SlidePub
Home
Categories
Login
Register
Home
Science
Biology in Focus - Chapter 6
Biology in Focus - Chapter 6
mpattani
25,764 views
96 slides
Oct 01, 2015
Slide
1
of 96
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
About This Presentation
Biology in Focus - Chapter 6 - Introduction to Metabolism
Size:
4.15 MB
Language:
en
Added:
Oct 01, 2015
Slides:
96 pages
Slide Content
Slide 1
CAMPBELL BIOLOGY IN FOCUS
© 2014 Pearson Education, Inc.
Urry • Cain • Wasserman • Minorsky • Jackson • Reece
Lecture Presentations by
Kathleen Fitzpatrick and Nicole Tunbridge
6
An Introduction
to Metabolism
Slide 2
Overview: The Energy of Life
The living cell is a miniature chemical factory where
thousands of reactions occur
The cell extracts energy and applies energy to
perform work
Some organisms even convert energy to light, as in
bioluminescence
© 2014 Pearson Education, Inc.
Slide 3
© 2014 Pearson Education, Inc.
Figure 6.1
Slide 4
Concept 6.1: An organism’s metabolism
transforms matter and energy
Metabolism is the totality of an organism’s chemical
reactions
Metabolism is an emergent property of life that
arises from interactions between molecules within
the cell
© 2014 Pearson Education, Inc.
Slide 5
Metabolic Pathways
A metabolic pathway begins with a specific
molecule and ends with a product
Each step is catalyzed by a specific enzyme
© 2014 Pearson Education, Inc.
Slide 6
© 2014 Pearson Education, Inc.
Figure 6.UN01
Enzyme 1
Starting
molecule
Enzyme 2 Enzyme 3
Reaction 1 Reaction 2 Reaction 3
ProductDCBA
Slide 7
Catabolic pathways release energy by breaking
down complex molecules into simpler compounds
Cellular respiration, the breakdown of glucose in the
presence of oxygen, is an example of a pathway of
catabolism
© 2014 Pearson Education, Inc.
Slide 8
Anabolic pathways consume energy to build
complex molecules from simpler ones
The synthesis of protein from amino acids is an
example of anabolism
Bioenergetics is the study of how organisms
manage their energy resources
© 2014 Pearson Education, Inc.
Slide 9
Forms of Energy
Energy is the capacity to cause change
Energy exists in various forms, some of which can
perform work
© 2014 Pearson Education, Inc.
Slide 10
Kinetic energy is energy associated with motion
Thermal energy is kinetic energy associated with
random movement of atoms or molecules
Heat is thermal energy in transfer from one object to
another
Potential energy is energy that matter possesses
because of its location or structure
© 2014 Pearson Education, Inc.
Slide 11
Chemical energy is potential energy available for
release in a chemical reaction
Energy can be converted from one form to another
© 2014 Pearson Education, Inc.
Animation: Energy Concepts
Slide 12
© 2014 Pearson Education, Inc.
Figure 6.2
A diver has more potential
energy on the platform.
A diver has less potential
energy in the water.
Diving converts
potential energy to
kinetic energy.
Climbing up converts the kinetic
energy of muscle movement
to potential energy.
Slide 13
The Laws of Energy Transformation
Thermodynamics is the study of energy
transformations
An isolated system, such as that approximated by
liquid in a thermos, is isolated from its surroundings
In an open system, energy and matter can be
transferred between the system and its surroundings
Organisms are open systems
© 2014 Pearson Education, Inc.
Slide 14
The First Law of Thermodynamics
According to the first law of thermodynamics, the
energy of the universe is constant
Energy can be transferred and transformed, but it
cannot be created or destroyed
The first law is also called the principle of
conservation of energy
© 2014 Pearson Education, Inc.
Slide 15
© 2014 Pearson Education, Inc.
Figure 6.3
(a) First law of thermodynamics(b) Second law of thermodynamics
Chemical
energy
Heat
Slide 16
© 2014 Pearson Education, Inc.
Figure 6.3a
(a) First law of thermodynamics
Chemical
energy
Slide 17
© 2014 Pearson Education, Inc.
Figure 6.3b
(b) Second law of thermodynamics
Heat
Slide 18
The Second Law of Thermodynamics
During every energy transfer or transformation,
some energy is unusable and is often lost as heat
According to the second law of thermodynamics
Every energy transfer or transformation increases the
entropy of the universe
Entropy is a measure of disorder, or randomness
© 2014 Pearson Education, Inc.
Slide 19
Living cells unavoidably convert organized forms of
energy to heat
Spontaneous processes occur without energy
input; they can happen quickly or slowly
For a process to occur without energy input, it must
increase the entropy of the universe
© 2014 Pearson Education, Inc.
Slide 20
Biological Order and Disorder
Cells create ordered structures from less ordered
materials
Organisms also replace ordered forms of matter and
energy with less ordered forms
Energy flows into an ecosystem in the form of light
and exits in the form of heat
© 2014 Pearson Education, Inc.
Slide 21
© 2014 Pearson Education, Inc.
Figure 6.4
Slide 22
© 2014 Pearson Education, Inc.
Figure 6.4a
Slide 23
© 2014 Pearson Education, Inc.
Figure 6.4b
Slide 24
The evolution of more complex organisms does not
violate the second law of thermodynamics
Entropy (disorder) may decrease in an organism, but
the universe’s total entropy increases
Organisms are islands of low entropy in an
increasingly random universe
© 2014 Pearson Education, Inc.
Slide 25
Concept 6.2: The free-energy change of a reaction
tells us whether or not the reaction occurs
spontaneously
Biologists want to know which reactions occur
spontaneously and which require input of energy
To do so, they need to determine energy changes
that occur in chemical reactions
© 2014 Pearson Education, Inc.
Slide 26
Free-Energy Change (DG), Stability, and
Equilibrium
A living system’s free energy is energy that can do
work when temperature and pressure are uniform,
as in a living cell
© 2014 Pearson Education, Inc.
Slide 27
The change in free energy (∆G) during a chemical
reaction is the difference between the free energy of
the final state and the free energy of the initial state
∆G = G
final state
– G
initial state
Only processes with a negative ∆G are spontaneous
Spontaneous processes can be harnessed to
perform work
© 2014 Pearson Education, Inc.
Slide 28
Free energy is a measure of a system’s instability,
its tendency to change to a more stable state
During a spontaneous change, free energy
decreases and the stability of a system increases
At equilibrium, forward and reverse reactions occur
at the same rate; it is a state of maximum stability
A process is spontaneous and can perform work
only when it is moving toward equilibrium
© 2014 Pearson Education, Inc.
Slide 29
© 2014 Pearson Education, Inc.
Figure 6.5
(a) Gravitational
motion
(c) Chemical
reaction
(b) Diffusion
•More free energy (higher G)
•Less stable
•Greater work capacity
•Less free energy (lower G)
•More stable
•Less work capacity
In a spontaneous change
•The free energy of the
system decreases (DG < 0)
•The system becomes more
stable
•The released free energy can
be harnessed to do work
Slide 30
© 2014 Pearson Education, Inc.
Figure 6.5a
•More free energy (higher G)
•Less stable
•Greater work capacity
•Less free energy (lower G)
•More stable
•Less work capacity
In a spontaneous change
•The free energy of the
system decreases (DG < 0)
•The system becomes more
stable
•The released free energy can
be harnessed to do work
Slide 31
© 2014 Pearson Education, Inc.
Figure 6.5b
(a) Gravitational
motion
(c) Chemical
reaction
(b) Diffusion
Slide 32
Free Energy and Metabolism
The concept of free energy can be applied to the
chemistry of life’s processes
© 2014 Pearson Education, Inc.
Slide 33
Exergonic and Endergonic Reactions in
Metabolism
An exergonic reaction proceeds with a net release
of free energy and is spontaneous; ∆G is negative
The magnitude of ∆G represents the maximum
amount of work the reaction can perform
© 2014 Pearson Education, Inc.
Slide 34
© 2014 Pearson Education, Inc.
Figure 6.6
(a) Exergonic reaction: energy released, spontaneous
(b) Endergonic reaction: energy required,
nonspontaneous
Amount of
energy
released
(DG < 0)
Amount of
energy
required
(DG > 0)
Reactants
Products
Energy
Progress of the reaction
Reactants
Products
Energy
Progress of the reaction
F
r
e
e
e
n
e
r
g
y
F
r
e
e
e
n
e
r
g
y
Slide 35
© 2014 Pearson Education, Inc.
Figure 6.6a
(a) Exergonic reaction: energy released, spontaneous
Amount of
energy
released
(DG < 0)
Reactants
Products
Energy
Progress of the reaction
F
r
e
e
e
n
e
r
g
y
Slide 36
© 2014 Pearson Education, Inc.
Figure 6.6b
(b) Endergonic reaction: energy required,
nonspontaneous
Amount of
energy
required
(DG > 0)
Reactants
Products
Energy
Progress of the reaction
F
r
e
e
e
n
e
r
g
y
Slide 37
An endergonic reaction absorbs free energy from
its surroundings and is nonspontaneous; ∆G is
positive
The magnitude of ∆G is the quantity of energy
required to drive the reaction
© 2014 Pearson Education, Inc.
Slide 38
Equilibrium and Metabolism
Reactions in a closed system eventually reach
equilibrium and then do no work
Cells are not in equilibrium; they are open systems
experiencing a constant flow of materials
A defining feature of life is that metabolism is never
at equilibrium
© 2014 Pearson Education, Inc.
Slide 39
A catabolic pathway in a cell releases free energy in
a series of reactions
Closed and open hydroelectric systems can serve as
analogies
© 2014 Pearson Education, Inc.
Slide 40
© 2014 Pearson Education, Inc.
Figure 6.7
(a) An isolated hydroelectric system
DG < 0
DG < 0
DG = 0
DG < 0
DG < 0
DG < 0
(c) A multistep open hydroelectric system
(b) An open
hydroelectric
system
Slide 41
© 2014 Pearson Education, Inc.
Figure 6.7a
(a) An isolated hydroelectric system
DG < 0 DG = 0
Slide 42
© 2014 Pearson Education, Inc.
Figure 6.7b
DG < 0
(b) An open
hydroelectric
system
Slide 43
© 2014 Pearson Education, Inc.
Figure 6.7c
DG < 0
DG < 0
DG < 0
(c) A multistep open hydroelectric system
Slide 44
Concept 6.3: ATP powers cellular work by coupling
exergonic reactions to endergonic reactions
A cell does three main kinds of work
Chemical
Transport
Mechanical
© 2014 Pearson Education, Inc.
Slide 45
To do work, cells manage energy resources by
energy coupling, the use of an exergonic process
to drive an endergonic one
Most energy coupling in cells is mediated by ATP
© 2014 Pearson Education, Inc.
Slide 46
The Structure and Hydrolysis of ATP
ATP (adenosine triphosphate) is composed of
ribose (a sugar), adenine (a nitrogenous base), and
three phosphate groups
In addition to its role in energy coupling, ATP is also
used to make RNA
© 2014 Pearson Education, Inc.
Video: ATP Space-filling Model
Video: ATP Stick Model
Slide 47
© 2014 Pearson Education, Inc.
Figure 6.8
(a) The structure of ATP
Phosphate groups
(b) The hydrolysis of ATP
Adenine
Ribose
Energy
Adenosine triphosphate (ATP)
Adenosine diphosphate (ADP)
Inorganic
phosphate
Slide 48
© 2014 Pearson Education, Inc.
Figure 6.8a
(a) The structure of ATP
Phosphate groups
Adenine
Ribose
Slide 49
© 2014 Pearson Education, Inc.
Figure 6.8b
(b) The hydrolysis of ATP
Energy
Adenosine triphosphate (ATP)
Adenosine diphosphate (ADP)
Inorganic
phosphate
Slide 50
The bonds between the phosphate groups of ATP
can be broken by hydrolysis
Energy is released from ATP when the terminal
phosphate bond is broken
This release of energy comes from the chemical
change to a state of lower free energy, not from the
phosphate bonds themselves
© 2014 Pearson Education, Inc.
Slide 51
How the Hydrolysis of ATP Performs Work
The three types of cellular work (mechanical,
transport, and chemical) are powered by the
hydrolysis of ATP
In the cell, the energy from the exergonic reaction of
ATP hydrolysis can be used to drive an endergonic
reaction
Overall, the coupled reactions are exergonic
© 2014 Pearson Education, Inc.
Slide 52
© 2014 Pearson Education, Inc.
Figure 6.9
(a) Glutamic acid conversion to glutamine
Glutamic acid
DG
Glu
= +3.4 kcal/mol
Glutamine
(b) Conversion reaction coupled with ATP hydrolysis
(c) Free-energy change for coupled reaction
Ammonia
Glutamic acid GlutaminePhosphorylated
intermediate
DG
Glu
= +3.4 kcal/mol
DG
ATP
= −7.3 kcal/mol
DG
Glu
= +3.4 kcal/mol
DG
ATP
= −7.3 kcal/mol +
DG = −3.9 kcal/mol Net
Slide 53
© 2014 Pearson Education, Inc.
Figure 6.9a
(a) Glutamic acid conversion to glutamine
Glutamic acid
DG
Glu
= +3.4 kcal/mol
GlutamineAmmonia
Slide 54
© 2014 Pearson Education, Inc.
Figure 6.9b
(b) Conversion reaction coupled with ATP hydrolysis
Glutamic acid
GlutaminePhosphorylated
intermediate
Phosphorylated
intermediate
Slide 55
© 2014 Pearson Education, Inc.
Figure 6.9c
(c) Free-energy change for coupled reaction
DG
Glu
= +3.4 kcal/mol
DG
ATP
= −7.3 kcal/mol
DG
Glu
= +3.4 kcal/mol
DG
ATP
= −7.3 kcal/mol +
DG = −3.9 kcal/mol Net
Slide 56
ATP drives endergonic reactions by phosphorylation,
transferring a phosphate group to some other
molecule, such as a reactant
The recipient molecule is now called a
phosphorylated intermediate
ATP hydrolysis leads to a change in a protein’s
shape and often its ability to bind to another
molecule
© 2014 Pearson Education, Inc.
Slide 57
© 2014 Pearson Education, Inc.
Figure 6.10
(a) Transport work: ATP phosphorylates transport proteins.
(b) Mechanical work: ATP binds noncovalently to motor proteins
and then is hydrolyzed.
Transport protein
Solute transported
Solute
Motor protein
Vesicle Cytoskeletal track
Protein and
vesicle moved
Slide 58
The Regeneration of ATP
ATP is a renewable resource that is regenerated by
addition of a phosphate group to adenosine
diphosphate (ADP)
•The energy to phosphorylate ADP comes from
catabolic reactions in the cell
•The ATP cycle is a revolving door through which
energy passes during its transfer from catabolic to
anabolic pathways
© 2014 Pearson Education, Inc.
Slide 59
© 2014 Pearson Education, Inc.
Figure 6.11
Energy from
catabolism
(exergonic, energy-
releasing processes)
Energy for cellular
work (endergonic,
energy-consuming
processes)
Slide 60
Concept 6.4: Enzymes speed up metabolic reactions
by lowering energy barriers
A catalyst is a chemical agent that speeds up a
reaction without being consumed by the reaction
An enzyme is a catalytic protein
Hydrolysis of sucrose by the enzyme sucrase is an
example of an enzyme-catalyzed reaction
© 2014 Pearson Education, Inc.
Slide 61
© 2014 Pearson Education, Inc.
Figure 6.UN02
Sucrase
Sucrose
(C
12
H
22
O
11
)
Fructose
(C
6
H
12
O
6
)
Glucose
(C
6
H
12
O
6
)
Slide 62
The Activation Energy Barrier
Every chemical reaction between molecules involves
bond breaking and bond forming
The initial energy needed to start a chemical reaction
is called the free energy of activation, or activation
energy (E
A
)
Activation energy is often supplied in the form of
thermal energy that the reactant molecules absorb
from their surroundings
© 2014 Pearson Education, Inc.
Slide 63
© 2014 Pearson Education, Inc.
Figure 6.12
Transition state
Reactants
Progress of the reaction
Products
DG < 0
F
r
e
e
e
n
e
r
g
y
A
A
A
B
C
D
B
B
C
D
C D
E
A
Slide 64
Enzymes catalyze reactions by lowering the E
A
barrier
Enzymes do not affect the change in free energy
(∆G); instead, they hasten reactions that would
occur eventually
How Enzymes Speed Up Reactions
© 2014 Pearson Education, Inc.
Animation: How Enzymes Work
Slide 65
© 2014 Pearson Education, Inc.
Figure 6.13
Products
DG is unaffected
by enzyme
Reactants
Progress of the reaction
F
r
e
e
e
n
e
r
g
y
E
A
with
enzyme
is lower
E
A
without
enzyme
Course of
reaction
without
enzyme
Course of
reaction
with enzyme
Slide 66
Substrate Specificity of Enzymes
The reactant that an enzyme acts on is called the
enzyme’s substrate
The enzyme binds to its substrate, forming an
enzyme-substrate complex
The active site is the region on the enzyme where
the substrate binds
Enzyme specificity results from the complementary fit
between the shape of its active site and the substrate
shape
© 2014 Pearson Education, Inc.
Slide 67
Enzymes change shape due to chemical
interactions with the substrate
This induced fit of the enzyme to the substrate
brings chemical groups of the active site into
positions that enhance their ability to catalyze the
reaction
© 2014 Pearson Education, Inc.
Video: Enzyme Induced Fit
Slide 68
© 2014 Pearson Education, Inc.
Figure 6.14
Enzyme-substrate
complex
Enzyme
Substrate
Active site
Slide 69
Catalysis in the Enzyme’s Active Site
In an enzymatic reaction, the substrate binds to the
active site of the enzyme
The active site can lower an E
A
barrier by
Orienting substrates correctly
Straining substrate bonds
Providing a favorable microenvironment
Covalently bonding to the substrate
© 2014 Pearson Education, Inc.
Slide 70
© 2014 Pearson Education, Inc.
Figure 6.15-1
Substrates
Enzyme-substrate
complex
Substrates are
held in active site by
weak interactions.
Substrates enter
active site.
2
1
Slide 71
© 2014 Pearson Education, Inc.
Figure 6.15-2
Substrates
Substrates are
converted to
products.
Enzyme-substrate
complex
Substrates are
held in active site by
weak interactions.
Substrates enter
active site.
3
2
1
Slide 72
© 2014 Pearson Education, Inc.
Figure 6.15-3
Substrates
Substrates are
converted to
products.
Products are
released.
Products
Enzyme-substrate
complex
Substrates are
held in active site by
weak interactions.
Substrates enter
active site.
4
3
2
1
Slide 73
© 2014 Pearson Education, Inc.
Figure 6.15-4
Substrates
Enzyme
Substrates are
converted to
products.
Products are
released.
Products
Enzyme-substrate
complex
Substrates are
held in active site by
weak interactions.
Substrates enter
active site.
Active
site is
available
for new
substrates.
5
4
3
2
1
Slide 74
Effects of Local Conditions on Enzyme Activity
An enzyme’s activity can be affected by
General environmental factors, such as
temperature and pH
Chemicals that specifically influence the enzyme
© 2014 Pearson Education, Inc.
Slide 75
Effects of Temperature and pH
Each enzyme has an optimal temperature in which
it can function
Each enzyme has an optimal pH in which it can
function
Optimal conditions favor the most active shape for
the enzyme molecule
© 2014 Pearson Education, Inc.
Slide 76
© 2014 Pearson Education, Inc.
Figure 6.16
Temperature (°C)
Optimal temperature for
enzyme of thermophilic
(heat-tolerant)
bacteria (77°C)
Optimal temperature for
typical human enzyme
(37°C)
Optimal pH for pepsin
(stomach
enzyme)
Optimal pH for trypsin
(intestinal
enzyme)
(a) Optimal temperature for two enzymes
(b) Optimal pH for two enzymes
pH
120100806040200
91086420 7531
R
a
t
e
o
f
r
e
a
c
t
i
o
n
R
a
t
e
o
f
r
e
a
c
t
i
o
n
Slide 77
© 2014 Pearson Education, Inc.
Figure 6.16a
Temperature (°C)
Optimal temperature for
enzyme of thermophilic
(heat-tolerant)
bacteria (77°C)
Optimal temperature for
typical human enzyme
(37°C)
(a) Optimal temperature for two enzymes
120100806040200
R
a
t
e
o
f
r
e
a
c
t
i
o
n
Slide 78
© 2014 Pearson Education, Inc.
Figure 6.16b
Optimal pH for pepsin
(stomach
enzyme)
Optimal pH for trypsin
(intestinal
enzyme)
(b) Optimal pH for two enzymes
pH
91086420 7531
R
a
t
e
o
f
r
e
a
c
t
i
o
n
Slide 79
Cofactors
Cofactors are nonprotein enzyme helpers
Cofactors may be inorganic (such as a metal in ionic
form) or organic
An organic cofactor is called a coenzyme
Coenzymes include vitamins
© 2014 Pearson Education, Inc.
Slide 80
Enzyme Inhibitors
Competitive inhibitors bind to the active site of an
enzyme, competing with the substrate
Noncompetitive inhibitors bind to another part of
an enzyme, causing the enzyme to change shape
and making the active site less effective
Examples of inhibitors include toxins, poisons,
pesticides, and antibiotics
© 2014 Pearson Education, Inc.
Slide 81
© 2014 Pearson Education, Inc.
Figure 6.17
(b) Competitive inhibition(c) Noncompetitive
inhibition
(a) Normal binding
Competitive
inhibitor
Noncompetitive
inhibitor
Substrate
Enzyme
Active site
Slide 82
The Evolution of Enzymes
Enzymes are proteins encoded by genes
Changes (mutations) in genes lead to changes in
amino acid composition of an enzyme
Altered amino acids in enzymes may alter their
substrate specificity
Under new environmental conditions a novel form of
an enzyme might be favored
© 2014 Pearson Education, Inc.
Slide 83
Concept 6.5: Regulation of enzyme activity helps
control metabolism
Chemical chaos would result if a cell’s metabolic
pathways were not tightly regulated
A cell does this by switching on or off the genes that
encode specific enzymes or by regulating the
activity of enzymes
© 2014 Pearson Education, Inc.
Slide 84
Allosteric Regulation of Enzymes
Allosteric regulation may either inhibit or stimulate
an enzyme’s activity
Allosteric regulation occurs when a regulatory
molecule binds to a protein at one site and affects
the protein’s function at another site
© 2014 Pearson Education, Inc.
Slide 85
Allosteric Activation and Inhibition
Most allosterically regulated enzymes are made from
polypeptide subunits
Each enzyme has active and inactive forms
The binding of an activator stabilizes the active form
of the enzyme
The binding of an inhibitor stabilizes the inactive
form of the enzyme
© 2014 Pearson Education, Inc.
Slide 86
© 2014 Pearson Education, Inc.
Figure 6.18
(b) Cooperativity: another type of allosteric
activation
(a) Allosteric activators and inhibitors
Substrate
Inactive form Stabilized
active form
Stabilized
active form
Active form
Active site
(one of four)
Allosteric enzyme
with four subunits
Regulatory
site (one
of four)
Activator
Oscillation
Stabilized
inactive form
Inactive
form
InhibitorNon-
functional
active site
Slide 87
© 2014 Pearson Education, Inc.
Figure 6.18a
(a) Allosteric activators and inhibitors
Stabilized
active form
Active form
Active site
(one of four)
Allosteric enzyme
with four subunits
Regulatory
site (one
of four)
Activator
Oscillation
Stabilized
inactive form
Inactive
form
Inhibitor
Non-
functional
active site
Slide 88
© 2014 Pearson Education, Inc.
Figure 6.18b
(b) Cooperativity: another type of allosteric
activation
Substrate
Inactive form Stabilized
active form
Slide 89
Cooperativity is a form of allosteric regulation that
can amplify enzyme activity
One substrate molecule primes an enzyme to act
on additional substrate molecules more readily
Cooperativity is allosteric because binding by a
substrate to one active site affects catalysis in a
different active site
© 2014 Pearson Education, Inc.
Slide 90
Feedback Inhibition
In feedback inhibition, the end product of a
metabolic pathway shuts down the pathway
Feedback inhibition prevents a cell from wasting
chemical resources by synthesizing more product
than is needed
© 2014 Pearson Education, Inc.
Slide 91
© 2014 Pearson Education, Inc.
Figure 6.19
Active site available
Intermediate A
End product
(isoleucine)
Intermediate B
Intermediate C
Intermediate D
Enzyme 2
Enzyme 3
Enzyme 4
Enzyme 5
Feedback
inhibition
Isoleucine
binds to
allosteric
site.
Isoleucine
used up by
cell
Enzyme 1
(threonine
deaminase)
Threonine
in active site
Slide 92
Specific Localization of Enzymes Within the Cell
Structures within the cell help bring order to
metabolic pathways
Some enzymes act as structural components of
membranes
In eukaryotic cells, some enzymes reside in specific
organelles; for example, enzymes for cellular
respiration are located in mitochondria
© 2014 Pearson Education, Inc.
Slide 93
© 2014 Pearson Education, Inc.
Figure 6.20
Mitochondria
The matrix contains
enzymes in solution
that are involved in
one stage of cellular
respiration.
Enzymes for another
stage of cellular
respiration are
embedded in the
inner membrane.
1 mm
Slide 94
© 2014 Pearson Education, Inc.
Figure 6.20a
The matrix contains
enzymes in solution
that are involved in
one stage of cellular
respiration.
Enzymes for another
stage of cellular
respiration are
embedded in the
inner membrane.
1 mm
Slide 95
© 2014 Pearson Education, Inc.
Figure 6.UN03
Slide 96
© 2014 Pearson Education, Inc.
Figure 6.UN04
Products
DG is unaffected
by enzyme
Reactants
Progress of the reaction
F
r
e
e
e
n
e
r
g
y
E
A
with
enzyme
is lower
E
A
without
enzyme
Course of
reaction
without
enzyme
Course of
reaction
with enzyme
Tags
Categories
Science
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
25,764
Slides
96
Favorites
33
Age
3713 days
Related Slideshows
23
Earthquakes_Type of Faults_Science G8.pptx
OctabellFabila1
31 views
15
Quiz #1 Science 10 in the first quarter for jhs
HendrixAntonniAmante
30 views
9
Astronomy history from long ago till doday
ssuserbd9abe
29 views
9
Great history of astronomy from long ago till today
ssuserbd9abe
27 views
20
EARTHQUAKE-DRILL.powerpoint.............
chalobrido8
30 views
9
History of astronomy from old times to the present times
ssuserbd9abe
30 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-96)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better