Biomolecules lecture notes

6,579 views 64 slides Apr 21, 2020
Slide 1
Slide 1 of 64
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64

About This Presentation

carbohydrates,amino acids,proteins,lipids,proteins, vitamins and porphyrins


Slide Content

Biomolecules
Carbohydrates,Proteins,lipids,Nucleic
acids,VitaminsandPorphyrins.
LecturenotesforBScstudentsofBiologicalSciences
2020
SH/BT/GSc/CTA
[Typethecompanyname]
4/21/2020

1
BIOMOLECULES SH/BT/GSC/CTA 1/1/2018Biomolecules
Carbohydrates,Proteins,lipids,Nucleic
acids,VitaminsandPorphyrins.
SH/BT/GSc/CTA
[COMPANYNAME]

2
BIOMOLECULES SH/BT/GSC/CTA Module3Biomolecules
CarbohydratesStructureandBiologicalFunctions
Definition,basicstructureandstereoisomericformsofcarbohydrates
 
WhatareCarbohydrates?:
 
Carbohydratesaredefinedaspolyhydroxyaldehydeorketonewithempiricalformula(CH2O)n.,
thesimplestbeingglyceraldehydeordihydroxyacetone.Carbohydratesincludesugars,starches,
celluloseandmanyothercompoundsfoundinlivingorganisms.
 
Whataresaccharides?:
 
• SaccharideisatermderivedfromtheLatinforsugar(origin="sweetsand”).Theterm
carbohydrateismostcommoninbiochemistrywhereitisasynonymof saccharide.
• Carbohydratesareoftenclassifiedaccordingtothenumberofsaccharideunitstheycontain.
Theyaredividedintofourchemicalgroupings:monosaccharides,disaccharides,
oligosaccharidesandploysaccharides.
• Intheirbasicform,carbohydratesaresimplesugarsormonosaccharides.Thesesimplesugars
cancombinewitheachothertoformmorecomplexcarbohydrates.Thecombinationoftwo
simplesugarsisadisaccharide.Carbohydratescomprisingof2-10monosaccharideunitsare
calledoligosaccharides,andthosewithalargernumberarecalledpolysaccharides.
 
BasicStructure
• Thesaccharidesencounteredinlivingsytemsaregenerallybuiltofmonosaccharideswith
generalformula(CH2O)n wherenisthreeormore.
• AtypicalmonosaccharidehasthestructureH-(CHOH)x (C=O)-(CHOH)y -H,containinga
ketonicfunctionalgrouporH-(C=O)-(CHOH)x -H,containinganaldehydicfunctionalgroup.It
hashydroxylgroupsoneachcarbonatom,excludingthefunctionalgroupcarbonatom.
• Glucose,fructose,ribose,deoxyriboseandglyceraldehydearemostcommonlyoccurring
monosacchridesinthelivingsystems.
• Itisimportanttonotethattherearemanychemicalsthatmayhavethesameformulabutare
notconsideredtobemonosaccharides(e.g.,formaldehydeCH2Oandinositol(CH2O)6.

3
BIOMOLECULES SH/BT/GSC/CTA  
Studyofcarbohydratesnecessitatestheconceptofisomerism:
 
• Twobroadcategoriesforisomericformsare:
(i)Structuralisomers.
(ii)Stereoisomers.
• Thestructuralisomersaredefinedasisomershavingsamemoleculeformulabutdifferent
structures.
• Thestereoisomershavesamemolecularandstructuralformulabutdifferinconfigurationi.e.
arrangementofatomsinspace.
• Stereoisomersarefurthersubgroupedintoopticalisomersandgeometricalisomers. 
• Opticalisomerismaremorerelevantincarbohydratechemistry.
• Opticalisomerismstemsfromthepresenceofchiralcentre(asymmetriccarbonatom).Chiral
centerreferstothecarbonatomhavingfourdifferentgroupsattachedtoit.Thisleadstotwo
possibilitiesbywhichatomscanbearrangedasshowninfigurebelow:

4
BIOMOLECULES SH/BT/GSC/CTA  
• Incaseofcarbohydrates,D-glyceraldehydeisusedasreferencecompound.
• D-representsthehydroxylgrouponrighthandside,whereasL-representshydroxylgroupon
thelefthandside.Thesetwoformsreflectmirrorimageofeachother’sandcalled enantiomers.
Thestereoisomerswhicharenotenantiomersaretermedas distereoisomers.
Inthefigureabove,IandII,IIIandIVareenantiomerswhereasI,III,IVandII,III,IVarerelatedas
diastereomers.
• Enantiomershavesamephysicalpropertieslikemeltingpoint,boilingpoint,solubilityinvarious
solventsbuttheyrotateplanepolarizedlightinoppositedirections.Thosewhichrotateplane
polarizedlightinclockwisedirectionarecalled dextrorotatory (representedby+)andthose
whichrotateinanticlockwisedirectionarecalled levorotatory(representedby-).ThusD-
Glucosecanexistasbothdextrorotatory(+)andLevorotatory(-).
• Van’tHoffformulaof2nworksgivesthenumbersofpossibleopticalisomers,wherenisthe
numberofchiralcarbon.Atriosewillhavetwoopticalisomersandatetrosewillhavefour.
• D-GlucoseandD-MannosehavedifferentconfigurationonlyatC-2carbon.Such
carbohydrateswhichdifferinconfigurationonlyatonecarbonatomaredesignated
as epimers ofeachother
ClassificationsofMonosaccharides
 

5
BIOMOLECULES SH/BT/GSC/CTA SimpleCarbohydrates:
 
• Thesearemadeupofasinglebasicsugar.Simplecarbohydratesareresponsibleforthe
sweettasteinourfood.Fruitsugar,tablesugarorcornsugarareallsimplesugars.On
consumption,thesesugarsaredirectlyabsorbedinthebloodandgenerallyusedforenergy
requirementsofthebody.
• Glucoseprovidesinstantenergyandreachesdifferentpartsofthebodyviablood,by
beingquicklymetabolized.
• Simplesugarsareoccurinplentyinnaturalfoodslikefruits,vegetables,milkandmilk
products.Additionally,honey,molasses,cornandmaplesyruparealsorichsourcesof
simplesugars.
 
Monosaccharides:
 
• 'Mono'referstosingle.
• Thesearethebasiccompoundsconsistingofcarbon,hydrogenandoxygenintheratio
1:2:1havingtheempericalformulaof(CH2O)n.
• Monosaccharidesaresweettotaste,colourlesscrystallinesolids,freelysolubleinwater
butinsolubleinnonpolarsolvents.
• Glucose,fructoseandgalactosearetypesofmonosaccharides.
 
Basicstructureofmonosaccharides:
 
• Anunbranchedsinglebondedcarbonchainprovidesbackboneformonosaccharides.
• Oneofthecarbonatomisdoublybondedtoanoxygenatomresultinginformationofa
carbonylgroup.
• Themonosaccharidesmaybeanaldehyde(carbonylgroupplacedattheendofthe
carbonchain)andisreferredtoasan ALDOSE oraketone(whenthecarbonylgroupis
placedatanyotherpositioninthechain)andisreferredtoasa KETOSE.
• Forexample,GlyceraldehydeisanaldosewhileDihydroxyacteoneisaketose.
• Monosaccharidescontaining3,4,5,6or7carbonatoms,intheirbackbonearecalledtriose,
tetroses,pentoses,hexosesandheptosesrespectively.
• Foraldehydicorketonicmonosaccharides,theyarethusdesignatedasaldotriose
(aldehyde+triose)andketotriose(Ketone+triose)respectively.
• Likewise,aldopentoses,ketopentoses;aldohexoses,ketohexoses;aldoheptosesand
ketoheptosesalsoexist.

6
BIOMOLECULES SH/BT/GSC/CTA • Forexample,GlyceraldehydeisanaldotrisewhileDihydroxyacteoneisaketotrise.
 
Chainandringforms:structureandfunctionsofmajormonosaccharides
 
ChainandRingforms:
 
• Manysimplesugarscanexistinachainformoraringform.
• Theopen-chainformofamonosaccharideoftencoexistswithaclosedringformwherethe
aldehyde/ketoniccarbonylgroupcarbon(C=O)andhydroxylgroup(-OH)reactforminga
hemiacetalwithanewC-O-Cbridge.Fiveandsix-memberedringsarefavouredoverotherring
sizesbecauseoftheirlowangleandeclipsingstrain.
• Thecyclicstructuresaretermed furanose(five-membered)or pyranose(six-membered),the
nomenclaturebeingderivedonthebasisoftheirrelationshiptocommonheterocyclic
compoundsfuranandpyran.
 

7
BIOMOLECULES SH/BT/GSC/CTA • Thecyclicpyranoseformsofvariousmonosaccharidesdrawninaflatprojectionareknownas
a Haworthformula aftertheBritishchemist,NormanHarworth.TheseHaworthformulasmake
itconvenientfordisplayingstereochemicalrelationships,butdonotrepresentthetrueshapeof
themolecules.
 
• Theglucoseringformiscreatedwhentheoxygenoncarbonnumber5linkswiththecarbon
comprisingthecarbonylgroup(carbonnumber1)andtransfersitshydrogentothecarbonyl
oxygentocreateahydroxylgroup.Therearrangementproducesalphaglucosewhenthe
hydroxylgroupisontheoppositesideofthe -CH2OH group,or beta glucose whenthehydroxyl
groupisonthesamesideasthe -CH2OH group.
 Isomers,suchasthese,whichdifferonlyintheirconfigurationabouttheircarbonylcarbonatom
arecalledanomers.
• Ketosessimilarlyformhemi-ketalringleadingtofuranoselikestructure.Hence,ketosesare
oftendesignatedinfuranosewhereasthealdosesinpyranoseform.
 
Propertiesofmonosaccharides:
 
• Simplemonosaccharidesarereducingagentsbecauseoftheirabilitytoreducepotential
oxidisingagentslikeCu
2+
 andhydrogenperoxide.Theyarethuscalled"reducingsugars".
• ThisreactionformsthebasisofBendict’stestforqualitativeanalysisofsimplesugars.
 
• Glucose,the"bloodsugar“andanimmediatesourceofenergyforcellularrespiration.
 

8
BIOMOLECULES SH/BT/GSC/CTA Disaccharides:
 
• Whentwomonosaccharidesbondtogetherbyacondensationreaction,therebyreleasinga
moleculeofwater,adisaccharideisformed.Thetwomonosaccharideunitsarelinked
by glycosidicbond inαorβanomericcarbon.
• Commonlyavailabledisaccahridesaresucrose,maltoseandlactose.
• Disaccharidescannotbeabsorbedthroughthewallofthesmallintestineintothebloodstream.
Theyarethereforehydrolyzedtorespectivemonosaccharidesbycarbohydarespresentinsmall
intestine,specificallysucraseorinvertase,maltaseandlactase(β-galactosidase).
 
MajorDisaccharides:
 
Sucrose:
• Majorcarbohydratepresentincanesugar,commonlycalledtablesugar.
• Glucose+fructosearelinkedbyα(1-->1)glycosidicbonds.
 

9
BIOMOLECULES SH/BT/GSC/CTA sucroseisnotareducingsugarduetotheabsenceoffreeanomericcarbonfrombothglucose
orfructoseunits.
• Animalsareunabletoabsorbsucroseassuchintothebloodstream.
• EnzymeSucrase,alsoknownasinvertasecatalyseshydrolysisofsucroseintoD-glucoseand
D-fructoseintheintestine,wherefromtheyarereadilyabsorbedintobloodstream.
 
Lactose:
 
• Amajorsugarinmilkandmilkproducts.
• Glucose+galactoseunitslinkedbyα(1-->4)glycosidicbonds.
 
Availabilityoffreecarbonylgrouponglucoseresiduemakesitareducingdisaccharide.
• EnzymeLactasecatalyzesthehydrolysisofthisdisaccharideduringdigestionprocessin
animals.
• LackofthisenzymesleadsaclinicalconditionreferredasLactoseintolerance.Thesubjectin
suchcasesareunabletometabolizelactose,becauseofalactasedeficiency.
 
Maltose:
 
• Simplestsugar;presentinbarleymaltandalsoaproductofstarchdigestion.
• Glucose+glucoselinkedbyα(1-->4)glycosidicbonds.

10
BIOMOLECULES SH/BT/GSC/CTA  
Maltoseisareducingsugarbecauseofthepresenceofafreecarbonylgroupwhichmaybe
oxidizedtothefreeacid.
• MaltoseishydrolyzedtotwomoleculesofD-glucosebytheintestinalenzymemaltase,which
specificallycleavestheα(1-->4).bond.
 
Cellobiose:
Themoleculeisderivedfromthecondensationoftwoglucosemoleculeslinkedinaβ(1-->4)
fashion.Itcanbeobtainedbyenzymaticoracidichydrolysisofcelluloseandcelluloserich
materialssuchascotton,juteorpaper.
Oligosaccharides:
 
• Carbohydrateshavingmorethantwooruptotenmonosaccharideunitsaretermedas
oligosaccharides.Raffinoseandstachyosearetwomajorexamplesofoligosaccharideswhich
consistofrepetitivechainsoffructose,galactoseandglucose.
Raffinoseisatrisaccharidewidelyfoundinlegumesandvegetableslikebeans,peas,soy,
cabbage,brusselssprouts,andbroccoli.Here,galactoseisbondedtosucroseviaaα(1-->6)
glycosidiclinkage.HumansareunabletodigestsuchsaccharidesThusundigestedsaccharides
arethusfermentedbycolonicbacteriaresultingintoflatulenceformation.
 

11
BIOMOLECULES SH/BT/GSC/CTA  
Polysaccharides:
 
• Polysaccharidesarepolymericcarbohydratestructures,formedofrepeatingunits(eithermono
-ordi-saccharides)joinedtogetherbyglycosidicbonds.
• PolysaccharideshaveageneralformulaofCx(H2O)y wherexisusuallyalargenumberbetween
200and2500.
• Thesestructuresareoftenlinear,butmaycontainvariousdegreesofbranching.
• Theymaybeamorphousoreveninsolubleinwater.
Basedonthemonosccharideunits,polysaccharidesarebroadlyputintotwocategories:
• Homopolysaccharides:
Ifthepolysaccharidesconsistsofonlyonetypeofmonosaccharideunits,thesearecalled
homopolysaccharides.Commonexampleofhomopolysaccharideisstarchwhichcomprisesof
onlyD-glucoseunits.
• Heteropolysaccharides: Whenmorethanonetypeofmonosaccharidesarepresentina
polysaccharide,theyarecalledheteropolysaccharidese.g.pectin(polymerofgalactouranicacid
anditsmethylatedester).
 

12
BIOMOLECULES SH/BT/GSC/CTA Majorstoragepolysaccharides:
 
Starch: 
• Starchconstitutesthemostpredominantstoragepolysaccharideinnatureandisa
characteristicstoragesugarofallplantcells.
• Thisisabundantintubers,likepotatoesandcornseeds.
• Starchisapolymerofglucoseandcontainstwotypesofglucosepolymersnamely:
(a) Amylose: Amyloseconsistsoflinear,unbranchedchainsofseveralhundredD-glucose
residues.Theglucoseresiduesarelinkedbyα(1-->4)glycosidicbondbetweentheirC1andC4
carbonatoms.Molecularweightofsuchchainsmayextendupto50000.
(b)Amylopectin: Amylopectindiffersfromamyloseinbeinghighlybranched.Thetotalnumberof
glucoseresiduesinamoleculeofamylopectinmayrunintoseveralthousands.Branchingtakesplace
withα(1-->6)bondsoccurringevery24to30glucoseunits.
Starchcanbetransformedintomanycommercialproductsbyhydrolysisusingacidsor
enzymesascatalysts.
• Producedbythehydrolysisofstarch, dextrins aremixturesofpolymersofD-glucoseunits
linkedbyα(1-->4)orα(1-->6)glycosidicbonds.Thesearelowinmolecularweight.When
producedbyheat,thesearetermedaspyrodextrins.
• Partialhydrolysisofstarchresultsinalesssweetoralmostflavourless Maltodextrin.These
areeasilydigestableandhenceactasasourceofreadilyavailableenergy.Thesecanbeeasily
derivedfromanystarch.

13
BIOMOLECULES SH/BT/GSC/CTA • Syrups,suchascornsyrupmadearemadefromhydrolysisofcornstarch. Cornsyrupsolids,
aremildlysweetsemi-crystallineorpowderyamorphousproducts.Thelatterarenotreadily
digestedbutpartiallyfermentedbyintestinalbacteria.
• HighFructoseCornSyrup(HFCS) isanotherderivativeofcornsyrupwhichisassweetas
sugarandisoftenusedinsoftdrinks.
• Whenstarchismodifiedbyanymechanicalorchemicaltreatments,theresultingproduct
is Modifiedstarch.
• Hydrogenatedglucosesyrup(HGS) isproducedbyhydrolyzingstarch,followedbyits
hydrogenation.Theresultingsyrupisusedtoproducesugaralcoholsaswellashydrogenated
oligo-andpolysaccharides.
• Polydextrose (poly-D-glucose)isahighly-branchedandsyntheticpolymer.Itisknownto
possessmanytypesofglycosidiclinkageswhicharegenerateduponheatingdextrose.
 
Glycogen:
 
• Glycogenisthemainstoragepolysaccharideinanimalcells,acounterpartofstarchinplant
cells.
• Glycogen,isalsoabranchedpolysaccharideofDglucosemonomerunitsbondedviaα(1-->4)
glycosidiclinkage.Theα(1-->6)branchesinglycogenareshorterandmorefrequentand
extensivethanthoseinamylopectin.Theoverallstructureismorecompacthere.
 
• Theglucosechainsareorganizedglobularlyoriginatingfromapairofmoleculesof
glycogenin,aproteinwithamolecularweightof38,000atthecoreofthestructure.
• Glycogeniseasilyconvertedbacktoglucosetoprovideenergy. 
• Bothglycogenandstarcharehydrolysedinthedigestivetractbyα-amylasespresentin
thesalivaandpancreaticjuicewhicharesecretedintothedigestivetract.
• α-amylaseshydrolyseα(1-->4)glycosidiclinkageoftheouterbranchesofglycogenand
amylopectinresultinginD-glucose,maltoseandaresistantcorenamedas“limitdextrin”.
• α-amylasescannotfurtherhydrolyselimitdextrinsbecauseoftheirinabilitytocleaveα(1
-->6)linkages.This,however,isachievedbya“debranching”enzyme,α(1-->6)glucosidase
actingonthebranchlinkages.
• Togetherα-amylaseandα(1-->6)glucosidasecompletelydegradeglycogenandstarch
(amylopectin). 
• β-Amylasehydrolysesalternateα(1-->4)glycosidiclinkagesyieldingmostlymaltose
withverylittleglucose.
 
Cellulose:

14
BIOMOLECULES SH/BT/GSC/CTA  
• Celluloseisthemajorstructuralpolysaccharide,predominantinthecellwalloftheplants.
Celluloseisfoundincellwallsofstalks,stems,trunks,woodyportionsofplanttissues.
• Likestarch,cellulosealsocomprisesofglucoseasmonomerunitswhicharelinkedbyβ
(1-->4)glycosidicbondsinalinearfashion.Theabsenceofsidechainsallowscellulose
moleculestolieclosetogetherandformarigidstructures.
 
 Thebasicstructuraldifferencebetweencelluloseandstarchorglycogenisthatincellulose,the
glucosemonomerunitsarelinkedbyβ(1-->4)glycosidiclinkagewhileinamylose,amylopectin
orglycogentheglycosidiclinkagesareα(1-->4).
• Onaccountofthisstructuraldifference,themainchainsinglycogenorstarchassumeacoiled
andhelicalconformationleadingtoformationofdensegranules.Themainchainsofcellulose,
ontheotherhandtakeupanextendedconformationandallowlateralaggregationtoform
insolublefibrils.
• Cellulosearehydrolyzedtoitsconstituentglucoseunitsbymicroorganismsthatinhabitthe
digestivetractoftermitesandruminants.TheintestinaltractoftermitesharborsTriconympha,a
parasiticmicroorganismthatsecretesenzymecellulasewhichisacellulosehydrolysing
enzyme.
• Celluloseismostlyunavailableasfoodforvertebratessincetheycannotbe
digested/hydrolysedbyanyenzymeinthem(exceptcattleandruminantanimals).Thedigestive
systemofcattleandruminantanimalslikesheep,goats,camelsetcisthusabundantwith
microorganismsthatsecretecellulasetodegradecellulosetoglucoseunits.
 
Functionofstarchandcellulose:
 
• Theprecisefunctionsofthisclassofbiomoleculesinthecellsareinnumerable.
• Carbohydratesarethesourceofenergy(~4Kcal/g)inmostdiets.Potato,rice,wheat,andcorn
aremajorsourcesofstarchinthehumandietwhichprovidebulkofthecalories.
• Celluloseisthemajorconstituentofcellwall.Wood,cottonandpaperareformsofcellulose.
• Carbohydratealsoformsthepartofsomeglycoproteins.
Hemicellulose:

15
BIOMOLECULES SH/BT/GSC/CTA  
• Theterm"hemicellulose"appliestothepolysaccharidecomponentsofplantcellwalls
otherthancellulose.Thisisapolysaccharideintheplantcellwallswhichisextractableby
dilutealkalinesolutions.
• Hemicellulosescomprisealmostone-thirdofthecarbohydratesinwoodyplanttissue.
Thisisalsofoundinfruit,plantstems,andgrainhulls.
• Thechemicalstructureofhemicellulosesconsistoflongchainsofavarietyofpentoses,
hexoses,andtheircorrespondinguronicacids.
• Althoughundigestible,hemicellulosescanbefermentedbyyeastsandbacteria.The
polysaccharidesyieldingpentosesonhydrolysisarecalledpentosans.Xylanismajor
exampleofapentosanconsistingofD-xyloseunitswithβ(1-->4)linkages.
 
Dextran:
 
• Dextranisapolysaccharidewhereinthemainchainsareformedbyα(1-->6)glycosidic
linkagesandthesidebranchesareattachedbyα(1-->3)orα(1-->4)linkages.
• Dextranisanoralbacterialproductthatadherestotheteeth,creatingafilmcalledplaque.
• Itisalsousedcommerciallyinconfections,inlacquers,asfoodadditives,andasplasma
volumeexpanders.
 
• Someplantsstorecarbohydratesintheformof inulin.Inulins,alsocalledfructans,are
polymersconsistingoffructoseunitsthathaveaterminalglucose.
• Thesearepresentinmanyvegetablesandfruits,includingonions,leeks,garlic,bananas,

16
BIOMOLECULES SH/BT/GSC/CTA asparagus,chicory,andJerusalemartichokes.
• Oligofructose hasthesamestructureasinulin,butthechainsconsistof10orfewer
fructoseunits.
• Oligofructosehasapproximately30to50%ofthesweetnessoftablesugar.Inulinand
oligofructosearenondigestiblebyhumanintestinalenzymes,butarefermentedbycolonic
microorganisms.
• Oligofructoseareoftenaddedtoprobioticdairyproductslikeyoghurt.Theyareconsumed
bybeneficialintestinalbacteriawhichtherebymultiplyfaster.Suchbacteriaareimportant
fordigestionandtheimmunesystem. 
• Inulinandoligofructoseareusedtoreplacefatorsugarinfoodslikeicecream,dairy
products,confectionsandbakedgoods.
 
Pectin:
 
• Pectinisapolysaccharidethatactsasabindingmaterialforthecellwallsofplant
tissues.Lemonsandorangescontainsapproximately30%pectin.
• Pectinisthemethylatedesterofpolygalacturonicacid,whichconsistsofchainsof300to
1000galacturonicacidunitsjoinedwithα(1-->4)linkages.
• Pectinisanimportantingredientoffruitpreserves,jellies,andjams.
 
 
Peptidoglycans:
 
• Thisisanimportantpolymerfoundinthebacterialplasmamembrane.Itconsistsof
polysaccharideandpeptidechainsinastrongmolecularnetwork.
• Peptidoglycan,alsoknownas murein,consistsofalternatingresiduesofβ(1-->4)linked
N-acetylglucosamineandN-acetylmuramicacid.Apeptidechainofthreetofiveamino
acidsisattachedtotheN-acetylmuramicacid.Thepeptidechaincanbecross-linkedtothe
peptidechainofanotherstrandformingathreedimensionalnetwork.Peptidoglycanserves
thefunctionalroleofprovidingstructuralstrengthandrigiditytothebacterialcellwall.
 

17
BIOMOLECULES SH/BT/GSC/CTA Aminoacids,peptideandproteins
Aminoacids-buildingblocksofproteins
 
• Proteinsareoneofthemostimportantclassofbiomoleculeswhichplaypivotalrolesinawide
arrayofcellularactivities.
• Proteinsareconstitutedbyaminoacids,asmonomericunitorbuildingblocks.Atypicalamino
acidhastheamino,carboxylmoietiesand"R"group(alsocalledassidechain).
 
Aminoacids:
 
• Whendissolvedinwater,aminoacidsexistsinsolutionasdipolarioncalled"zwitterion".Itcan
actasanacid(protondonor)orabase(protonacceptor).Becauseofthisdualnature,theyare
oftencalledasampholytes. 
• Aminoacidsintheproteinarelinkedbypeptidebonds.Thus,twoaminoacidsjoinedby
peptidebondarecalleddi-peptide,three-tripeptide,four-tetrapeptide.Thelongerchainiscalled
polypeptide.Proteinsaremadeofsingleormorepolypeptidechains.
 

18
BIOMOLECULES SH/BT/GSC/CTA • Therearetwentydifferentkindofaminoacidsfoundinbiologicalsystemsbesidesome
unusualaminoacids.ThenatureofR-groupvariesfromaminoacidtoaminoacid.
• EachfunctionalgroupofaminoacidhasafixedpKavalue.pKavaluesofaminoacidside
chainsplayanimportantroleindefiningthepH-dependentcharacteristicsofaprotein.Thus,the
ionizationstateofaminoacidswillbepHdependent.
• Eachaminoacidhasastandardthreeletterandoneletterabbreviationswhichareused
insteadoffullname.
 
FunctionalgroupsandpKavaluesofdifferentaminoacids 

19
BIOMOLECULES SH/BT/GSC/CTA Non-AromaticAminoAcidswithHydroxylR-Groups:
 
AminoAcidswithSulfur-ContainingR-Groups:
AcidicAminoAcidsandtheirAmides:

20
BIOMOLECULES SH/BT/GSC/CTA BasicAminoAcids:
 
AminoAcidswithAromaticRings:
IminoAcids:
 Allaminoacidsexceptglycine(R=H)arechiral,existinginDandLform.However,alltheamino
acidsinbiologicalsystemexistsintheL-configuration,where"L"impliesthattheaminoacid
confirmationsimilartoL-glyceraldehyde.
Propertiesofaminoacids:
 
• Thepropertiesofeachaminoacidaremainlydictatedbythesidechain,whichcanvaryinsize,
shape,charge,reactivityandabilitytohydrogenbond.Theaminoacidsaregroupedaccordingto
thepropertiesoftheirsidechains:
1.Aminoacidswithnon-polarorhydrophobicRgroup:- 
• Aliphatic:Thefirstsixaminoacids,glycine(GLY,G),alanine(ALA,A),Methionine(Met,M),
valine(VAL,V)leucine(LEU,L),andisoleucine(ILE,I),proline(PRO)andarealiphaticinnature.
Glycineissmallest.Glycineandalaninearetoosmalltohaveahydrophobiceffect.Methionine
issulphurcontainingaminoacid.Valine,leucineandisoleucineareconsiderablyhydrophobic.
• Aromatic:Phenylalanine(PHE,F),tryptophan(TRP,Y)andtyrosine(TYR,W)arearomaticin

21
BIOMOLECULES SH/BT/GSC/CTA nature.Thesecontainaromaticsidechain.Theyarespecificallyabsorbsat280nmthusform
thebasisofquantitativeestimationofproteinbyultraViolet(UV)method.
2.AminoacidswithpolarbutunchargedRgroup:
• Thesearesulfurcontaining,namelycysteine(CYS,C),twohydroxyl-containingserine(SERS)
threonine(THR,T)andamidecontainingAspargine(ASN,N)andglutamine(GLN,Q).
• Onetypicaliminoacid,Proline(PRO,P)isalsofoundinthiscategory.Becauseofitscyclic
structure,itleadstobendingofproteinchain.Prolineisanimineandusualinthatitsnitrogen
atompresentassecondary.
• Cysteineisinvolvedinintermoleculardisulfidebond(calledcystine)withothercysteineofthe
polypeptidechain.Thesedisulphidebondsaretheonlycovalentbondbesidepeptidebondin
theproteinandimpartstabilitytotheprotein.
• SerandThrhavesidechainswhichcanhydrogenbondtowaterortoothergroupson
neighbouringmacromolecules.AsnandGlnareamideofacidicaminoacids-asparticand
glutamicacid.
3.Polarpositivelychargedaminoacids:
• Aminoacidslysine(LYS,K),arginine(ARG,R)andhistidine(HIS,H)areconsideredbasic
hydrophilic,sincetheycontainbasicsidechaingroupsthatwillhaveapositivechargeatpH7.4.
4.Polarnegativelychargedaminoacids:
• Asparticacid(ASP,D)andglutamicacid(GLU,E)areconsideredacidichydrophilic,sincethey
containacidicsidechaingroupsthatwillhaveanegativechargeatpH7.4.
Peptidebonds:
 
• Proteinchainsareheldtogetherbypeptidebonds,whicharesimplyamidelinkagesbetween
alphaaminoandcarboxylicgroupofneighbouringaminoacids.Aminoacidslinked,through
peptidebonds,formspolypeptide.TheirmolecularweightsareexpressedinDaltons,(1Daltonis
equalto1atomicmassunit).
• Eachpeptidechainhastwofreeends,theaminoterminusorN-terminal,whichisontheleft,
andthecarboxylterminusorC-terminal,whichisontheright.Thepeptidechainsisrepresented
fromN-terminaltoC-terminalandthesequenceofaminoacidiswritteninthreeletter
abbreviationse.g.N-Met-Ser-Tyr-Cys-Val-Lys-Ala-C.
• Thepeptidebonditselfisrigid,andthusisnotfreetorotate.Thisrigidityleadstoonlya
definitepossibleconformationtoproteinstructure.
 

22
BIOMOLECULES SH/BT/GSC/CTA Inapeptidebond,allthesixatomwithintheplanehavefixedbondlengthandangles.Thesebondare
α-carbontocarbonylcarboncalledψ;imidenitrogentoα-carboncalledφandtheC-Nbond.
• BasedonthesterichindranceofRgroups,aconstraintisposedonrotationofC-CandC-N,
limitingthevalueofψandφ.Thisallowsonlyafixedsecondarystructure(helixorsheetetc)
accordingtheaminoacidresidues(Rgroup)andtheirsequence.
• Basedonψandφvalues,thestructurecanbepredictedbyRamcahandran’splot.
 
Somebiologicallyimportantpeptides:
 
1.Glutathione -atripeptidewhichpreventsoxidativedamagetoRBC.
2.Vesopressinandoxytocins -anonapeptide;hormonescausingriseinbloodpressureby
constrictingtheperipheralbloodvessels;andcontractionofsmoothmuscles,respectively.

23
BIOMOLECULES SH/BT/GSC/CTA 3.Gramicidin -acirculardecapeptideusedasanantibiotic.
4.Aspartame -atripeptidewidelyusedasanartificialsweetener.
Assayofaminoacids
Thereactionbetweenalpha-aminoacidandninhydrininvolvedinthedevelopmentofcolorare
describedbythefollowingfivemechanisticsteps:
alpha-aminoacid+ninhydrin--->reducedninhydrin+alpha-aminoacid+H2O
alpha-aminoacid+H2O--->alpha-ketoacid+NH3
alpha-ketoacid+NH3--->aldehyde+CO2
Step(1)isanoxidativedeaminationreactionthatremovestwohydrogenfromthealpha-aminoacid
toyieldanalpha-iminoacid.Simultaneously,theoriginalninhydrinisreducedandlosesanoxygen
atomwiththeformationofawatermolecule.
InStep(2),theNHgroupinthealpha-iminoacidisrapidlyhydrolyzedtoformanalpha-ketoacidwith
theproductionofanammoniamolecule.Thisalpha-ketoacidfurtherundergoesdecarboxylation
reactionofStep(3)
Underaheatedconditiontoformanaldehydethathasonelesscarbonatomthantheoriginalamino
acid.Acarbondioxidemoleculeisproducedhere.Thesefirstthreestepsproducethereduced
ninhydrinandammoniathatarerequiredfortheproductionofcolorinthelasttwoSteps(4)and(5).
Theoverallreactionfortheabovereactionsissimply(slightlyinaccurately)expressedinReaction
(6)asfollows:
alpha-aminoacid+2ninhydrin--->CO2+aldehyde+finalcomplex(BlUE)+3H2O
Insummary,ninhydrin,whichisoriginallyyellow,reactswithaminoacidandturnsdeeppurple.Itis
thispurplecolorthatisdetectedinthismethod.
Ninhydrinwillreactwithafreealpha-aminogroup,NH2-C-COOH.Thisgroupiscontainedinallamino
acids,peptides,orproteins.Whereas,thedecarboxylationreactionwillproceedforafreeamino
acid,itwillnothappenforpeptidesandproteins.Thus,theoreticallyonlyaminoacidswillleadtothe
colordevelopment.However,oneshouldalwayscheckoutthepossibleinterferencefrompeptides
andproteinsbyperformingblanktestsespeciallywhensuchsolutionsarereadilyavailable.For
example,onecansimplyaddtheninhydrinreagenttoasolutionofonlyproteinsandseeifthereis
anycolordevelopment.Thereisnoexcuseforfailingtoperformsuchavitaltestwhenthesample
mixturecontainsbothproteinsandaminoacids.Therearealsoreportsthatchemicalcompounds
otherthanaminoacidsalsoyieldpositiveresults.
Thistestcanbeusedroutinelyforthedetectionofglycineintheabsenceofotherinterfering
species.Althoughthisisafastandsensitivetestforthepresenceofalpha-aminoacids,becauseof
thenonselectivity,itcannotbeusedtoanalyzetherelativeindividualcontentsofamixtureof
differentaminoacids.Furthermore,thecolorintensitydevelopedisdependentonthetypeofamino
acid.Finally,itdoesnotreactwithtertiaryoraromaticamines.
Notethatsinceninhydrinisastrongoxidizingagent,propercautionshouldbeexercisedinhandling
thiscompound.Itisespeciallypotentattheelevatedtemperatureunderwhichthereactioniscarried

24
BIOMOLECULES SH/BT/GSC/CTA out.Theninhydrinreagentwillstaintheskinblueandcannotbeimmediatelywashedoffcompletely
ifitcomesincontactwiththeskin.However,asinanyotherstainontheskin,thecolorwillgradually
ruboffafteraboutaday.
Proteinsarenitrogenousorganiccompoundsofhighmolecularweightwhichplayavitalorprime
roleinlivingorganisms.Theyaremadeupof20standarda-aminoacids.
Functionsofproteins:
 
Proteinscarryoutmostdiverseandpossiblythelargestvolumesofcellularfunctions.Someofthe
keyfunctionsaresummarizedasbelow:
• Biocatalysis-Almostallthebiologicalreactionsarecatalyzedbytheenzymes.Thesearesubstrate
specificandcarryoutreactionsatveryhighratesundermildphysiologicalconditions.Several
thousandenzymeshavebeenidentifiedtodate.
• Membraneareconstituteoflipoproteinandsomeproteinsareintegralpartofmembrane.
Receptorsfoundonthemembranearealsoproteininnature.
• Transportandstorageproteins-smallmoleculesareoftencarriedbyproteinsinthephysiological
settinge.g.haemoglobinisresponsibleforthetransportofoxygentotissues.
• Musclearemadeupofproteinsandtheircontractionisdonebyactinandmyosinprotein.
• Mechanicalsupport-skinandbonearestrengthenedbytheproteincollagen.
• Antibodiesofimmunesystemareproteinstructures.
ClassificationofProteins:
Proteinsareclassifiedbasedupon:
(1)Theirsolubilityand(2)Theirstructuralcomplexity.

25
BIOMOLECULES SH/BT/GSC/CTA A.ClassificationBaseduponSolubility:
Onthebasisoftheirsolubilityinwater,proteinsareclassifiedinto:
1.Fibrousproteins:
Theseareinsolubleinwater.Theyincludethestructuralproteins.Theyhavesupportivefunction
(e.g.,collagen)and/orprotectivefunction(e.g.,hairkeratinandfibrin).
2.Globularproteins:
Theyaresolubleinwater.Theyincludethefunctionalproteins,e.g.,enzymes,hemoglobin,etc.
B.ClassificationBaseduponStructuralComplexity:
Onthebasisoftheirstructuralcomplexitytheyarefurtherdividedinto:
(1)Simple
(2)Conjugatedand
(3)Derivedproteins.
1.Simpleproteins:
Proteinswhicharemadeupofaminoacidsonlyareknownassimpleproteins.
Theyarefurthersub-dividedinto:
(a) Albumins:
Theyarewatersoluble,heatcoagulableandareprecipitatedonfullsaturationwithammonium
sulphate,e.g.,serumalbumin,lactalbuminandovalbumin.
(b) Globulins:
Theyareinsolubleinwater,butsolubleindilutesaltsolutions.Theyareheatcoagulableand
precipitateonhalf-saturationwithammoniumsulphate,e.g.,serumglobulinandovo-globulin.
(c) Glutelins:
Theyareinsolubleinwaterandneutralsolvents.Solubleindiluteacidsandalkalies.Theyare
coagulatedbyheat,e.g.,glutelinofwheat.
(d) Prolamines:
Waterinsolublebutsolublein70%alcohol,e.g.,gliadinofwheat,proteinsofcorn,barley,etc.
(e) Histones:
Watersoluble,basicinnatureduetothepresenceofarginineandlysine,foundinnucleus.Theyhelp
inDNApackaginginthecell.Theyformtheproteinmoietyofnucleoprotein.
(f) Protamine’s:
Watersoluble,basicinnature,not-heatcoagulable.Foundinspermcells,hencecomponentof
spermnucleoprotein.
(g) Globin’s:
Theyarewatersoluble,non-heatcoagulable.e.g.,globinofhaemoglobin.
(h) scleroproteins:

26
BIOMOLECULES SH/BT/GSC/CTA Insolubleinallneutralsolvents,diluteacidsoralkalies,e.g.,keratinofhairandproteinsofboneand
cartilage.
2. Conjugatedproteins:
Proteinswhicharemadeupofaminoacidsandanon-aminoacid/proteinsubstancecalledthe
prostheticgroupareknownasconjugatedproteins.
Thevarioustypesofconjugatedproteinsare:
(a) Chromoproteins:
Herethenon-proteinpartisacolouredcompoundinadditiontotheproteinpart.Ex.Haemoglobin
hashemeastheprostheticgroupandcytochromesalsohaveheme.
(b) Nucleoproteins:
Theseproteinsareboundtonucleicacids,e.g.,chromatin(histones+nucleicacids).
(c) Glycoproteins:
Whenasmallamountofcarbohydrateisattachedtoaproteinitisknownasglycoproteins,e.g.,
mucinofsaliva.(Note:Glycoproteinshavemajoramountsofproteinandsomeamountof
carbohydratesandproteoglycanscontainmajoramountsofcarbohydratesandlittleamountof
proteins).
(d) Phosphoprotein:
Phosphoricacidispresentwiththeprotein.Ex.Milkcaseinandeggyolk(vitellin).
(e) Lipoproteins:
Proteinsincombinationwithlipids,e.g.,LDL,HDL.
(f) Metalloproteins:
Theycontainmetalioninadditiontotheaminoacids,e.g.,hemoglobin(iron),ceruloplasmin
(copper).
3. Derivedproteins:
Theyaretheproteinsoflowmolecularweightproducedfromlargemolecularweightproteinsbythe
actionofheat,enzymesorchemicalagents.
Proteins→Proteans→Proteoses→Peptones→Peptides→Aminoacids
Proteinconformation/structure
 
• Thespatialarrangementofatomsinaproteiniscalleditsconformation. 
• Thepossibleconformationsofaproteinincludeanystructuralstatethatcanbeachievedwithout
breakingcovalentbonds.Achangeinconformationcouldoccur,forexample,byrotationabout
singlebonds.Ofthenumerousconformationsthataretheoreticallypossibleinaproteincontaining
hundredsofpeptidebonds,oneor(morecommonly)afewgenerallypredominateunderbiological
conditions.
• Theneedformultiplestableconformationsreflectsthechangesthatmustoccurinmostproteins
astheybindtoothermoleculesorcatalyzereactions.

27
BIOMOLECULES SH/BT/GSC/CTA • Theconformationsexistingunderagivensetofconditionsareusuallytheonesthatare
thermodynamicallythemoststable,havingthelowestGibbsfreeenergy(G).Proteinsinanyoftheir
functional,foldedconformationsarecallednativeproteins.
 
Structure:
 
• Proteinshaveatotaloffourlevelsofstructures.
• Primarystructure.
• Secondarystructure.
• Tertiarystructure.
• Quaternarystructure.
 
• Primarystructure:-
• Thesimpleaminoacidsequenceofaproteiniscalledasitsprimarystructure.
• Sincethepossiblewayofarrangementofthechainwilldependonthesequenceofaminoacid
residuesleadingtoproperproteinfolding,theprimarystructuredictatethreedimensionalstructure
oftheproteins.

28
BIOMOLECULES SH/BT/GSC/CTA Secondarystructure:-
• Thisdefinestheinteractionofcloselylocatedaminoacidsinachain.Twomaintypesofsecondary
structuresobservedintheproteinsarehelices(αhelices)andpleatedsheets(βpleatedsheets).
• Alphahelixisahelicalstructurearoundanaxis.
• Thisiscoiledinclockwise(righthanded)manner.Ithasanaverageof3.6aminoacidsperturn.
Pleasewriteotherdimensionstoo. 
• Thereare3.6residueperturnwithinafixpitchof5.4
0
A
• Thustheriseperresiduecomeouttobe1.5
0
A.Inatypicalα-helixφvaluerangesfrom113to
132
0
 andψfrom123to136
0
.

29
BIOMOLECULES SH/BT/GSC/CTA  
Thereasonastowhyalphahelicesformmorereadilyinproteinsthananyotherpossible
conformationsisthatthesearrangementsmakeoptimaluseofinternalhydrogenbondstoattain
stability.Thehelixisstabilizedbyhydrogenbondingbetweenthecarbonylofeachfirstaminoacid
ofthechaintotheNHoftheaminoacidfourresiduesaway.Allmainchainaminoandcarboxyl
groupsarethushydrogenbonded,andtheRgroupsstickoutfromthestructureinaspiral
arrangement.
Betapleatedsheet iscomposedoftwoormorestraightchainsthatarehydrogenbondedsideby
side.Iftheaminoterminiareonthesameendofeachchain,thesheetistermedparallel,andifthe
chainsrunintheoppositedirection(aminoterminalonoppositeends),thesheetistermed
antiparallel.
Pleatedsheetsmaybeformedfromasinglechainifitcontainsabetaturn,whichformsahairpin
loopstructure.Oftenaprolinecanbefoundinabetaturn,sinceitplacesa"kink"inthechain.
GlycineandAlaarepredominantaminoacidsinbetasheet.
 
• Tertiarystructure:- referstothearrangementofaminoacidsinthespacei.e.inthreedimensional
form.
• Distinctaminoacidarebroughtcloserinchainarefurtherlinkedby:
-polar-polarinteraction,
-hydrophobicinteraction,

30
BIOMOLECULES SH/BT/GSC/CTA -ionicinteraction,
-disulfidebonds,
-VanderWaalsforces.
-hydrogenbonds.
• Hydrophobicaminoacids:- areburiedinsidethecoreofproteinandchargedandpolargroupare
locatedonthesurfacewhichtendtoclusterandexcludewater.Thisallowsaproteintohavegreater
watersolubility.
• Quaternarystructure:- Ifproteinconsistsofmorethanonepolypeptidechains,theirassociation
witheachother–impliestheQuaternarystructure.
 
• Accordinglyproteinaretermedasdimeric(whereinonechainisreferredasmonomericunit),
trimericoroligomeric.Ifthechainsaresimilari.e.havesameaminoacidsequencethesearecalled
homomericorheteromericifchainsaredifferent.
• Proteinshavealsobeenputintotwomajorgroups:
(a) Fibrousproteins,havingpolypeptidechainsarrangedinlongstrandsorsheets.
(b) Globularproteins,havingpolypeptidechainsfoldedintoasphericalorglobularshape.
• Thetwogroupsare structurallydistinct: fibrousproteinsusuallyconsistlargelyofasingletypeof
secondarystructure;globularproteinsoftencontainseveraltypesofsecondarystructuree.ga-
keratinsarepredominantlyalphahelixwhereassilkproteinsarebeta–sheets.
• Thetwogroupsdiffer functionally inthatthestructuresthatprovidestructure,support,shape,and
externalprotectiontovertebratesaremadeoffibrousproteins,whereasmostenzymesand
regulatoryproteinsareglobularproteins.
 
ProteinAssaymethods

31
BIOMOLECULES SH/BT/GSC/CTA Introduction
Proteinassaysareoneofthemostwidelyusedmethodsinlifescienceresearch.Estimationof
proteinconcentrationisnecessaryinproteinpurification,electrophoresis,cellbiology,molecular
biologyandotherresearchapplications.Althoughthereareawidevarietyofproteinassays
available,noneoftheassayscanbeusedwithoutfirstconsideringtheirsuitabilityforthe
application.Eachassayhasitsownadvantagesandlimitationsandoftenitisnecessarytoobtain
morethanonetypeofproteinassayforresearchapplications.
DyeBindingAssays(Bradford)thedyebindingproteinassayisbasedonthebindingofprotein
moleculestoCoomassiedyeunderacidicconditions.Thebindingofproteintothedyeresultsin
spectralshift,thecolorshiftsfrombrown(Amax=465nm)toblue(Amax=610nm).Thechangein
colordensityisreadat595nmandisproportionaltoproteinconcentration.Thebasicaminoacids,
arginine,lysineandhistidineplayaroleintheformationofdye-proteincomplexescolor.Small
proteinslessthan3kDaandaminoacidsgenerallydonotproducecolorchanges.CB™andCB-X™
proteinassaysaredyebindingproteinassays.SPN™andSPN™-htpproteinassaysarespincolumn
formatdyebindingassays
CopperIonBasedAssays(Lowry&BCA)
Inthecopperionbasedproteinassays,theproteinsolutionismixedwithanalkalinesolutionof
coppersalt.Underalkalineconditions,cupricions(Cu2+)chelatewiththepeptidebondsresultingin
reductionofcupric(Cu2+)tocuprousions(Cu+).Ifthealkalinecopperisinexcessovertheamount
ofpeptidebonds,someofthecupricions(Cu2+)willremainunboundtothepeptidebondsandare
availablefordetection(Figure1).Proteinassaysbasedoncopperionscanbedividedintotwo
groups,assaysthatdetectreducedcuprousions(Cu+)andassaysthatdetecttheunboundcupric
(Cu2+)ions.Thecuprousionsaredetectedeitherwithbicinchoninicacid(BCA)orFolinReagent
(phosphomolybdic/phosphotungsticacid)asintheproteinassaysbasedonLowrymethod.
Cuprousions(Cu+)reductionofFolinReagentproducesabluecolorthatcanbereadat650-750nm.
Theamountofcolorproducedisproportionaltotheamountofpeptidebonds,i.e.sizeaswellasthe
amountofprotein/peptide.
Thepresenceoftyrosine,tryptophan,cysteine,histidineandasparginineinproteincontributesto
additionalreducingpotentialandenhancestheamountofcolorproduced.Hence,theamountof
bluecolorproducedisdependentonthecompositionofproteinmolecules.Thereactionofcuprous
ions(Cu+)withthebicinchoninicacidandcolorproductionissimilartothatofFolinReagent.Inthe
assaysbasedonthedetectionofunboundcupricions,theproteinsolutionismixedwithanamount
ofalkalinecopperthatisinexcessovertheamountofpeptidebond.Theunchelatedcupricionsare
detectedwithacolor-producingreagentthatreactswithcupricions.Theamountofcolorproduced
isinverselyproportionaltotheamountofpeptidebond
ProteinAssay
ProteinAssayIntroductionProteinassaysareoneofthemostwidelyusedmethodsinlifescience
research.Estimationofproteinconcentrationisnecessaryinproteinpurification,electrophoresis,
cellbiology,molecularbiologyandotherresearchapplications.Althoughthereareawidevarietyof
proteinassaysavailable,noneoftheassayscanbeusedwithoutfirstconsideringtheirsuitabilityfor
theapplication.Eachassayhasitsownadvantagesandlimitationsandoftenitisnecessaryto
obtainmorethanonetypeofproteinassayforresearchapplications.Thisguideisdesignedtohelp
researchersselectthemostappropriateassayfortheirapplication.G-Biosciencesoffersassays
thatareenhancementsofdyebindingproteinassays(Bradford),proteinassaysbasedoncopper

32
BIOMOLECULES SH/BT/GSC/CTA ions(Lowry),oranovelteststripandspotapplicationassay.
DyeBindingAssays(Bradford)
ThedyebindingproteinassayisbasedonthebindingofproteinmoleculestoCoomassiedyeunder
acidicconditions.Thebindingofproteintothedyeresultsinspectralshift,thecolorshiftsfrom
brown(Amax=465nm)toblue(Amax=610nm).Thechangeincolordensityisreadat595nmandis
proportionaltoproteinconcentration.Thebasicaminoacids,arginine,lysineandhistidineplayarole
intheformationofdye-proteincomplexescolor.Smallproteinslessthan3kDaandaminoacids
generallydonotproducecolorchanges.CB™andCB-X™proteinassaysaredyebindingprotein
assays.SPN™andSPN™-htpproteinassaysarespincolumnformatdyebindingassays.CopperIon
BasedAssays(Lowry&BCA)Inthecopperionbasedproteinassays,theproteinsolutionismixed
withanalkalinesolutionofcoppersalt.Underalkalineconditions,cupricions(Cu2+)chelatewith
thepeptidebondsresultinginreductionofcupric(Cu2+)tocuprousions(Cu+).Ifthealkaline
copperisinexcessovertheamountofpeptidebonds,someofthecupricions(Cu2+)willremain
unboundtothepeptidebondsandareavailablefordetection(Figure1).Proteinassaysbasedon
copperionscanbedividedintotwogroups,assaysthatdetectreducedcuprousions(Cu+)and
assaysthatdetecttheunboundcupric(Cu2+)ions.Thecuprousionsaredetectedeitherwith
bicinchoninicacid(BCA)orFolinReagent(phosphomolybdic/phosphotungsticacid)asinthe
proteinassaysbasedonLowrymethod.Cuprousions(Cu+)reductionofFolinReagentproducesa
bluecolorthatcanbereadat650-750nm.Theamountofcolorproducedisproportionaltothe
amountofpeptidebonds,i.e.sizeaswellastheamountofprotein/peptide.
Thepresenceoftyrosine,tryptophan,cysteine,histidineandasparginineinproteincontributesto
additionalreducingpotentialandenhancestheamountofcolorproduced.Hence,theamountof
bluecolorproducedisdependentonthecompositionofproteinmolecules.Thereactionofcuprous
ions(Cu+)withthebicinchoninicacidandcolorproductionissimilartothatofFolinReagent.Inthe
assaysbasedonthedetectionofunboundcupricions,theproteinsolutionismixedwithanamount
ofalkalinecopperthatisinexcessovertheamountofpeptidebond.Theunchelatedcupricionsare
detectedwithacolor-producingreagentthatreactswithcupricions.Theamountofcolorproduced
isinverselyproportionaltotheamountofpeptidebond.
 
Commontotalproteinassays.
assay absorption mechanism detection
limit
advantages disadvantages
UVabsorption280nm
tyrosineand
tryptophan
absorption
0.1-100
ug/ml
smallsample
volume,rapid,
lowcost
incompatiblewith
detergentsand
denaturating
agents,high
variability
Bicinchoninic
acid
562nm
copperreduction
(Cu
2+
 toCu
1+
),
BCAreaction
withCu
1+
20-2000
ug/ml
compatiblewith
detergentsand
denaturating
agents,low
variability
loworno
compatibilitywith
reducingagents
Bradfordor
Coomassie
470nm
complex
formation
20-2000
ug/ml
compatiblewith
reducingagents,
incompatiblewith
detergents

33
BIOMOLECULES SH/BT/GSC/CTA brilliantblue
between
Coomassie
brilliantbluedye
andproteins
rapid
Lowry 750nm
copperreduction
byproteins,Folin
-Ciocalteu
reductionbythe
copper-protein
complex
10-1000
ug/ml
highsensitivity
andprecision
incompatiblewith
detergentsand
reducingagents,
longprocedure
StructureandFunctionsofLipids
Definition,nomenclatureandfunctionoflipids
 
Whatarelipids?:
 
• Lipidsareoneamongthefourmajorbiomoleculesoflivingsystems.
• Bydefinition,thesearetheclassofbiomoleculeswhichareinsolubleorsparinglysolublein
aqueoussolutionsandsolubleinorganicsolvents.
• Fattyacidsaremajorconstituentsoflipids.Fattyacidsaremonocarboxylicacidcontaining
short/long-chainhydrocarbonmolecules.Someimportantfattyacidsareenlistedbelow.
• Thenumberingofcarbonsinfattyacidsbeginswiththecarbonofthecarboxylategroup.Fatty
acidrepresentedbythetotalnumberofcarbonse.g.,palmiticacida16-carbonfattyacid
CH3(CH2)14COOHisdesignatedasC16.
• ItiscustomarytowriteitasC16:0wherezerorepresentthatthereisnodoublebondinthe
fattyacid).Ifthereisonedoublebond,thenitwillbewrittenasC:16:1
 
 
Typesoffattyacids:
 

34
BIOMOLECULES SH/BT/GSC/CTA • Saturatedfattyacids:
Allsetsofexamplesintheprevioustablewerefattyacidsthatcontainednocarbon-carbon
doublebonds.Thesearecalledsaturatedfattyacids.Saturatedfattyacidshavingshortcarbon
chainareliquidatroomtemperature,whereaslongcarbonchainfattyacidsaresolid.
• Unsaturatedfattyacids:
Thesehavecarbon-carbondoublebondsinbetween,thusleadingtounsatuaration.The
representationsforthesefattyacidsconsistsofthenumberofcarbonatoms,followedbythe
numberdoublebondandtheplaceofunsaturation.Theplaceofunsaturationinafattyacidis
indicatedbythesymbol(Δ)andthenumberofthefirstcarbonofthedoublebondinsuperscript
form.Thusoleicacida16-carbonfattyacidwithonesiteofunsaturationbetweencarbons9
and10,andwillberepresentedbyC16:1Δ
9
.
Biologicalfunctionsoflipids:
 
Lipidsperformandareinvolvedinvarietyofimportantcellularfunctions.However,followingare
someofthemajorphysiologicalfunctionsattributedtolipids:
• Energysourceinanimals,insects,birdsandhighlipidseedse.g.triacylglycerols.
• Activatorsofenzymesnamelyglucose-6-phosphatase,stearoylCoAdesaturase,
monooxygenaseswhichareimportantmitochondrialenzymes.
• Someofthelipidsderivativesserveasvitaminsandhormonese.g.Prostaglandins.
• Arachidonicacidisthespecificprecursorforallprostaglandinsandleukotrienes.Itisboundas
anacylmoietytothe2positionofanumberofphospholipidsandthisisinactiveasasubstrate.
UponreleasebytheactionofphospholpiaseA2,thefreearachidonicacidisconvertedbya
cyclooxygenasetoformtwoveryprostaglandinderivatives,prostacyclinI2,anactive
physiologicalvasodilatorandThromboxaneA2,anactivevasoconstrictor.
• Essentialcomponentsofbiologicalmembranese.g.shingolipidsandglycoloipids.
• Aslipoproteinsinproteinmodificationandrecognitions.

35
BIOMOLECULES SH/BT/GSC/CTA • Componentsoftheelectrontransportsystemintheinnermembraneofmitochondria.
Structureandfunctionofvariousclassesoflipids
 
Classificationoflipids:
 
Lipidsaregenerallyclassifiedintofollowingsevengroups:
1.Acylglycerols.
2.Phosholipids.
3.Sphingolipids.
4.Glycolipids.
5.Alkylglycerylethers.
6.Terpenoids.
7.Wax
 
1.Acylglycerols:
 
• ThesearealsocalledasTriacylglyceridesorneutrallipids,beingcomposedofaglycerol
backbone,inwhicheachalcoholicgroupisesterifiedbyfattyacids.
• FollowingisthetypicaltriglyceridestructureinwhichfattyacidsareindicatedbyR.These
aremostcommonlyoccurringformoflipidsincell,storedinadiposeorfatdepot.Their
functionistoserveasmajorenergysource.
 
2.Phospholipids:
 
• Theyarethemajorcomponentofmembrane.
• Thebasicstructureofphospholipidsisverysimilartothatofthetriacylglyceridesexcept

36
BIOMOLECULES SH/BT/GSC/CTA thatCarbon-3(Sn3),oftheglycerolbackboneisesterifiedbyphosphoricacid.
• Thisbasicphospholipidsiscalled phosphatidicacid.Phosphotidicacidhavefurther
substitutionas–Xshowninadjoiningfigure.
• Phospholipidsareamphipathicinnatureduetopresenceofbothhydrophilic/charged
substitution(PO4-andXatSn-3)andhydrophobicfattyacidchainsatSn1andSn2.
 
Differenttypesofphospholipids:
 
• Severaldifferenttypesofphosopholipidsareformedbyfurtherattachmentofdifferentgroups
(X)atPhosphatidicacidSn-3phosphoricacid.
• Somerepresentativeexamplesare:
X=Ethanolamine,thephospholipidiscalledphosphatidylethanolamine.
X=Choline--->phosphatidylcholine,alsocalledlecithins.
X=Serine--->phosphatidylserine.
X=Glycerol--->phosphatidylglycerol.
X=myo-inositol--->phosphatidylinositol.
X=diphosphatidylglycerol--->cardiolipins.
Theirpresenceandfunctionshavebeenbrieflyenumeratedinthefollowingslide.
 

37
BIOMOLECULES SH/BT/GSC/CTA 3.Sphingolipids:
 
• Sphingolipidsarecomposedofabackboneofsphingosine,whichisderivedfromglycerol.
• Thestructureofsphingosineisshownbelow:
 

38
BIOMOLECULES SH/BT/GSC/CTA  Sphingolipidsarepredominantlypresentinthemyelinsheathofnervefibers.
 
Someoftheimportantsphingolipidsare:
• Ceramides:– Inthiscase,thesphingosineisN-acetylatedatCH2OHbyavarietyoffattyacids
generatingdifferenttypesofceramides.
• Sphingomyelin:- ItisanabundantsphingolipidinwhichCH2OHisesterifiedbyphosphoricacidand
cholineinsteadoffattyacid.
• Glycosphingolipids othermajorclassofsphingolipidsaregeneratedbysubstitutionof
carbohydratesatCH2OH.CerbrosidesandGangliosidesaremajorclassesofglycosphingolipids.
• Cerebrosides:- Itisalsocalledgalactocerebrosidesbecausegalactoseisthecarbohydratepresent
init.
• Gangliosides:- Italsocontainssialicacid.
4.Glycolipids:
 
• Theyarecarbohydratecontainingderivativeoftriglycerides.Galactoseisthepredominant
carbohydratepresentinglycolipids.Sn-3monogalactosylgalactosyldiacylglycerolandSn-3di
galactosyldiacylglycerolarecommonlypresentinmembranestructuresespeciallyinthechloroplast
membrane.
• Arepresentativestructureofglycolipidisgivenbelow:
 
 
5.Glycerolethers:
 
• Thesealsocalledplasmalogens.
• StructurallytheycontaineitheranO-alkyl(-O-CH2-)orO-alkenylether(-O-CH=CH-)speciesatC-1
(Sn1)ofglycerol.AbasicO-alkenyletherspeciesisshownintheadjoiningpicture:
 
 
• Oneofthephysiologicallyimportantalkyletherplasmalogensisplateletactivatingfactor(PAF)
whichisacholineplasmalogeninwhichtheC-2(sn2)positionofglycerolisesterifiedwithanacetyl
groupinsteadofalongchainfattyacid.PAFmediateshypersensitivityandacuteinflammatory
reactions.
 
6.TerpenoidsandSterols:
 
• Theseareverydistinctgroupoflipidscomposedofthemonomerrepeatingunitscalled“isoprenoid
units”.Steroids,carotenoids,rubberandterpenesfallinthisclassoflipids.
 

39
BIOMOLECULES SH/BT/GSC/CTA  
• Terpenesarethechiefconstituentsoftheessentialoils,balsams,resins,waxes,andrubber.Plant
terpenoidsareknownfortheiraromaticqualities.Theyplayimportantpartintraditionalherbal
remediesandareunderstudyforantibacterial,andpharmaceuticalapplications.
• The steroidsandsterols inanimalsarebiologicallyproducedfromterpenoidprecursors.
• Structureofβ-caroteneandcholesterol,fewamongimportantcompoundofthisclassareshown
below:
 
7.Waxes:
 
Theseareclassoflipidsfoundasprotectivecoatingonfruitsandleavesorsecretedbyinsects.
Chemicallythesearecomplexmixtureoflongchainalkanesandderivativesofsecondaryalcoholand
ketones.
 
Lipoproteins:
 
• A lipoprotein isacomplex assemblycontainingboth proteins and lipids bondedcovalentlyornon-
covalentlytotheproteins.Enzymes,transporters,structuralproteins, antigens,adhesinsand
toxins arelipoproteins.Foreg:HDL(highdensitylipoprotein),LDL(lowdensitylipoprotein).The
lipoproteinparticleiscomposedofanoutershellofphospholipid,whichmakesitwatersoluble;acore
offatsandasurfaceapoproteinmoleculethatallowsrecognitionbythetissuesanduptakeofthe
particle.
• Thegeneralstructureofalipoproteinisgivenbelow:
 
 
• Thelipoproteinparticleiscomposedofanoutershellofphospholipid,whichmakesitwatersoluble;
acoreoffatsandasurfaceapoproteinmoleculethatallowsrecognitionbythetissuesanduptakeof
theparticle.
 
Classificationandfunctionsoflipoproteins:
 
Themajorfunctionoflipoproteinparticlesistotransportlipids(fats)(suchastriacylglycerol)around
thebodyintheblood.Lipoproteinsmaybeclassifiedonthebasisoftheirdensity.Theymaybe
categorisedas:
• Chylomicron(lowestindensity) whichcarrytriglyceridesfromtheintestinetotheadiposetissue.
• VLDL (verylowdensitylipoprotein);carry(newlyynthesised) triacylglycerol fromthelivertoadipose
tissue.

40
BIOMOLECULES SH/BT/GSC/CTA • IDL(intermediatedensitylipoprotein);internediatebetweenLDLandVLDL.
• LDL(lowdensitylipoprotein);carrycholesterolfromthelivertocell/tissuesofthebody.
• HDL(highdensitylipoprotein);carrycholesterolfromthebodytissuesbacktotheliver.
StructureandFunctionsofNucleicAcids
Nucleicacidsasgeneticmaterial
Whatarenucleicacids?:
 
• Nucleicacidsarethemostimportantbiomoleculesofthecellsformingverybasisofcentral
dogmaoflife. 
• Mostimportantly,thenucleicacids:deoxyribonucleicacid(DNA)andribonucleicacid(RNA),
arethemolecularrepositoriesofgeneticinformations.DNAisthemastermoleculeresponsible
forheredity.Theabilitytostoreandtransmitgeneticinformationfromonegenerationtothenext
isafundamentalconditionforlife.
• Thestructureofeveryprotein,andultimatelyofeverybiomoleculeandcellularcomponent,isa
productofinformationprogrammedintothenucleotidesequenceofacell’sDNA.Thisway
nucleicacidgovernsthefunctionsandphysiologyofthecells.
• Nucleotidesaremonomericunitorbuildingblocksofnucleicacids.
 
FunctionsofNucleicacid:
 
• TheconceptofCentralDogmaexplainsthefunctionsofnucleicacidinnutshellasbelow:
 
 
• DNAisverybasisoflife.Itisthemastermoleculeresponsibleforhereditaryandgenetic
materialofthecellcarryingalltheinformations.
• Itisabletoreplicatesitselfduringcelldivisionandtheprocesscalledreplication.
• ItsynthesisesacomplementarymessengerRNAwhichisresponsibleforcarryingthe

41
BIOMOLECULES SH/BT/GSC/CTA informationforproteinsynthesis.
• Italsoregulatesproteinsynthesis.
DNAContent of Organisms:
 
• The overall DNA contained inone cell is called a genome. 
• Prokaryoticcells contain one moleculeofDNA, while humansomaticcells contain
46 molecules of DNA per nucleus. 
• The somaticcells of eukaryotes commonly havetwo sets of genes
derived from both parents, andthese cells are called diploids. 
• Cells thathave only one set of genes are called haploids.Forexample,
most prokaryotes are haploids. 
• DNAcontentgreatlyvariesamongorganisms.Generally,DNAcontentpercellislargerin
eukaryotesthaninprokaryotes. 
• Humansomaticcellscontainapproximately1,000timesasmuchDNAasthoseofE.coli
(perhaploid).Fordiploidcells,theamountpercellis6pg. 
• Althoughitmaygenerallybeseenthatamongeukaryotes,thehigheranorganism,the
moreDNAcontent,therecanbevariationsamongorganismsofthesamegroup. 

42
BIOMOLECULES SH/BT/GSC/CTA • Forexample,amongvertebrates,suchvariationsmaybeseeninfishandamphibians,with
somespecieshavingmoreDNAcontentthanhumans. 
• SomehigherplantspeciesalsohavemoreDNAthanhumans.
 
 
Buildingblocksofnucleicacids
 
Thenitrogenousbases:
 
• PurinesandPyrimidinesaretwotypesofbaseswhichoccurinnucleicacids.
 
Therearefivemajorbasesfoundincells.Thederivativesofpurineare
called adenine and guanine,whilethoseofpyrimidineare
called thymine, cytosine and uracil.
• Thecommonabbreviationsusedforthesefivebasesare,A,G,T,CandU.DNAcontainsA,
G,CandT,whereasRNAcontainsA,G,CandUbases.
 
Structureofnitrogenousbases:

43
BIOMOLECULES SH/BT/GSC/CTA  Sugar: Riboseand2-deoxyribosearethetwosugarsfoundinRNAandDNArespectively.
TherecurringdeoxyribonucleotideunitsofDNAcontain2-deoxy-D-ribose,andthe
ribonucleotideunitsofRNAcontainD-ribose.Innucleotides,thesearefoundintheir
furanose(closedfive-memberedring)form.
 
Phosphoricacid getsattachedtoC-5OHgroupofthesugar.
 

44
BIOMOLECULES SH/BT/GSC/CTA • Thebaseandsugararecalled “nucleoside”.Thebondbetweenthemiscalledthebeta
-glycosidiclinkage.Thepositionofattachmentisshownbelow.Examplesof
nucleosidesincludecytidine,uridine,adenosine,guanosine,thymidine.
 
Nucleotides arecomposedofthreecomponentsnamelynitrogenousbases,pentosesugar
andphosphategroup.Thephosphateisattachedto5’CH2OHgroupofsugarpartof
nucleoside.Atypicalnucleotideisshownbelow:
Thebaseofanucleotideisjoinedcovalently(atN-1ofpyrimidinesandN-9ofpurines)inan
N—glycosylbondtothe1carbonofthepentose,andthephosphateisesterifiedtothe5
carbon.TheN-glycosylbondisformedbyremovalofawatermolecule.
 
 
• Thebaseofanucleotideisjoinedcovalently(atN-1ofpyrimidinesandN-9ofpurines)in
anN—glycosylbondtothe1carbonofthepentose,andthephosphateisesterifiedtothe5
carbon.TheN-glycosylbondisformedbyremovalofawatermolecule.
 
Polynucleotides:
 
• Polynucleotides areformedbyjoiningofnucleotidesbyphosphodiesterlinkages.
• Thebondformationtakesplacebetweenthealcoholofa5'-phosphateofonenucleotide
andthe3'-hydroxylofthenext,resultingintoaphosphodiesterbond.
 
 
• DNAandRNAarepolynucleotides.

45
BIOMOLECULES SH/BT/GSC/CTA InDNAandRNAthenucleotidesarearrangedinlinearwayandproceedsinthe5'---->3'
direction.Acommonrepresentationofploynucleotideforexamplecanbeseenasbelow:
5'pApTpGpCOH3'
 
 
 
DNA-structure,propertiesandfunction
 
StructureofDNA:
 
• ThediscoveryofDNAstructureisoneofthehallmarkofthemodernmolecularbiology.
• BasedontheassumptionsofChargoffandutilizingX-raydiffractiondata,obtainedfrom
crystalsofDNAbyRosalindFranklinandMauriceWilkins,JamesWatsonandFrancisCrick
proposedamodelforthestructureofDNAin1953.
• TheyestablishedthatDNAhasadoublehelicalstructurecomprisingoftwocomplementary

46
BIOMOLECULES SH/BT/GSC/CTA antiparallelpolynucleotidestrands,woundaroundeachotherinarightwarddirection.
• Thebackboneofthehelixissugar-phosphateandthebasesareintheinteriorofthehelixand
extendedat90
0
perpendiculartotheaxisofthehelix.Basesfromoppositehelixpairwitheach
other.Purinesformbasepairswithpyrimideneasathumbrule-AwillpairwithT,andCwithG.
Accordingtothispattern,knownasWatson-Crickbase-pairing.
SpecificfeaturesofDNAstructure:
 
• Itisdoublehelicalstructure.Onepolynucleotidechainformsonestrand.Twosuchstrandsform
doublehelix.
• Chainhassugarphosphatebackboneandthebasesarearrangedperpendiculartothechain.
• Twostrandsareantiparalleltoeachother:onein5'--->3'directionandtheotherinthe3'--->5'
direction.
• AandT;andGandCoccurascomplementaryandformbasepairwithcorresponding
complementarybaseinoppositestrand.

47
BIOMOLECULES SH/BT/GSC/CTA • Oneturnofthehelixis36Aand10basepairsarefoundperturnwithriseof3.6A.
• Onthesurfaceofdoublehelixtwodeepgroovesarefoundwhicharecalledmajorand minor
grooves.
• Helixisrighthandedalongtheaxis.
 
Thebasespairsarehydrogenbondswitheachotherandimpartstabilitytothestructure.Thebase-
pairscomposedofGandCcontainthreeH-bonds,whereasthoseofAandTcontaintwoH-bonds.For
thisreasonG-Cbase-pairsarestrongerthanA-Tbase-pairs.TheoutcomewillbethatDNAhaving
moreGCbasepairswillbemorestablethantheonehavingmoreATpairs.
 
Basesarestackedovereachotherinthedoublehelix.
• HydrophobicinteractionsbetweenstackedbasesalsostabilizetheDNA.
• Thesugarphosphatebackboneofeachstrandisnegativelycharged(duetophosphategroup(pKa
beingneartozero).ThesechargesarestabilizedbyMg
2+
.
 
 
VariousconformationsofDNA:
 
• OneofthepropertiesoftheDNAisthatitshowsconformationalflexibility,andcouldexistin
alternativestructuralforms.TheWatson-CrickstructureistheB-formDNAorB-DNA.
• TheBfromisthemoststablestructureforarandomsequenceDNAmoleculeunderphysiological
conditionsandistherefore“thestandardpointofreferenceinanystudyofthepropertiesof
DNA”.TheB-DNApredominatesinthecell.
• TherearetwootherstructuralvariantsofDNAthathavebeenwellcharacterizedincrystal

48
BIOMOLECULES SH/BT/GSC/CTA structures.TheyaretheA-DNAandZ-DNA.TheseDNAvariantsdifferintheirhelicalsense,diameter,
basepairsperhelicalturn,helixriseperbasepair,basetiltnormaltothehelixaxis,sugarpucker
conformation,andglycosylbondconformation.
 
StructureofRNA:
 
UnlikeDNA,RNAaresinglestrandedpolynucleotide.Itcontainsuracilbaseinsteadofthymine,
thusfourbasesofRNAareA,U,GandC.TherearethreetypesofRNApresentinthecell: 
• MessengerRNA. 
• TransferRNA. 
• RibosomalRNA.
 
MessengerRNA:
 
• MessengerRNAaredesignatedasm-RNA. 
• m-RNAdoesnotcontainveryorganizedsecondarystructure. 
• Thepolypeptideislinearingeneral,exceptacquiringhairpinstructureatsomeplacesduetothe
basepairingbetweencomplementarybasepairsofthechain.MessengerRNAisgeneratedinthe
nucleusasthecomplementarycopyofDNAstrand,byaprocesscalledtranscription. 
• ItcarriesthegeneticinformationoftheDNAtobeusedforproteinsynthesis.

49
BIOMOLECULES SH/BT/GSC/CTA  
TransferRNA:
 
• Designatedast-RNA.Theyhavewelldefinedcloverleafstructureasshowninfigure.Ithasfour
arms,whicharedesignatedasDihydrouridine(DHU),anticodon,pseudouridine(TΨC)armsandone
smalloptionalarm.3’ofthet-RNAhasconservedsequenceCCAatwhichspecificaminoacidis
attached.
 
Itactsasadaptermolecule.Anticodonslocatedatanticodonarmformcomplementarybase
pairswithcodonduringproteinsynthesisprocess.Thustheroleoft-RNAistotransferamino
acidforproteinsynthesis.
 
 
RibosomalRNA:
 
• Designatedasr-RNA. 
• Inthecytoplasm,ribosomalRNAandproteincombinetoformanucleoproteincalleda
ribosome.TheribosomebindsmRNAandcarriesoutproteinsynthesis. 
SeveralribosomesmaybeattachedtoasinglemRNAatanytime.
 

50
BIOMOLECULES SH/BT/GSC/CTA MicroRNAs:
 
• MicroRNAs(miRNA)aresingle-strandedRNAmoleculesof21-23nucleotideslength.miRNAsare
post-transcriptionalregulatorsthatbindtocomplementarysequencesonmRNAtranscriptsleading
torepressionoftranslationorgenesilencing. 
• miRNAsareencodedbygenestranscribedfromDNAbutnottranslatedintoprotein(non-coding
RNA); 
• Theyareprocessedfromprimarytranscriptsknownaspri-miRNAtoshortstem-loopstructures
calledpre-miRNAandfinallytofunctionalmiRNA. 
• ThemainfunctionofmaturemiRNAmoleculesappearstobeinregulationofgeneexpression. This
effectwasfirstdescribedin1993fortheworm C.elegans byVictorAmbrosandhisgroup.Since2002,
miRNAshavebeenconfirmedinvarious plants and animalsforeg. C.elegans andthe

51
BIOMOLECULES SH/BT/GSC/CTA plant Arabidopsisthaliana. 
• Thehumangenomeencodesover1000miRNAsandabundantlyfoundinmanyhumancelltypes.
 
Short-interferingRNAs:
 
Short-interferingRNAs (siRNAs)foundinplantsarefunctionalinpreventingthetranscription
of viral RNA.ThesiRNAisdouble-strandedbutthemechanismofactionissimilartothatofmiRNA.
siRNAsarealsousedtoregulatecellulargenes.
 
Double-strandedRNA:
 
Double-strandedRNA(dsRNA)referstoRNAwithtwocomplementarystrands.dsRNAformsthe
geneticmaterialofsomeviruses(double-strandedRNAviruses).Double-strandedRNAsuchasviral
RNAorsiRNAareknowntobeabletotriggerRNAinterferenceineukaryotes.RNAcanalsoactas
carriersofgeneticinformation. 
• Forexample,genomesofRNAvirusesarecomposedofRNAthatencodesforanumberofproteins.
Theviralgenomeisreplicatedbysomeofthoseproteins. 
• Similarly,viroidsareanothergroupofpathogens,consistingonlyofRNA.Theydonotencodeforany
proteinandarereplicatedbypolymerasebelongingtothehostplantcell.
 
 
VitaminsandCoenzymes
Definitionandroleofvitamins
Whatarevitamins?
 
• Thename “vitamin” issourcedfrom "vitalamines" sinceitwasoriginallythoughtthatthese
substanceswereallamines.
• Vitaminsareaclassoforganiccompoundsthatareimportantfornormalgrowthandnutrition;
requiredin smallquantities inthedietbecausetheycannotbesynthesizedbythebody.Theseare
thereforeessentialnutrientsforlivingsystem. 
• Vitaminsparticipateinregulationoftheenergy-producingprocesses. Withtheexceptionofvitamin
DandK,vitaminscannotbesynthesizedbythehumanbodyandmustbeobtainedfromthediet.
 
TypesofVitamins :
 
Vitaminscanbebroadlyclassifiedintotwomaincategories:
Water-solublevitaminsand 
Fat-solublevitamins. 

52
BIOMOLECULES SH/BT/GSC/CTA • Water-solublevitamins:
Asthenamesuggests,thesevitaminsarewatersolubleandcan’tbestoredinthebody.Theseare
eliminatedinurine.Wethereforeneedacontinuoussupplyofthemindiets.Thewater-soluble
vitaminsaretheB-complexgroupandvitaminC.ExamplesofwatersolublevitaminsareThiamin
(vitaminB1),Riboflavin(vitaminB2),Niacin,VitaminB6,Folate,VitaminB12,Biotin,Pantothenicacid
andVitaminC.
• Fat-solublevitamins:
Thefat-solublevitaminsdifferfromthewatersolubleonesinthatthesearestoredinthebody.Fat-
solublevitaminsincludethegroupofvitaminsA,D,EandK.Theyaresolubleinfatandareabsorbed
bythebodyfromtheintestinaltractbytheuseofbileacidsfromtheliver.Oncethesevitaminsare
absorbed,thebodystorestheminbodyfat.Whenneeded,thebodyutilizesthemoutofstoragetobe
used.
Fatsolublevitaminsshouldnotbeconsumedinexcesssinceanexcesscanresultinsideeffectslike
irritability,weightloss,nausea,headache,diarrheaetc. 
 
Roleofvitamins:
 
• Individualvitaminslikethiamine,riboflavin,nicotinicacid,pentothenicacid,pyridoxine,lipoicacid,
biotin,folicacid,ascorbicacidhavespecificfunctionsoftheirown.
• Asagroup,theyareinvolvedingrowth,maintenanceofhealthandregulationofcellularprocess. 
• Theyalsoplayaroleinmetabolism,enablingthebodytouseessentialnutrientssuchas
carbohydrates,fats,proteinsandminerals. 
• Vitaminsareimportantforaregularandnormalappetite,digestion,andresistanceagainstdiseases
andinfections.
• Theyhaveseveraltherapeuticandmedicinaleffects.
VITAMINS
Vitaminsareorganiccompoundsrequiredbythebodyinsmallamountsformetabolism,toprotect
health,andforpropergrowthinchildren.Vitaminsalsoassistintheformationofhormones,blood
cells,nervous-systemchemicals,andgeneticmaterial.Theygenerallyactascatalysts,combining
withproteinstocreatemetabolicallyactiveenzymesthatinturnproducehundredsofimportant
chemicalreactionsthroughoutthebody.Withoutvitamins,manyofthesereactionswouldslowdown
orcease.
CHEMICALCOMPOSITION:
Vitaminsareorganiccompoundsofdifferentchemicalnature.Thesearealcohols,aldehyde,organic
acids,theirderivativesornucleotidederivatives.
CLASSIFICATIONOFVITAMINS:
Vitaminsareclassifiedaccordingtotheirabilitytobeabsorbedinfatorwater.
1.FatSolubleVitamins:Theseareoilyandhydrophobiccompounds.Thesearestoredintheliverand

53
BIOMOLECULES SH/BT/GSC/CTA arenotexcretedoutofthebody.Bilesaltsandfatsarerequiredfortheirabsorption.VitaminA,D,E
andKarefatsolublevitamins.Becausethesevitaminscanbestored,theirexcessiveintakemay
havetoxiceffectandcanresultinHypervitaminosis.
2.WaterSolubleVitamins:VitaminBcomplexandvitaminCarewatersoluble.Theyarecompounds
ofcarbon,hydrogen,oxygenandnitrogen.Theyarenotstoredinthebodythereforetheyrequired
dailyinsmallamount.
FATSOLUBLEVITAMIN
1.VITAMINA:
VitaminAisapaleyellowprimaryalcoholderivedfromcarotene.
ItincludesRetinol(alcoholicform),Retinal(Aldehydeform)andRetinoicacid(acidicform).
Source:•Inanimalform,vitaminAisfoundinmilk,butter,cheese,eggyolk,liver,andfish-liver
oil.•Inplantsourceitobtainedfromvegetablesascarrots,broccoli,squash,spinach,kale,and
sweetpotatoes.
PhysiologicalSignificance:•AllthreeformsofvitaminAarenecessaryforpropergrowth,
reproduction,vision,differentiationandmaintenanceofepithelialcells.
•VitaminAacceleratesnormalformationofboneandteeth.
•Retinoicacidisneededforglycoproteinsynthesis.
DeficiencyofVitaminA:•Anearlydeficiencysymptomisnightblindness(difficultyinadapting
todarkness).•Othersymptomsareexcessiveskindryness•Lackofmucousmembrane
secretion,causingweaknesstoresistbacterialattack
•Drynessoftheeyesduetoamalfunctioningofthetearglands.
HypervitaminosisofVitaminA:ExcessvitaminAcaninterferewithgrowth,stopmenstruation,
damageredbloodcorpuscles,andcauseskinrashes,headaches,nausea,andjaundice.
2.VITAMIND(CalciferolorAntirachiticVitamin):
Source:VitaminD2VitaminD3•VitaminDisobtainedfromeggyolk,codliveroilandliveroil
fromotherfishes.•Itisalsomanufacturedinthebodywhensterols,whicharecommonly
foundinmanyfoods,migratetotheskinandbecomeirradiated.
PhysiologicalSignificance:•Thisvitaminisnecessaryfornormalboneformationandfor
retentionofcalciumandphosphorusinthebody.•Italsoprotectstheteethandbonesagainst
theeffectsoflowcalciumintakebymakingmoreeffectiveuseofcalciumandphosphorus.•It
decreasespHinthelowerintestine.
Deficiency:•VitaminDdeficiencyproducesricketsinchildrenandOsteomalaciainadult.
•Ricketsischaracterizedbyabnormitiesoftheribcageandskullandbybowlegs,dueto
failureofthebodytoabsorbcalciumandphosphorus.
•Osteomalaciaischaracterizedbysoftnessofpelvicgirdle,ribsandfemoralbones.
HypervitaminosisofVitaminD:
•BecausevitaminDisfat-solubleandstoredinthebody,excessiveconsumptioncancause
vitaminpoisoning,kidneydamage,lethargy,andlossofappetite.
3.VITAMINE(TocopherolorFertilityVitamin):
Source:•Itisfoundinvegetableoils,wheatgerm,liver,andleafygreenvegetables.•Theyare

54
BIOMOLECULES SH/BT/GSC/CTA alsopresentinlittleamountinmeat,milkandeggs.
PhysiologicalSignificance:•VitaminEactsasantioxidants.Theyplaysomeroleinformingred
bloodcellsandmuscleandothertissuesandinpreventingtheoxidationofvitaminAandfats.
•Itisalsoassociatedwithcellmaturationanddifferentiation.
Deficiency:•DeficiencyofvitaminEcausessterilityinbothmaleandfemales.•Itcauses
musculardystrophy.•Inchildrenitcauseshaemolysis,creatinuria.
4.VITAMINK(PhylloquinoneorAntihemorragicVitaminorCoagulationVitamin):
VitaminKisacomplexunsaturatedhydrocarbonfoundintwoformsVitaminK1
(Phylloquinone)andVitaminK2(Menaquinone).VitaminK1-Phylloquinone
Source:
•TherichestsourcesofvitaminKarealfalfa,fishlivers,leafygreenvegetables,eggyolks,
soybeanoil,andliver.•Itisalsoproducedbybacteriainhumanintestinethereforenodietary
supplementisneeded.Physiological
Significance:
•Thisvitaminisnecessarymainlyforthecoagulationofblood.
•Itaidsinformingprothrombin,anenzymeneededtoproducefibrinforbloodclotting.•Acts
asaninducerforthesynthesisofRNA.
•Itisalsorequiredfortheabsorptionoffat.
Deficiency:
•DigestivedisturbancesmayleadtodefectiveabsorptionofvitaminKandhencetomild
disordersinbloodclotting.HypervitaminosisofVitaminK:
•AdministrationoflargedosesofvitaminKproduceshaemolyticanemiaandjaundicein
infantsbecauseofbreakdownofRBCs.
WATERSOLUBLEVITAMIN
KnownalsoasvitaminBcomplex,thesearefragile,water-solublesubstances,severalof
whichareparticularlyimportanttocarbohydratemetabolism.
TheyincludeVitaminB1(Thiamine),VitaminB2(Riboflavin),VitaminB3(NiacinorNicotinic
Acid),VitaminB6(Pyridoxine),VitaminB12(Cobalamin)etc.
5.VITAMINB1(Thiamine):VitaminB1(ThiamineChloride)Thiamine,orvitaminB1,acolorless,
crystallinesubstance.Itisreadilysolubleinwaterandslightlyinethylalcohol.
Source:•VitaminB1isabundantlyfoundingerminatingseeds,un-milledcereals,beans,
orangejuice,tomato,egg,meat,fish,organmeats(liver,heart,andkidney),leafygreen
vegetables,nuts,andlegumes.Physiological
Significance:•Actsasacatalystincarbohydratemetabolism,enablingpyruvicacidtobe
absorbedandcarbohydratestoreleasetheirenergy.
•Thiaminealsoplaysaroleinthesynthesisofnerve-regulatingsubstances.
Deficiency:•Deficiencyinthiaminecausesberiberi,whichischaracterizedbymuscular
weakness,swellingoftheheart,andlegcramps.

55
BIOMOLECULES SH/BT/GSC/CTA 6.VITAMINB2(Riboflavin):VitaminB2(Riboflavin)
Source:•Thebestsourcesofriboflavinareliver,milk,meat,darkgreenvegetables,wholegrain
andenrichedcereals,pasta,bread,andmushrooms.
PhysiologicalSignificance:•Itisessentialforcarbohydratemetabolism.Enzymecontaining
riboflaviniscalledFlavoproteins.•Itactsascoenzymeforenzymecatalyzingoxidation-
reductionreaction.Deficiency:•ItsdeficiencycausesGlossitis(inflammationoftongue).•
Lackofthiaminecausesskinlesions,especiallyaroundthenoseandlips,andsensitivityto
light.
7.VITAMINB3(NiacinorNicotinicAcid):VitaminB3(Niacinamide)
Source:•Thebestsourcesofniacinareliver,poultry,meat,cannedtunaandsalmon,whole
grainandenrichedcereals,driedbeansandpeas,andnuts.•Thebodyalsomakesniacinfrom
theaminoacidtryptophan
PhysiologicalSignificance:•Nicotinicacidisessentialforthenormalfunctioningofskin,
intestinaltractandthenervoussystem.•VitaminB3worksasacoenzymeinthereleaseof
energyfromnutrients.
Deficiency:•Adeficiencyofniacincausespellagra,thefirstsymptomofwhichisasunburn
likeeruptionthatbreaksoutwheretheskinisexposedtosunlight.•Latersymptomsareared
andswollentongue,diarrhea,mentalconfusion,irritability,and,whenthecentralnervous
systemisaffected,depressionandmentaldisturbances.
8.PANTOTHENICACIDorVITAMINB5:VitaminB5(PantothenicAcid)
Source:•Itsmainsourcesareliver,milk,meat,eggs,wheatgerm,wheatbran,potatoes,sweet
potatoes,tomatoes,cabbage,cauliflowerandbroccoli.Fruitandothervegetablesalsohave
pantothenicacid.
PhysiologicalSignificance:•Pantothenicacidisessentialforgrowthofinfantsandchildren,•
Itplaysamajorroleinthemetabolismofproteins,carbohydrates,andfats.Deficiency:•Its
deficiencycausesnausea,vomiting,gastrointestinaldisorders,impropergrowthandfattyliver.
9.VITAMINB6(Pyridoxine):VitaminB6(Pyridoxal)
ChemicalStructureSource:•Thebestsourcesofpyridoxinearewhole(butnotenriched)
grains,cereals,bread,liver,avocadoes,spinach,greenbeans,andbananas.•Itisalsofoundin
milk,eggs,fish,chicken,beaf,porkandliver.PhysiologicalSignificance:•Pyridoxine,orvitamin
B6,isnecessaryfortheabsorptionandmetabolismofaminoacids.•Italsoplaysrolesinthe
useoffatsinthebodyandintheformationofredbloodcells.Deficiency:•Pyridoxine
deficiencyischaracterizedbyskindisorders,cracksatthemouthcorners,smoothtongue,
convulsions,dizziness,nausea,anemia,andkidneystones.
10.VITAMINb7(Biotin):VitaminB7(Biotin)Biotinisalsoknownas“anti-eggwhiteinjury
factor”orasH-factor.Source:•Biotinoccursincombinedstateasbiocytin.Itisfoundinyeast,
liver,kidney,milkandmolasses.PhysiologicalSignificance:•Biotinservesasprostheticgroup
formanyenzymeswhichcatalyzefixationofCO2intoorganicmolecules.•Ithelpsin
synthesisoffattyacids.Deficiency:•Itsdeficiencycausedthedestructionofintestinal
bacteria.•Itleadstonauseaandmuscularpain.
11.VITAMINB9orMorBc(FolicAcid):VitaminMorFolicAcidSource:•Folicacidisfoundin
yeast,liverandkidney.•Fishmeatandgreenleafyvegetables,milkandfruitsalsoprovidefolic

56
BIOMOLECULES SH/BT/GSC/CTA acid.PhysiologicalSignificance:•Folicacidactsasacoenzymeandhelpinsynthesisof
purinesandthymineduringDNAsynthesis.•Ithelpsinformationandmaturationofredblood
cells.Deficiency:•Folicaciddeficiencygivesrisetomegaloblasticanemia.•Thepatient
suffersfromretardedgrowth,weakness,infertility,inadequatelactationinfemalesand
gastrointestinaldisorders.
12.VITAMINB12(Cynocobalamin):VitaminB12orCobalamin,orAnti-PerniciousAnaemic
Factor(APA),oneofthemostrecentlyisolatedvitamins.
Source:•Cobalaminisobtainedonlyfromanimalsources—liver,kidneys,meat,fish,eggs,and
milk.VegetariansareadvisedtotakevitaminB12supplements.
PhysiologicalSignificance:•Itisnecessaryinminuteamountsfortheformationof
nucleoproteins,proteins,andredbloodcells.•Itisnecessaryforthefunctioningofthe
nervoussystem.•Itstimulatestheappetiteofthesubject.
Deficiency:•DuetoitsdeficiencyPerniciousAnemiaresultswhichischaracterizedby
symptomsofineffectiveproductionofredbloodcells,faultymyelin(nervesheath)synthesis,
andlossofepithelium(membranelining)oftheintestinaltract.
13.LIPOICACID:•LipoicacidisaSulphurcontainingfattyacid.Itiswidelydistributedin
naturalfoods.Lipoicacidfunctionsasacoenzymeinoxidativedecarboxylationofpyruvicacid
andα-ketoglutaricacid.Itsdeficiencydisordershavenotbeenrecorded.
14.INOSITOLSource:•Yeast,meat,milk,nuts,fruits,vegetablesandgrainscontainsInositol.
PhysiologicalSignificance:•Itincreasesperistalsisofsmallintestine,increasetherateof
contractionofheartmuscles.Deficiency:•Deficiencysymptomsincluderetardedgrowth,
failureoflactation,andlossofhairoverthebody(alopecia)etc.
15.CHOLINE:
Source:•Cholineisfoundinliver,eggyolk,meat,cereals,rice,milk,fruitsandvegetables.
PhysiologicalSignificance:•Acetylcholineisachemicalmediatorofparasympathetic
activitiesandotheractivitiesofnervoussystem.•Itpreventsaccumulationoffatintheliver.
Deficiency:•Itsdeficiencycausesfattyliver,slippedtendondiseasesetc.
16.VITAMINC(AscorbicAcidorAntiscorbuticVitamin):
VitaminC-AscorbicAcidSource:•SourcesofvitaminCincludecitrusfruits,fresh
strawberries,cantaloupe,pineapple,andguava.•GoodvegetablesourcesareBroccoli,
Brusselssprouts,Tomatoes,Spinach,Kale,GreenPeppers,Cabbage,andTurnips.
Physiological
Significance:•VitaminCisimportantintheformationandmaintenanceofcollagen,theproteinthat
supportsmanybodystructuresandplaysamajorroleintheformationofbonesandteeth.•Italso
enhancestheabsorptionofironfromfoodsofvegetableorigin.•Theconnectivetissuefibrilsand
collagenaresynthesizedwiththehelpofvitaminC.•Itplayimportantroleinwoundrepair.•It
protectsbodyagainststress.
Deficiency:•Thiswell-knownScurvyistheclassicmanifestationofsevereascorbicaciddeficiency.
Itssymptomsarelossofthecementingactionofcollagenandincludehemorrhageswhichleadto
looseningofteethandcellularchangesinthelongbonesofchildren.
Summaryofvitaminsoffatsolubleandwatersolublevitamins

57
BIOMOLECULES SH/BT/GSC/CTA

58
BIOMOLECULES SH/BT/GSC/CTA

59
BIOMOLECULES SH/BT/GSC/CTA Porphyrin
PorphyrinnucleusPorphyrinsarehighlycolouredcyclictetrapyrrolicpigmentsformedbythelinkage
offourpyrroleringsthroughmethene(–HC=)bridges(Fig.1).Thebasicstructureofatetrapyrroleis
fourpyrroleringssurroundingacentralmetalatom.Porphyrinsare22pelectronsystemswhosemain
conjugationpathwaycontains18pelectrons,whichexplainsthearomaticnaturefromwhichthe
intensecolourassociatedwiththemstems.
Theporphyrinsrepresentthemostwidespreadofalltheprostheticgroupsfoundinnature.They
mediateaspectrumofcriticalfunctionsinavarietyofbiologicalsystemsrangingfromelectron
transfer,oxygentransport,photosyntheticenergytransductionandconversionofcarbondioxideinto
fuel.Inaddition,porphyrinsinwhichthemacrocycleisoxidized,i.e.cationradicals,areimportant

60
BIOMOLECULES SH/BT/GSC/CTA intermediatesinthecatalyticcyclesofhemeproteinsandinphotosyntheticprocesses.Theseare
aptlytermedas‘pigmentsoflife’.Commonexamplesofimportantporphyrinsincludehemeand
cytochrome(withchelatediron),chlorophyll(withchelatedmagnesium),coenzymeB12(with
chelatednickel).Thus,theparentformofthesetetrapyrrolicmacrocycleshasacommonporphin
nucleus
Porphyrinnucleus
ClassificationofporphyrinsTheporphyrinsarenamedandclassifiedonthebasisoftheirside-chain
substituentgroups.Incaseofnaturalporphyrins,varioussidechainsaresubstitutedfortheeight
hydrogenatomsintheporphinnucleus.Thus,thenaturallyoccurringporphyrinsinclude:&TypeI&
TypeIII
MetalloporphyrinsoccurringinnatureTheporphyrinscontainingthemetalatomarecalled
metalloproteins.Theporphyrinshaveacharacteristicpropertyofformationofcomplexeswithmetal
ionsboundtothenitrogenatomofthepyrrolerings.Variousexamplesofmetalloproteinsoccurring
innatureare:™Ironcontainingporphyrins:Hemeproteins(hemoglobin,myoglobin,cytochrome,
enzymescatalaseandperoxidase)™Magnesiumcontainingporphyrin:Chlorophyll™Cobalt
containingporphyrins:VitaminB12HemeproteinsHemesareadiversegroupoftetrapyrrole
pigments.HemesarepresentastheprostheticgroupofbothHaemoglobin(Hb)andMyoglobin(Mb)
alongwithotherglobinproteins.Hemeisresponsibleforthecharacteristicredcolourandisthesite
atwhicheachglobinmonomerbindsonemoleculeofO2.Hemeisalsorequiredbythecytochromes
(includingthoseinvolvedintherespiratoryandphotosyntheticelectrontransport)andthe
cytochromeP450thatisusedindetoxificationreactions.Someenzymes,includingcatalaseand
peroxidase,alsocontainheme.Inalltheseproteins,thefunctionofthehemeiseithertobindand
releasealigandtoitscentralironatom,orfortheironatomtoundergoachangeinoxidationstate,
releasingoracceptinganelectronforparticipationinaredoxreaction.Theheterocyclicringsystem
ofhemeisaporphyrinderivative(protoporphyrinIX)andconsistsoffourpyrroleringslinkedby
methenebridges.Besides,itformsachelatecomplexwithFe(II),calledprotohemeormoresimply
hemeprostheticgroup.AsimilarcomplexwithFe(III)iscalledheminorhematin.Inheme,thisFe2+
bondswithfournitrogenatomsinthecenteroftheprotoporphyrinringformingasquare-planar
complex,andtheremainingfifthandsixthcoordinationpositionsofironareperpendiculartothe
planeoftheporphinringoneitherside.Whenthefifthandsixthpositionsofironareoccupied,the
resultingstructureisahemochromeorhemochromogen.Thestructureofhemeprostheticgroup(Fe-
protoporphyrinIX)

61
BIOMOLECULES SH/BT/GSC/CTA StructureofHaem
Inmammals,hemeissynthesizedprimarily(85%ofbody’shemegroups)inimmatureerythrocytes
(erythroblasts)withtheremainderoccurringintheliver.Fig.8outlinesthesynthesisofhemefromδ-
amino-levulinicacid(ALA).
Haemoglobin(Hb):Hbisamemberofthefamilyofpigmentscalledtetrapyrroles.Itisaoxygen
bindingallosterichemeproteinandthehemegroupisresponsibleforthedeepred-browncolourof
Hb.Hbisaheterotetramer,α2β2containingtwotypesofsubunits,αandβ
Eachofthefoursubunitsofhaemoglobin(Hb)noncovalentlybindsasinglehemegroup.
Three-dimensionalstructureofhaemoglobinTheαandβsubunitsarestructurallyandevolutionarily
relatedtoeachotherandtotheMb,themonomericoxygen-bindingproteinofmuscle.Closetowhere
theO2bindstothehemegroupinHb,isahistidineresidue,thedistalhistidine(HisE7).
Thisservestwoveryimportantfunctions.First,itpreventshemegroupsonneighboringHbmolecules
comingincontactwithoneanotherandoxidizingtotheFe3+stateinwhichtheycannolongerbind
O2.Second,itpreventscarbonmonoxide(CO)bindingwiththemostfavourableconfigurationtothe
Fe2+,therebyloweringtheaffinityofhemeforCO.ThisisimportantbecauseonceCOhasbound
irreversiblytotheheme,theproteincannolongerbindO2.Intheglobins(HbandMb),fourpyrrole
nitrogensoccupytheonetofourpositionsofiron,thefifthpositionisoccupiedbyanimidazolegroup
ofahistidineresidue,theproximalhistidine,whichlieseighthresiduesalonghelixFofhaemoglobin
(HisF8).Thesixthpositioniseitherunoccupied(deoxyHbanddeoxyMb)oroccupiedbyoxygen
(oxyHbandoxyMb)orotherligands,suchascarbonmonoxide.InbothHbandMb,theironatom
normallyremainsintheFe(II)(ferrous)oxidationstatewhetherornotthehemeisoxygenated(binds
O2).
Thus,althoughtheoxygen-bindingsiteinHbandMbisonlyasmallpartofwholeprotein,the
polypeptidechainmodulatesthefunctionofthehemeprostheticgroup.Althoughmanyinvertebrate
specieshavehaemoglobin-basedoxygentransportsystems,othersproduceoneoftwoalternative
typesofO2-bindingproteins:(i)Haemocyanin,acoppercontainingproteinthatisblueincomplex
withoxygenandcolorlessotherwise;(ii)Haemerythrin,anon-hemeFe-containingproteinthatis
burgundycolouredincomplexwithoxygenandcolorlessotherwise.

62
BIOMOLECULES SH/BT/GSC/CTA STRUCTUREOFHAEMOGLOBIN
Cytochromes(Cyt):
In1925,Keilingavethename‘cytochrome’toagroupofintracellular,electron-transferring
hemoproteinscontainingiron-porphyringroups.Thesearefoundonlyinaerobiccells.Someare
locatedintheinnermitochondrialmembrane,wheretheyactsequentiallytocarryelectrons
originatingfromvariousdehydrogenasesystemstowardmolecularoxygen.
CytochromeP450isfoundinendoplasmicreticulum,whereitplaysaroleinspecialized
hydroxylationreactions.AllcytochromesundergoreversibleFe(II)-Fe(III)valencechangesduring
theircatalyticcycles.Dependingonthenatureofthehemeprostheticgroups,(viz.sidechainsof
theirporphyrinsetc.),thecytochromesfallintodifferentgroups-a,b,candd.
Cytochromea:Hemegroupcontainsaformylsidechain.
Cytochromeb:Hasprotohemeprostheticgroup,whichisnon-covalentlyboundtoprotein.
Cytochromec:Hascovalentlinkagesbetweenthehemesidechainsandtheprotein.
Cytochromed:Hemegroupcontainsadihydro-porphyrin(chlorin).
Incaseofacytochromehavingtwodifferenthemegroupsattachedtoaspecificprotein,bothhemes
maybeindicated,e.g.,‘cytochromebc’.Theuseofunprimeditaliclettersimpliesthatnotonlyare
fourofthecoordinateplacesoftheironattachedtothefournitrogenatomsoftheporphyrin,butalso
positionsfiveandsixareattachedtogroupsintheprotein.Forexample,incytochromec,oneofthe
placesisoccupiedbyahistidineandtheotherbyamethionineresidueintheprotein.Wherethe
hemeisnotinthistypeofstructure,aprimeisused,e.g.,cytochromec’.Thewellestablished
cytochromesareidentifiedbysubscriptnumeralsattachedtotheletterindicatingthegroup,e.g.,
cytochromec3.
Thereducedformsofcytochromesshowamarkedabsorptioninthevisiblerange.Hence,some
cytochromesaregivennamesbasedonthewavelength(innm)oftheα-bandofthereducedform,
e.g.,cytochromec-554etc.[Theabsorptionspectrumofatypicalsinglecytochromeinthereduced
formshowsthreemainbandsinthevisibleregion:thesearecalled,indecreasingorderof
wavelength,theα-,β-andγ-bands].
Thereducedformscannotbeoxidizedbymolecularoxygen,withtheexceptionoftheterminal
cytochromesofmitochondrialrespiration,namely,cytochromea3orcytochromescoxidase,which
alsocontainstightlyboundcopper.Inthemitochondriaofhigheranimals,wheretherespiratorychain
hasbeenmostthoroughlystudied,atleastfivedifferentcytochromeshavebeenidentifiedinthe
innermembrane:cytochromesb,c1,c,aanda3.Atleastoneofthese,cytochromesb,occursintwo
ormoreforms.Inadditiontocytochromesfoundonlyintheinnermembraneofmitochondria,
anothertype,cytochromesb5,occursintheendoplasmicreticulum.Innearlyallthecytochromes,
unlikeglobins,thefifthandsixthpositionsoftheironareoccupiedbytheRgroupsofspecificamino
acidresiduesofproteins.Thesecytochromesthereforecannotbindwithligandslikeoxygen,carbon
monoxideorcyanide;animportantexceptioniscytochromesa3,whichnormallybindsoxygeninits

63
BIOMOLECULES SH/BT/GSC/CTA biologicalfunction.
Chlorophyll
Chlorophyllsaretheessentialcomponentsforphotosynthesisandoccurinchloroplastsasgreen
pigmentsinallphotosyntheticplanttissues.
Theseareimportantintheenergyproducingmechanismsofphotosynthesis.LikeHb,itisamember
ofthefamilyofpigmentscalledtetrapyrroles.Chemically,eachchlorophyllmoleculecontainsa
porphyrin(tetrapyrrole)nucleuswithachelatedmagnesiumatomatthecenterandalongchain
hydrocarbon(phytyl)sidechainattachedthroughacarboxylicacidgroup.
Thereareatleastfivetypesofchlorophyllsinplants.Chlorophyll‘a’and‘b’occurinhigherplants,
fernsandmosses.Chlorophyll‘c’,‘d’and‘e’areonlyfoundinalgaeandincertainbacteria.
ThestructureofchlorophyllaandbisshowninFig.
Theyshareacommonfunctioninalloftheseorganismstoactaslight-harvestingandreactioncenter
pigmentsinphotosynthesis.Thisfunctionisachievedbyanumberofmodificationstothebasic
tetrapyrrolestructure.
Theseinclude:Theinsertionofmagnesiumasthecentralmetalion.Theadditionofafifthringto
thetetrapyrrolestructure.Lossofadoublebondfromoneormoreofthepyrrolerings.
Bindingofonespecificsidechaintoalongfat-likemoleculecalledphytol.Thesechangesgive
chlorophyllsandbacteriochlorophyllsanumberofusefulproperties.Forexample,chlorophyllsare
membranebound,absorblightatlongerwavelengthsthan11hemeandareabletorespondto
excitationbylight.Inthisway,chlorophyllscanacceptandreleaselightenergyanddrive
photosyntheticelectrontransport.