LAM, H. M. et al. Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis . Plant Cell, v. 7, p. 887–898, 1995.
LEA, P.J. The inhibition of ammonia assimilation: a mechanism of herbicide action. In: Baker, N. R.; Percival, M. P. (eds.). Herbicides. New
ork/Amsterdan: Elsevier. p. 267-297, 1991.
LEITE C.R.F. Laudo de Praticabilidade e Eficiência Agronômica de UPL 323 A FP (Glufosinato-sal de amônio 200 gi.a./L) no manejo da
planta daninha Conyza bonariensis, para a semeadura de soja (Glycine max L.). Spray Drop – Pesquisas e Desenvolvimento e Assistência
Técnica Agro-Industrial S/S Ltda. Paraná. 2015.
MERSEY, B. G. et al. Factors affecting the herbicidal activity of glufosinate-ammonium: absorption, translocation, and metabolism in barley
and green foxtail. Pesticide Biochemistry and Physiology, v. 37, p. 90-98, 1990.
METZ, P. et al. A transgene-centered approach to the biosafety of transgenic phosphinothricin-tolerant plants. Molecular Breeding, v.4, n.4,
p.335–341, 1998.
MOSS, S.R., RUBIN, B. Herbicide-resistant weeds: a worldwide perspective. Journal of Agricultural Science, v. 120, p. 141-148, 1993.
MULLNER, H. et al. Engineering crop resistance to the naturally occuring glutamine synthetase inhibitor phosphinothricin. In Pest Control
with Enhanced Environmental Safety. DUKE, S.O. et al. Eds. Washington D.C., American Chemical Society. Chap. v.3, p.38-47, 1993.
NEVE, P. et al. Modeling glyphosate resistance management strategies for Palmer amaranth (Amaranthus palmeri) in cotton. Weeed
Technology, v. 25, p. 335-343, 2011.
NEVE, P., POWLES, S. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of
herbicide resistance. Heredity, v.95, p. 485–492, 2005.
NORSWORTHY, J. K. Repeated sublethal rates of glyphosate lead to decreased sensitivity in Palmer amaranth. CropManag. doi:10.1094/
CM-2012-0403-01-RS, 2012.
OLIVEIRA, T., BRUNHARO, C.A.C.G. Resistência de plantas daninhas a herbicidas inibidores da glutamina sintetase (GS) (Grupo H). In:
CHRISTOFFOLETI, P.J.; NICOLAI, M. (Coord.). Aspectos de resistência de plantas daninhas a herbicidas. 4.ed. Piracicaba: Associação
Brasileira de Ação à Resistência de Plantas aos Herbicidas - HRAC-BR, p.251-262. 2016.
RODRIGUES, B.N., ALMEIDA, F.S. Guia de herbicidas. 6. RODRIGUES, B.N.; ALMEIDA, F.S. (Eds): Londrina, p. 84, 2011.
SELLERS, B. A. et al. Diurnal fluctuations and leaf angle reduce glufosinate efficacy. Weed Technology, v. 17, p. 302-306, 2003.
STRAUCH, E. et al. Cloning of the phosphinothricinN-acetyl-transferase gene from Streptomyces viridochromogenes Tü494 and its
expression in Streptomyces lividans and Escherichia coli. Gene, v.63, n.1, p.65-74, 1988.
TAIRA, M. et al. Arabidopsis thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria and chloroplasts. Plant Cell,
v.16, p. 2048–2058, 2004.
TOBIN A.K. et al. Changes in the activities of chloroplast and cytosolic isoenzymes of glutamine synthetase during normal leaf growth and
plastid development in wheat. Planta, v. 163, p. 544–548, 1985.
ULLRICH, W.R. et al. Uptake of glufosinate and concomitant membrane potential changes in Lemna gibba. Pesticide Biochemistry and
Physiology, v.37, p 1-11, 1990.
VIDAL, R.A. et al. Impacto da temperatura, irradiância e profundidade das sementes na emergência e germinação de Conyza bonariensis e
Conyza canadensis resistentes ao glyphosate. Planta Daninha, v.25, n.2, p.309-315, 2007.
WEHRMANN, A. et al. National Biotechnology, v.14, n.1, p.1274-1278, 1996.
27