O, Nachtherz, das mir gehört, ich will nicht des Königs zweites Herz
erwarten, das den andern gehört. Ich will bei dir bleiben und mit dir
gehen, wohin du gehst.»
Die Königin stand auf, trat an den Bootrand und ließ sich ins Meer
fallen und verschwand in der Flut. Als der König die Königin am
Morgen nicht fand, versuchten ihn die Weisen mit ihrer Weisheit zu
trösten und sagten:
«Die Prophezeiung lautete, o König, du solltest ein Meerweib drei
Tage und drei Nächte lieben, aber nicht eine vierte Nacht dazu.»
Doch der König war erschüttert von Trauer und wild und aufgebracht
von Verzweiflung über die Torheit der Weisen, die ihn nicht einen
König hatten sein lassen, sondern ihn zu einem Gott hatten machen

wollen. Denn ihm war klar: es hatte der Königin vor dem Tageslicht
gegraut, das sie einsam machen sollte, weil die Weisen gesagt
hatten, das Tagesherz des Königs gehöre nur der Weisheit und nicht
der Liebe.
Eine furchtbare Wut überfiel den verlassenen Mann. Er riß mit einer
Faust die Segel von den Tauen und wollte mit der andern Faust den
Mastbaum ausreißen, um alle Weisen damit zu erschlagen.
Diese aber, erschrocken, heuchelten Demut und riefen:
«O Herr, die Königin wird wiederkommen, wenn Ihr es befehlt,
sobald der Mond heute abend aufsteigt. Ehe Ihr uns jetzt ungerecht
umbringt, wartet wenigstens mit Eurem Urteil über uns bis zum
Abend. Kommt die Königin nicht mit dem aufgehenden Mond, so
könnt Ihr uns immer noch töten.»
Mit solchen Worten schläferten sie des Königs Wut ein, denn sein
Schmerz war größer als sein Zorn. Und als er hörte, daß die Königin
vielleicht am Abend wiederkommen könnte, glaubte er daran, wie
jeder Liebende gern an Wunder glaubt. Und er hoffte, die Königin
würde vielleicht als Fischweib am Abend wiederkommen und sich
von ihm wieder in ein Menschenweib verwandeln lassen, wenn der
Mond aufginge.
In der Mittaghitze, als die Sonne aus dem Meer und aus dem
Himmel zugleich brannte und der König auf einem Haufen Segeltuch
am Bootrand einschlief, schlichen sich die schlauen Weisen seines
Landes an den Schlafenden heran und stießen den Haufen Segeltuch
samt dem schlafenden König ins Meer. Denn alle hatten beratschlagt,
daß sie den wütenden König noch vor Abend töten müßten, um nicht
selbst getötet zu werden.

Als die Sonne den König nicht mehr auf dem Deck sah, stieg sie
früher als sonst von der Mastspitze herunter, und verwundert sahen
die Weisen, daß der Tag schneller zu Ende war als je. In dieser
Nacht warteten sie vergeblich auf den Mond. Es war kein
Mondaufgang, und es schien eine endlose Nacht angebrochen zu
sein; denn die Sonne ging auch nicht mehr auf zu der Zeit, da sie
erwartet wurde.
Danach verwirrte sich die Weisheit in allen ihren Hirnen; die Weisen
des Landes hatten die Liebe im Reich umgebracht, und mit der Liebe
blieben Sonne und Mond aus dem Reich verschwunden. Denn die
Liebe ist allmächtiger als die Weisheit. Alle, die im Boot waren,
wurden wahnsinnig und stürzten sich ins Meer, dem toten König
nach. –
So erzählte Hasenauge. Und bei den letzten Worten deutete sie mit
den Eßstäbchen, mit denen sie dich bei der Unterhaltung gefüttert
hatte, hinaus auf den Biwasee. Umgeben von einem gelben
Dunstkreis, als hätte er einen gelben Ährenkranz auf dem Kopf,
stand der Vollmondgott draußen am Fenster und trat seinen
Rundgang an.
Wenn du dann aus dem Teehaus heimgehst, kann es einem Neuling,
der Hasenauge zum erstenmal erzählen hörte, vorkommen, daß er
mit dem Mond in Streit gerät. Der Mond stellt sich quer über den
Weg und fragt ihn:
«Nun, hat dir wirklich Hasenauge während meines Aufgangs zwölf
Geschichten erzählt?»
Zuerst sagst du ja. Du besinnst dich nicht, rechnest nicht nach und
sagst: Ja, zwölf.

Der Mond lacht stolz über Ishiyama und freut sich.
Nach einer Weile rufst du den Mond, hinter einer Hausecke, an den
Weg hervor und sagst:
«Es war nur eine Geschichte, aber es klang wie zwölf.»
Da lächelt der Mond noch stolzer und freut sich noch mehr über
Ishiyama.
Und wieder nach einer Weile, ehe du in dein Haus trittst, fragst du
den Mond an der Türschwelle:
«Sag mal, wie kommt das, daß Fräulein Hasenauge dreitausend
Geschichten allein vom Mondaufgang über Ishiyama erzählen kann?
Kommt es daher, daß du nirgends so schön wie am Biwasee
aufgehst? Ich glaube, du bist Fräulein Hasenauges Geliebter.»
Da rascheln alle Eschenbäume im Mond, und sie fragen dich:
«Hat dir Fräulein Hasenauge heute ihre dreitausend Geschichten
erzählt?»
«Ja, ungefähr dreitausend», antwortest du, ohne dich zu besinnen.
Und am nächsten Abend geht der Mond über dem Biwasee bei
Ishiyama noch geschichtenreicher auf als sonst. –
«Liebe und der aufgehende Mond machen das Haar wachsen.
Darüber will ich dir gleich eine Geschichte erzählen», sagte
Hasenauge zu mir und reichte mir ein Schälchen frischen Tee und
einen großen Brocken Pfefferminzzucker dazu und drückte mir eine
kleine Prise frischen Tabak in die kleine silberne Tabakpfeife. –

Als einer der schönsten Tempel in Kioto gebaut werden sollte,
erwiesen sich alle Stricke, die den bronzenen Dachfirst auf die
Gerüste hinaufwinden sollten, als zu schwach. Darum entschlossen
sich alle die Tausende von Frauen in Kioto, dem Tempel ein Opfer zu
bringen und ihr Haar dicht am Kopf abschneiden zu lassen, damit
daraus Stricke für den Tempelbau gedreht würden. Es wurde auch
wirklich ein dreihundert Meter langer Haarstrick aus den geopferten
Haaren gedreht, und dieser schwarze Strick, der die Dicke eines
Männerarms hat, wird noch heute in einer Lacktonne im Tempel von
Kioto aufbewahrt.
Die Frau eines japanischen Adligen, die auch ihr Haar zum
Tempelopfer abgeschnitten hatte, und die in jener Zeit schwanger
war und nahe vor der Stunde des Gebärens stand, erschrak so sehr,
als sie sich im Handspiegel sah und ihr Kopf ihr kahlrasiert
entgegenglänzte, daß sie sich der Tränen nicht erwehren konnte.
Die Tempelgötter nahmen die Schwachheit dieser Frau übel und
straften sie an dem Kinde, das sie gebar. Sie schenkten ihr ein
kleines Mädchen, aber diesem wuchs nicht ein einziges Haar auf
dem Kopf; und wie eine Elfenbeinkugel so glatt, weiß und haarlos
blieb die Schädelschale des Kindes.
Die Frauen von Kioto, denen allen daran gelegen war, daß ihr Haar
bald wieder wüchse, und die wußten, daß der zunehmende Vollmond
den Haarwuchs beschleunigt, taten sich zu Vollmondprozessionen
zusammen und wallfahrteten in langen Zügen im Mondschein zu den
verschiedenen Kiototempeln.
Jene adelige Dame nahm zu jenen Nachtprozessionen ihr kleines
Mädchen mit, in der Hoffnung, der Mond würde dem Kind Haare
wachsen lassen. Aber die Prozessionen nützten nichts, und die

Mutter war gezwungen, dem Kind Perücken machen zu lassen. Das
Mädchen wurde damals von allen Leuten in Kioto «Mondköpfchen»
genannt, weil es so kahl war wie der Vollmond.
Als Mondköpfchen verheiratet wurde, wußte der junge Mann, der sie
zur Frau nahm, daß er eine kahlköpfige Frau heiratete. Aber es lag
ihm nichts daran, denn er hatte Mondköpfchen immer in schöner
gutsitzender Perücke gesehen. Und er hatte sich keine Gedanken
darüber gemacht, wie eine kahlköpfige Frau ohne Perücke aussehen
kann.
Die Hochzeitsnacht verlief, wie die meisten Hochzeitsnächte, für die
beiden Neuvermählten mit geschlossenen Augen, und das
Liebesglück ward nicht gestört.
Aber schon in der zweiten Nacht verschob der junge Ehemann erst
zufällig, dann scherzend Mondköpfchens schwarze Perücke. Er
spaßte und schob sie ihr bald auf das linke Ohr, bald auf das rechte,
bald auf die Nase, bald auf den Nacken zurück, und er kollerte sich
neben seiner jungen Frau vor Lachen. Immer, wenn die Frau ernst
und liebend ihre Arme ausbreitete, juckte den Mann ein Kobold an
den Fingern, so daß er der Perücke erst jedesmal einen kleinen Puff
gab, ehe er seine Frau in die Arme schloß.
Dieses geschah in der zweiten Nacht. Aber in der dritten war es
überhaupt nicht mehr zum Aushalten. Der junge Mann setzte sich
selbst die Perücke auf, so daß die Frau böse wurde, nicht mehr im
Zimmer bleiben wollte und sich auf den Altan setzte. Es war dunkel
draußen, und er lief ihr mit einem Licht nach. Als er sie perückenlos
mit helleuchtendem Schädel am Altanrand sitzen sah, prustete er vor
Lachen, kollerte ins Zimmer zurück und rief:

«Ich habe den Vollmond geheiratet.»
Bisher hatte Mondköpfchen ihren Namen immer harmlos
hingenommen und sich nie darüber erschreckt. Aber nun brach sie in
Weinen aus.
Am dritten Tage nach der Hochzeit ist es in Japan Sitte, daß die Frau
ihre Eltern besucht. Mondköpfchen ließ sich am nächsten Morgen in
einer Sänfte in ihr Vaterhaus tragen, weinte sich bei ihrem Vater und
ihrer Mutter aus und wollte nicht mehr zu dem Mann zurückkehren,
der mit ihrer Perücke spielte und statt der Liebe Gelächter über sie
ausschüttete.
Aber Vater und Mutter überredeten Mondköpfchen, wieder zu ihrem
Mann zurückzukehren, und versprachen, alles daran zu setzen, ein
Mittel ausfindig zu machen, damit ihre Haare wüchsen. Sie sollte sich
nur noch eine kurze Wartezeit auferlegen.
Mondköpfchens Eltern hatten diesen Rat nur aus Verzweiflung
gegeben und mußten jetzt selbst weinen, als ihr Kind zu seinem
Mann zurückgekehrt war; sie waren ratlos.
Plötzlich sagte die alte Frau zu ihrem Mann:
«Ich weiß, womit ich die Götter jetzt versöhnen kann. Ich will mein
Haar zum zweitenmal abschneiden und es den Tempelgöttern
opfern. Die Götter sind gut und geben mir dann sicher einen Rat für
unser Kind.»
Die Frau tat so und trug ihr ergrautes abgeschnittenes Haar, zu einer
kleinen Schnur geflochten, in den Tempel der tausendhändigen

Kwannon und band dort die Haarschnur um das goldene Handgelenk
der tausendfach segenspendenden Göttin.
Die Götter versöhnten sich danach mit ihr und gaben ihr in der
Nacht einen Rat. Die Frau hörte im Traum eine Stimme, die sagte:
«Liebe und Vollmond lassen die Haare wachsen. Schicke dein Kind
nach Ishiyama. Wenn es dort den Herbstmond aufgehen sieht,
werden Liebe und Mond deinem Kind ein schönes Haar schenken.»
Die Mutter erzählte den Traum ihrer Tochter, und Mondköpfchen
glaubte begeistert an die Weissagung. Und Mondköpfchens Mann,
der immer noch lachte, sagte wenig rücksichtsvoll zu seiner jungen
Frau:
«Reise nur nach dem Biwasee und laß dir dort Haare wachsen. Ich
muß mich hier inzwischen von dem Nachtgelächter erholen.»
Mondköpfchen reiste an den Biwasee.
Im aufgehenden Mondschein sahen die Bewohner von Ishiyama die
kahlköpfige junge Frau auf dem Balkon des Rasthauses sitzen, wo
Mondköpfchen Wohnung genommen hatte. Die frommen Bewohner
des Seeortes nannten sie nur die elfenbeinerne Heilige, weil ihr
haarloser Kopf wie vergilbtes altes Elfenbein in der
Abenddämmerung leuchtete. Viele lenkten abends vom See her ihre
Kähne am Rasthaus vorbei, um die bleiche, stille Frau auf dem Altan
unter den Sykomorenbäumen sitzen zu sehen, und jeder, der sie
sah, dachte sich eine Geschichte über sie aus.
Ein junger Adliger, der ein Landhaus in der Nähe von Ishiyama hatte,
hörte durch seine Leute von der fremden Frau, die Abend für Abend

Welcome to our website – the perfect destination for book lovers and
knowledge seekers. We believe that every book holds a new world,
offering opportunities for learning, discovery, and personal growth.
That’s why we are dedicated to bringing you a diverse collection of
books, ranging from classic literature and specialized publications to
self-development guides and children's books.
More than just a book-buying platform, we strive to be a bridge
connecting you with timeless cultural and intellectual values. With an
elegant, user-friendly interface and a smart search system, you can
quickly find the books that best suit your interests. Additionally,
our special promotions and home delivery services help you save time
and fully enjoy the joy of reading.
Join us on a journey of knowledge exploration, passion nurturing, and
personal growth every day!
ebookbell.com