BIOPHARMACEUTICS AND PHARMACOKINETICS.pdf

558 views 48 slides Jan 21, 2025
Slide 1
Slide 1 of 48
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48

About This Presentation

B.PHARMACY VI SEM.
UNIT 4. PHARMACOKINETICS.


Slide Content

B.Pharmacy
Subject-BiopharmaceuticsandPharmacokinetics
SubCode-BP604T
MODULE-3,4
PHARMACOKINETIC
MODELS
M. BALASUNDARESAN,
ASSISTANT PROFESSOR,
ARUNAI COLLEGE OF PHARMACY,
TIRUVANNAMALAI.

Objectiveofcourse;
Understandvariouspharmacokineticparameters,theirsignificance
&applications.
LearningOutcomes;
Studentswilllearnaboutdifferenttype ofpharmacokineticmodelsused
todeterminevariouspharmacokineticparameterslikeVd,t1/2,AUC,Ka
etc.

OVERVIEW
•Basicconsiderationsinpharmacokinetics
•Compartmentmodels
•Onecompartmentmodel
•Assumptions
•Intravenousbolusadministration
•Intravenousinfusion
•Extravascularadministration(zeroorderandfirstorderabsorption
model)
•Multi-compartmentmodel

BASICCONSIDERATIONSIN
PHARMACOKINETICS
•Pharmacokineticparameters
•Pharmacodynamicparameters
•Zero,firstorder&mixedorderkinetic
•Ratesandordersofkinetics
•Plasmadrugconc.Timeprofiles
•Compartmentalmodels–physiologicalmodel
•Applicationsofpharmacokinetics
•Noncompartmentmodel

S.no Pharmacokineticparameter AbbreviationFundamental unitsUnitsexample
1. Areaunderthecurve AUC Concentrationxtime µgxhr/mL
2. Totalbodyclearance ClT Volumextime Litres/time
3. Renalclearance ClR Volumextime Litres/time
4. Hepaticclearance ClH Volumextime Litres/time
5. Apparentvolumeofdistribution VD Volume Litres
6. Vol.ofdistributionatsteadystate V
SS Volume Litres
7. Peakplasmadrugconcentration C
MAX Concentration mg/L
8. Plasmadrugconcentration CP Concentration mg/L
9. Steady-statedrugconcentration C
ss Concentration mg/L
10. Timeforpeakdrugconcentration T
MAX Time Hr
11. Dose DO Mass mg
12. Loadingdose DL Mass mg
13. Maintenancedose DM Mass mg
14. Amountofdrug inthebody DB Mass Mg
15. Rateofdruginfusion R Mass/time mg/hr
16. Firstorderrateconstant fordrugabsorption Ka 1/time 1/hr
17.Zeroorderrateconstantfordrugabsorption KO Mass/time mg/hr
18.Firstorderrateconstantfordrugelimination K 1/time 1/hr
19. Eliminationhalf-life t Time hr
CommonunitsinPharmacokinetics

ATYPICALPLASMADRUGCONC.ANDTIMECURVE
OBTAINEDAFTERASINGLEORALDOSEOFA
DRUG,SHOWINGVARIOUSP'KINETICAND
P’DYNAMICPARAMETERSDEPICTEDINBELOW
FIG

PHARMACOKINETIC PARAMETERS
Threeimportantparametersusefulinassessingthebioavailabilityof adrug
fromitsformulationare:
1.Peakplasmaconcentration(cmax)
thepointatwhich,maximumconcentrationofdruginplasma.
Units:µg/ml
•Peakconc.Relatedtotheintensityofpharmacologicalresponse,it
shouldbeaboveMECbutlessthanMSC.
•Thepeakleveldependsonadministereddoseandrateofabsorption
andelimination.

2.Timeofpeakconcentration(tmax)
thetimeforthedrugtoreachpeakconcentrationinplasma
(after extravascularadministration).
Units:hrs
•Usefulinestimatingonsetofactionandrateofabsorption.
•Importantinassessingtheefficacyofsingledosedrugsusedtotreatacute
conditions(pain,insomnia).

3.Areaundercurve(AUC)
Itrepresentsthetotalintegratedareaundertheplasmalevel-timeprofileand
expressesthetotalamountofthedrugthatcomesintosystemiccirculationafter
itsadministration.
Units:µg/mlxhrs
•Representsextentofabsorption–evaluatingthebioavailabilityofdrugfromits
dosageform.
•Importantfordrugs administeredrepetitivelyfortreatmentofchronicconditions
(asthmaorepilepsy).

PHARMACODYNAMIC PARAMETERS
1.Minimumeffectiveconcentration(MEC)
Minimumconcentrationofdruginplasma/receptorsiterequiredtoproduce
therapeuticeffect.
•ConcentrationbelowMEC–subtherapeuticlevel
•Antibiotics-MEC
2.Maximumsafeconcentration(MSC)
Concentrationinplasmaabovewhichadverseorunwantedeffectsare
precipitated.
•ConcentrationaboveMSC–toxiclevel

3.Onsettime
Timerequiredtostartproducingpharmacologicalresponse.
Timeforplasmaconcentrationtoreachmecafteradministratingdrug
4.Onset ofaction
Thebeginningofpharmacologicresponse.
Itoccurswhenplasmadrugconcentrationjustexceedstherequiredmec.
5.Durationofaction
ThetimeperiodforwhichtheplasmaconcentrationofdrugremainsaboveMEC
level.
6.Intensityofaction
Itistheminimumpharmacologicresponseproducedbythepeakplasmaconc.Of
drug.
7.Therapeuticrangethedrugconc.BetweenMECandMSC

CONCEPTOF“HALFLIFE”
½Life=howmuchtimeittakesforbloodlevelsofdrugtodecreasetohalf
ofwhatitwasatequilibrium
Therearereallytwokindsof½life…
“Distribution”½life=whenplasmalevelsfalltohalfwhattheywere
atequilibriumduetodistributionto/storageinbody’stissuereservoirs.
“Elimination”½life=whenplasmalevelsfalltohalfwhattheywere
atequilibriumduetodrugbeing metabolizedandeliminated.
Itisusuallytheelimination½lifethatisusedto determinedosing
schedules,todecidewhenitissafetoputpatientsonanewdrug.

PHARMACOKINETIC MODELSAND
COMPARTMENTS

PharmacokineticModelling
Compartment
Models
Non-Compartment
Models
Physiologic
Models
Caternary
Model
Onecompt
Mamillary
Model
Multicompt Twocompt
iv
bolus
SingleoralDose
iv
infusion
Intermittentivinfusion
Multiple
doses
ivbolus
Oraldrug
AUC,MRT,MAT,Cl

PHARMACOKINETIC MODELS
Meansofexpressingmathematicallyorquantitatively,timecourseofdrug
throughoutthebodyandcomputemeaningfulpharmacokineticparameters.
Usefulin:
•Characterizethebehaviorofdrugin patient.
•Predictingconc.Ofdruginvariousbodyfluidswithdosageregimen.
•Calculatingoptimumdosageregimenforindividualpatient.
•Evaluatingbioequivalencebetweendifferentformulation.
•Explainingdruginteraction.
Pharmacokineticmodelsarehypotheticalstructuresthatareusedtodescribethe
fateofadruginabiologicalsystemfollowingitsadministration.
Model
•Mathematicalrepresentationofthedata.
•Itisjusthypothetical

WHYMODELTHEDATA?
Therearethreemainreasonsduetowhichthedataissubjectedtomodelling.
1.Descriptive:todescribethedrugkineticsinasimpleway.
2.Predictive:topredictthetimecourseofthedrugaftermultipledosingbased
onsingledosedata,topredicttheabsorptionprofileofthedrugfromtheiv
data.
3.Explanatory:toexplainunclearobservations.

PHARMACOKINETIC MODELINGISUSEFUL
IN:-
•Predictionofdrugconcentrationinplasma/tissue/urineatanypointoftime.
•Determinationofoptimumdosageregimenforeachpatient.
•Estimationofthepossibleaccumulationofdrugs/metabolites.
•Quantitativeassessmentoftheeffectofdiseaseondrug’sadme.
•Correlationofdrugconcentrationwithpharmacologicalactivity.
•Evaluationofbioequivalence.
•Understandingofd/i.

COMPARTMENTAL MODELS
•Acompartmentisnotarealphysiologicaloranatomicregion
butanimaginaryorhypotheticaloneconsistingoftissue/group
oftissueswithsimilarbloodflow&affinity.
•Ourbodyisconsideredascomposedofseveralcompartments
connectedreversiblywitheachother.

ADVANTAGES
•Givesvisualrepresentationofvariousrateprocessesinvolvedindrug
disposition.
•Possibletoderiveequationsdescribingdrugconcentrationchangesineach
compartment.
•Onecanestimatetheamountofdruginanycompartmentofthesystemafter
drugisintroducedintoagivencompartment.
DISADVANTAGES
•DruggivenbyIVroute maybehave accordingtosinglecompartmentmodel
butthesame druggivenbyoralroutemayshow 2compartmentbehaviour.
•Thetypeofcompartmentbehaviouri.E.Typeofcompartmentmodelmay
changewiththerouteofadministration.

1.Centralcompartment
Blood&highlyperfusedtissuessuchasheart,kidney,lungs,liver,etc.
2.Peripheralcompartment
Poorlyperfused tissues suchasfat,bone,etc.
MODELS:
“OPEN”and“CLOSED”models:
•Theterm“open”itselfmeanthat,theadministereddrugdoseisremovedfrom
bodybyanexcretorymechanism(formostdrugs,organsofexcretionofdrugis
kidney)
•Ifthedrug isnotremovedfromthebodythenmodelrefersas“closed”model.
TYPESOFCOMPARTMENT

LOADINGDOSE
•Adrugdosedoesnotshowtherapeuticactivityunlessitreachesthedesiredsteady
state.
•Ittakesabout4-5halflivestoattainitandthereforetimetakenwillbetoolongif
thedrughasalonghalf-life.
•Plateaucanbereachedimmediatelybyadministeringadosethatgivesthedesired
steadystateinstantaneouslybeforethecommencementofmaintenancedosex0.
•Suchaninitialorfirstdoseintendedtobetherapeuticiscalledasprimingdoseor
loadingdosex0,l.

CALCULATIONOFLOADING
DOSE
•Aftere.V.Administration,cmaxisalwayssmallerthanthatachievedafteri.V.
Andhenceloadingdoseisproportionallysmaller.
•Forthedrugshaving alowtherapeuticindices,theloadingdosemaybe
dividedintosmallerdosestobegivenatavariousintervalsbeforethefirst
maintenancedose.
•Asimpleequationforcalculatingloadingdoseis:
xo,l=css,avvd
F

CALCULATION….,
•Whenvdisnotknown,loadingdosemaybecalculatedbythefollowing
equation:
xo,l= 1_
Xo(1–e
-ket)(1–e
-kat)
•Givenequationapplieswhenka>>keanddrugisdistributedrapidly.
•Whendrugisgiveni.V.Orwhenabsorptionisextremelyrapid,the
absorptionphaseisneglectedandtheaboveequationreducesto
accumulation index:

ASSUMPTIONS
1.Onecompartment
Thedruginthebloodisinrapidequilibriumwithdrugintheextra-vascular
tissues.Thisisnotanexactrepresentationhoweveritisusefulforanumber
ofdrugstoareasonableapproximation.
2.Rapidmixing
Wealsoneedtoassumethatthedrugismixedinstantaneouslyinbloodor
plasma.
3.Linearmodel
Wewillassumethatdrugeliminationfollowsfirstorderkinetics.

LINEARMODEL-FIRSTORDER
KINETICS
•FIRST-ORDER
KINETICS

MATHEMATICALLY
•Thisbehaviorcanbeexpressedmathematicallyas:

ONECOMPARTMENT MODEL
Onecompartmentmodelcanbedefined:
•One com.Openmodel–i.V.Bolus.
•One com.Openmodel-cont.Intravenousinfusion.
•One com.Openmodel-extravas.Administration (zero-orderabsorption)
•Onecom.Openmodel-extravas.Administration(First-orderabsorption)
•INTRAVENOUS(IV)BOLUSADMINISTRATION

RATEOFDRUGPRESENTATIONTOBODY
IS:
•Dx=ratein(availability)–rateout(Eli)
Dt
•Sincerateinorabsorptionisabsent, equationbecomes
dx= -rateout
dt
•Ifrateoutoreliminationfollowsfirstorderkinetic
Dx/dt=-kex (eq.1)
ELIMINATIONPHASE:
Eliminationphasehasthreeparameters:
•Eliminationrateconstant
•Eliminationhalflife
•Clearance

ELIMINATIONRATECONSTANT
•Integrationofequation(1)
•Inx=lnxo–ket (eq.2)
Xo=amtof druginjectedattimet=zeroi.E.Initial amountofdruginjected
X=xoe
-ket (eq.3)
•Logx=logxo–ket
2.303 (eq.4)
•Sinceitisdifficulttodirectlydetermineamountofdruginbodyx,weuserelationship
thatexistsbetweendrugconc.InplasmaCandX;thus
•X=vd C (eq.5)
•Soequation-8becomes
logc=logco– ket
2.303 (eq.6)

(Eq.7)KE=KE+KM+KB+KL+…..
(KEisoveralleliminationrateconstant)

ELIMINATIONHALFLIFE
T1/2=0.693
KE (eq.8)
•Eliminationhalflifecanbereadilyobtainedfromthegraphoflogc
versust
•Halflifeisasecondaryparameterthatdependsupontheprimary
parameterssuchasclearanceandvolumeofdistribution.
•T1/2=0.693Vd
ClT (eq.9)

APPARENTVOLUMEOF
DISTRIBUTION
•Definedasvolumeoffluidinwhichdrugappearstobedistributed.
•Vd=amountofdruginthebody=
Plasmadrugconcentration
x
C (eq.10)
Vd=xo/co
=I.V.Bolusdose/co (eq.11)
•Example:30mgi.V.Bolus,plasmaconc.=0.732mcg/ml.
=30000mcg/0.732mcg/ml
…….12.A
•Vol.Of dist.=30mg/0.732mcg/ml
=41liter.
•Fordrugsgiven asi.V.Bolus,
Vd(area)=xo/KE.Auc
•Fordrugsadmins.Extra.Vas.
Vd(area)=fxo/ke.Auc ……..12.B

CLEARANCE
Clearance=rate ofelimination
Plasmadrugconc.. (Or)cl=dx/dt
C……., (eq.13)
Thus,renalclearance
Hepaticclearance=
=rateofeliminationbykidney
C
rateofeliminationbyliver
C
Otherorganclearance=rateofeliminationbyorgan
C
Totalbodyclearance:
Clt=clr+clh+clother ……,(eq.14)

•Accordingtoearlierdefinition
cl= dx/dt
C
•Submittingeq.1dx/dt=KEX,aboveeq.Becomes,clt=KEX/C..,(Eq15)
•Byincorporatingequation1andequationforvol.Ofdist.(Vd= X/C)wecan
get
clt=KEvd (eq.16)
•Parallelequationscanbewrittenforrenalandhepaticclearance.
(eq.17)
(eq.18)
Clh=kmvd
Clr=kevd
•But,KE=0.693/t1/2
•So, clt =0.693vd (eq.19)
t
1/2

•Fornoncompartmentalmethodwhichfollowsonecompartmental
kinetic is:
•Fordruggivenbyi.V.Bolus
clt =xo …..20.A
Auc
•Fordrugadministeredbye.V.
Clt=fxo …..20.B
Auc
…….(eq.21)
•Fordruggivenbyi.V. Bolus
renalclearance=xu∞
auc

ORGANCLEARANCE
•Rateofeliminationbyorgan=rateofpresentationtotheorgan–rateofexit
fromtheorgan.
•Rateofelimination=q.Cin-Q.Cout
(Rateof extraction)=Q(cin-cout)
Clorgan=rateofextraction/cin
=q(cin-cout)/cin
…………….(eq 22)=Q.Er
•Extractionratio:
ER=(cin-cout)/cin
•ERisanindexofhowefficientlytheeliminatingorgancleartheblood
flowingthroughitofdrug.

AccordingtoER,drugscanbeclassifiedas
•DrugswithhighER(above0.7)
•DrugswithintermediateER(between0.7-0.3)
•DrugswithlowER(below0.3)
•Thefractionofdrugthatescapesremovalbyorganisexpressedas
F=1-ER
•Wheref=systemicavailabilitywhentheeliminatingorganisliver.

HEPATICCLEARANCE
Clh=clt–clr
Canalsobewrittendownfromeq22
Clh=QHERH
QH=hepaticbloodflow.ERH=hepaticextractionratio.
Hepaticclearanceofdrugcanbedividedintotwogroups:
1.Drugswithhepaticbloodflow rate-limitedclearance
2.Drugswith intrinsiccapacity-limitedclearance

HEPATICBLOODFLOW
•F=1-erh
=AUCoral
AUCi.V

INTRINSIC CAPACITYCLEARANCE
•Denotedasclint,itisdefinedastheinherentabilityofanorganto
irreversiblyremoveadrugintheabsenceofanyflowlimitation.

ONECOMPARTMENT OPENMODEL:
INTRAVENOUSINFUSION
•Modelcanberepresentas:(i.vinfusion)
Drug
…eq23
…eq24
Dx/dt=ro-kex
X=ro/ke(1-e
-ket)
SinceX=vdc
C=ro/kevd(1-e
-ket)…eq25
=Ro/clt(1-e
-ket)…eq26
Blood&other
Bodytissues
R0
Zeroorder
Infusion
rate
KE

•Atsteadystate.Therateofchangeofamountofdruginthebodyiszero,eq
23becomes
Zero=ro-kexss
Kexss=ro
Css=ro/kevd
=Ro/clti.E
…27
…28
…29
infusionrate....30
…31
Clearance
Substitutingeq.30ineq.26
•C=css(1-e
-ket)
Rearrangementyields:
• [Css-c]=e
-ket
. ...32
…33
C
ss
LogCSS-C
C
ss
=-ket
2.303

•Ifnistheno.Ofhalflivespassedsincethe startofinfusion(t/t1/2)
•Eq.Canbewrittenas
•C=CSS[1-(1/2)
n] …34

INFUSIONPLUSLOADING
DOSE
XO,L=CSSVD …35
…36
•SUBSTITUTIONOFCSS=RO/KEVD
•XO,L=RO/KE
•C=XO,L/VDE
-KET+RO/KEVD(1-E
-KET)…37

ONECOMPARTMENT OPENMODEL
EXTRAVASCULARADMINISTRATION
•Whendrugadministeredbyextravascularroute(e.G.Oral,i.M,rectal),
absorptionisprerequisiteforitstherapeuticactivity.

ONECOMPARTMENT MODEL:EXTRAVASCULAR
ADMIN (ZEROORDERABSORPTION)
•Thismodelissimilartothatforconstantrateinfusion.
Drugatsite
zeroorderelimination
n
oRateofdrugabsorptionasincaseofCDDS ,isconstant andcontinuesuntil
theamountofdrugattheabsorptionsite(Ex.GIT)isdepleted.
oAllequationsforplasmadrugconc.Profileforconstantratei.V.Infusion
arealsoapplicabletothismodel.
Blood&other
Bodytissues
R0
Absorptio

ONECOMPARTMENT MODEL:EXTRA
VASCULARADMIN(FIRSTORDER
ABSORPTION)
Blood&other
Bodytissues
Drugat
site
KEKa
Firstorder
absorption
elimination
•Drugthatentersthebodybyfirstorderabsorptionprocessgetsdistributedin
thebodyaccordingtoonecompartmentkineticandiseliminatedbyfirst
orderprocess.
•Themodelcanbedepictedasfollowsandfinalequationisasfollows
C=KaF Xo/Vd(Ka-KE)[e
-Ket-e
-Kat]…41