Boolean algebra simplification and combination circuits

JaipalDhobale 4,106 views 238 slides Dec 13, 2017
Slide 1
Slide 1 of 243
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204
Slide 205
205
Slide 206
206
Slide 207
207
Slide 208
208
Slide 209
209
Slide 210
210
Slide 211
211
Slide 212
212
Slide 213
213
Slide 214
214
Slide 215
215
Slide 216
216
Slide 217
217
Slide 218
218
Slide 219
219
Slide 220
220
Slide 221
221
Slide 222
222
Slide 223
223
Slide 224
224
Slide 225
225
Slide 226
226
Slide 227
227
Slide 228
228
Slide 229
229
Slide 230
230
Slide 231
231
Slide 232
232
Slide 233
233
Slide 234
234
Slide 235
235
Slide 236
236
Slide 237
237
Slide 238
238
Slide 239
239
Slide 240
240
Slide 241
241
Slide 242
242
Slide 243
243

About This Presentation

Boolean algebra simplification and Combination circuits


Slide Content

UNIT II
Boolean Algebra Simplification
and Combinational Circuits
By Dr. DhobaleJ V
Associate Professor
School of Engineering & Technology
RNB Global University, Bikaner
RNB Global University, Bikaner. 1Course Code -19004000

Objectives
SimplificationofBooleanfunctionbyK-Map.
SimplificationofBooleanfunctionbyQ.M.
Adder–Half,Full,BCD,HighSpeed.
Subtractor,Multiplier,dividers.
ALU,CodeConversion–Encoder,Decoder.
Comparators,Multiplexers,Demultiplexers.
ImplementationusingICs.
2RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
AsimplifiedBooleanexpressionusesthe
fewestgatespossibletoimplementagiven
expression.
Ex.Simplify-AB+A(B+C)+B(B+C)
3RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Ex.Simplify-AB+A(B+C)+B(B+C)
Solution-AB+AB+AC+BB+BC
AB+AB+AC+B+BC
AB+AC+B+BC
AB+AC+B
B+AC
4RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Ex.Simplify-AB+A(B+C)+B(B+C)
5RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Ex.Simplify–1.C+BC
2.AB(A+B)(B+B)
3.(A+C)(AD+AD)+AC+C
4.A(A+B)+(B+AA)(A+B)
6RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Ex.Simplify–1.C+BC
Solution-C+BC
=C+(B+C)
=(C+C)+B
=1+B
=1
7RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Ex.Simplify–
2.AB(A+B)(B+B)
Solution–AB(A+B)(B+B)
=AB(A+B)
=(A+B)(A+B)
=AA+AB+AB+BB
=A+A(B+B)
=A+A
=A
8RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Ex.Simplify–
3.(A+C)(AD+AD)+AC+C
Solution-(A+C)(AD+AD)+AC+C
=(A+C)A(D+D)+AC+C
=(A+C)A+C
=AA+AC+C
=A+C
9RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Ex.Simplify–4.A(A+B)+(B+AA)(A+B)
Solution-A(A+B)+(B+AA)(A+B)
=AA+AB+(B+A)(A+B)
=0+AB+AB+BB+AA+AB
=AB+AB+0+A+AB
=AB+A(B+1+B)
=AB+A(1+1)
=AB+A
=(A+A)(A+B)
=A+B
10RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
(CanonicalForm):AllBooleanexpressions,
regardlessoftheirform,canbeconvertedinto
eitheroftwostandardforms:thesum-of-
productsformortheproduct-ofsumsform.
Standardizationmakes theevaluation,
simplification,andimplementationofBoolean
expressionsmuchmoresystematicand
easier.
11RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression:
TheSum-of-Products(SOP)Form.
Whentwoormoreproducttermsaresummed
byBooleanaddition,theresultingexpression
isasum-of-products(SOP).
Ex. AB + ABC
ABC + CDE + BCD
AB + BCD + AC
Also, an SOP expression can contain a single-
variable term, as in A + ABC + BCD.
12RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression:
TheSum-of-Products(SOP)Form.
InanSOPexpressionasingleoverbar
cannotextendovermorethanonevariable.
13RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression:
14RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
ConvertingProductTermstoStandardSOP:
EachproductterminanSOPexpressionthat
doesnotcontainallthevariablesinthe
domaincanbeexpandedtostandardSOPto
includeallvariablesinthedomainandtheir
complements.
anonstandardSOPexpressionisconverted
intostandardformusingBooleanalgebrarule
6(A+A=1).
15RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
ConvertingProductTermstoStandardSOP:
16RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
ConvertingProductTermstoStandardSOP:
Example-ConvertthefollowingBoolean
expressionintostandardSOPform:
ABC+AB+ABCD
Solution-ThedomainofthisSOPexpression
A,B,C,D.
Takeonetermatatime.Thefirstterm,ABC,
ismissingvariableDorD,somultiplythefirst
termby(D+D)asfollows:
17RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
ConvertingProductTermstoStandardSOP:
ABC=ABC(D+D)=ABCD+ABCD
Inthiscase,twostandardproducttermsare
theresult.
Thesecondterm,AB,ismissingvariablesC
orCandDorD,sofirstmultiplythesecond
termbyC+Casfollows:
AB=AB(C+C)=ABC+ABC
18RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
ConvertingProductTermstoStandardSOP:
ABC=ABC(D+D)=ABCD+ABCD
AB=AB(C+C)=ABC+ABC
ThetworesultingtermsaremissingvariableD
orD,somultiplybothtermsby(D+D)as
follows:
ABC(D+D)+ABC(D+D)
=ABCD+ABCD+ABCD+ABCD
19RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
ConvertingProductTermstoStandardSOP:
Inthiscase,fourstandardproducttermsare
theresult.Thethirdterm,ABCD,isalreadyin
standardform.ThecompletestandardSOP
formoftheoriginalexpressionisasfollows:
ABC + AB + ABCD = ABCD + ABCD + ABCD
+ ABCD + ABCD + ABCD + ABCD
20RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums(POS)Form:Asum
termwasdefinedbeforeasatermconsisting
ofthesum(Booleanaddition)ofliterals
(variablesortheircomplements).Whentwoor
moresumtermsaremultiplied,theresulting
expressionisaproduct-of-sums(POS).
Examples -(A + B)(A + B + C)
(A + B + C)( C + D + E)(B + C + D)
(A + B)(A + B + C)(A + C)
21RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums(POS)Form:APOS
expressioncancontainasingle-variableterm,
asinA(A+B+C)(B+C+D).
InaPOSexpression,asingleoverbarcannot
extendovermorethanonevariable;however,
morethanonevariableinatermcanhavean
overbar.
Forexample,aPOSexpressioncanhavethe
termA+B+CbutnotA+B+C.
22RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums (POS)Form:
ImplementationofaPOSExpressionsimply
requiresANDingtheoutputsoftwoormore
ORgates.AsumtermisproducedbyanOR
operationandtheproductoftwoormoresum
termsisproducedbyanANDoperation.
Followingfigureshowsfortheexpression(A+
B)(B+C+D)(A+C).
23RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums(POS)Form:
24RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums(POS)Form:The
StandardPOSForm-Sofar,wehaveseen
POSexpressionsinwhichsomeofthesum
termsdonotcontainallofthevariablesinthe
domainoftheexpression.
Forexample,theexpression
(A+B+C)(A+B+D)(A+B+C+D)
25RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums(POS)Form:hasa
domainmadeupofthevariablesA,B,C,and
D.
Noticethatthecompletesetofvariablesinthe
domainisnotrepresentedinfirsttwotermsof
theexpression;thatis,DorDismissingfrom
thefirsttermandCorCismissingfromthe
secondterm.
StandardExp.is–
(A+B+C+D)(A+B+C+D)(A+B+C+D)
26RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums (POS)Form:
ConvertingaSumTermtoStandardPOS-
Rules–
1.Addtoeachnonstandardproducttermaterm
madeupoftheproductofthemissing
variableanditscomplement.Thisresultsin
twosumterms.Asyouknow,youcanadd0
toanythingwithoutchangingitsvalue.
27RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums (POS)Form:
ConvertingaSumTermtoStandardPOS-
Rules–
2.ApplyBooleanRuleNo.12A+BC=(A+
B)(A+C).
3.RepeatStep1untilallresultingsumterms
containallvariablesinthedomainineither
complementedornoncomplementedform.
28RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums (POS)Form:
ConvertingaSumTermtoStandardPOS-
Example-ConvertthefollowingBoolean
expressionintostandardPOSform:
(A+B+C)(B+C+D)(A+B+C+D)
Solution-ThedomainofthisPOSexpression
isA,B,C,D.Takeonetermatatime.Thefirst
term,A+B+C,ismissingvariableDorD,so
addDDandapplyrule12asfollows:
29RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums (POS)Form:
ConvertingaSumTermtoStandardPOS-
A+B+C=A+B+C+DD=(A+B+C+
D)(A+B+C+D)
Thesecondterm,B+C+D,ismissing
variableAorA
B+C+D=B+C+D+AA=(A+B+C+
D)(A+B+C+D)
Thethirdterm,A+B+C+D,isalreadyin
standardform.
30RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
StandardformofBooleanexpression
TheProduct-of-Sums (POS)Form:
ConvertingaSumTermtoStandardPOS-
(A + B + C)(B + C + D)(A + B + C + D) = (A +
B + C + D)(A + B + C +D) (A + B + C + D)(A +
B + C + D) (A + B + C + D)
31RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
32RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
33RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
34RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
ExpresstheBooleanfunctionF=A+BCina
sumofminterms(SOP).
Solution-ThetermAismissingtwovariables
becausethedomainofFis(A,B,C)
A=A(B+B)=AB+AB
ThetermBCismissingAvaiable
BC(A+A)=BCA+BCA
ThetermAB+ABismissingC
AB(C+C)+AB(C+C)
=ABC+ABC+ABC+ABC
35RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Finalsolutionis
=ABC+ABC+ABC+ABC+ABC+ABC
=ABC+ABC+ABC+ABC+ABC
F=m
7+m
6+m
5+m
4+m
1
Inshortnotation
F(A,B,C)=Ʃ(1,4,5,6,7)
F(A,B,C)=Ʃ(0,2,3)
36RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Thecomplementofafunctionexpressedas
thesumofmintermsequaltothesumof
mintermsmissingfromtheoriginalfunction.
TruthTableforF=A+BC
37RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
ExpressF=xy+xzinaproductofmaxterms
form.
38RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
ExpressF=xy+xzinaproductofmaxterms
form.
Solution–F=xy+xz
=(xy+x)(xy+z)
=(x+x)(y+x)(x+z)(y+z)
=(y+x)(x+z)(y+z)
F=(x+y+zz)(x+yy+z)(xx+y+z)
=(x+y+z)(x+y+z)(x+y+z)(x+y+z)
(x+y+z)(x+y+z)
39RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
ExpressF=xy+xzinaproductofmaxterms
form.
Solution–
F=(x+y+z)(x+y+z)(x+y+z)(x+y+z)
F=M
4M
5M
0M
2
F(x,y,z)=Π(0,2,4,5)
F(x,y,z)=Π(1,3,6,7)
Thecomplementofafunctionexpressedas
theproductofmaxtermsequaltotheproduct
ofmaxtermsmissingfromtheoriginalfunction.
40RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Example-Developatruthtableforthe
standardSOPexpressionABC+ABC+ABC.
41RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Example-Developatruthtableforthe
standardSOPexpressionABC+ABC+ABC.
42RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Example-Determinethetruthtableforthe
followingstandardPOSexpression:
(A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)
43RNB Global University, Bikaner.Course Code -19004000

Boolean Algebra –Simplification
Example-Determinethetruthtableforthe
followingstandardPOSexpression:
(A+B+C)(A+B+C)(A+B+C)(A+B+C)(A+B+C)
44RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
AKarnaughmapprovidesasystematic
methodforsimplifyingBooleanexpressions
and,ifproperlyused,willproducethesimplest
SOPorPOSexpressionpossible,knownas
theminimumexpression.
Asyouhaveseen,theeffectivenessof
algebraicsimplificationdependsonyour
familiaritywithallthelaws,rules,and
theoremsofBooleanalgebraandonyour
abilitytoapplythem.
45RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
AKarnaughmapissimilartoatruthtable
becauseitpresentsallofthepossiblevalues
ofinputvariablesandtheresultingoutputfor
eachvalue.
Insteadofbeingorganizedintocolumnsand
rowslikeatruthtable,theKarnaughmapisan
arrayofcellsinwhicheachcellrepresentsa
binaryvalueoftheinputvariables.
46RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
Thecellsarearrangedinawaysothat
simplificationofagivenexpressionissimplya
matterofproperlygroupingthecells.
Karnaughmapscanbeusedforexpressions
withtwo,three,fourandfivevariables.
Anothermethod,calledtheQuine-McClusky
methodcanbeusedforhighernumbersof
variables.
47RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
ThenumberofcellsinaKarnaughmapis
equaltothetotalnumberofpossibleinput
variablecombinationsasisthenumberof
rowsinatruthtable.
Forthreevariables,thenumberofcellsis2
3
=
8.
48RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
ThreeVariableKarnaughMap:The3-variable
Karnaughmapisanarrayofeightcells,as
showninfigbelow.
49RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
ThreeVariableKarnaughMap:Inthiscase,A,
B,andCareusedforthevariablesalthough
otherletterscouldbeused.
BinaryvaluesofAandBarealongtheleft
side(noticethesequence)andthevaluesofC
areacrossthetop.
Thevalueofagivencellisthebinaryvaluesof
AandBattheleftinthesamerowcombined
withthevalueofCatthetopinthesame
column.
50RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
ThreeVariableKarnaughMap:Forexample,
thecellintheupperleftcornerhasabinary
valueof000andthecellinthelowerright
cornerhasabinaryvalueof101.
51RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
FourVariableKarnaughMap:The4-variable
Karnaughmapisanarrayofsixteencells,as
showninfigbelow.
52RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
FourVariableKarnaughMap:Binaryvaluesof
AandBarealongtheleftsideandthevalues
ofCandDareacrossthetop.
Thevalueofagivencellisthebinaryvaluesof
AandBattheleftinthesamerowcombined
withthebinaryvaluesofCandDatthetopin
thesamecolumn.
Forexample,thecellintheupperrightcorner
hasabinaryvalueof0010andthecellinthe
lowerrightcornerhasabinaryvalueof1010.
53RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
FourVariableKarnaughMap:belowshown
thestandardproducttermsthatare
representedbyeachcellinthe4-variable
Karnaughmap.
54RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
CellAdjacency:ThecellsinaKarnaughmap
arearrangedsothatthereisonlyasingle
variablechangebetweenadjacentcells.
Adjacencyisdefinedbyasinglevariable
change.
Inthe3-variablemapthe010cellisadjacent
tothe000cell,the011cell,andthe110cell.
The010cellisnotadjacenttothe001cell,the
111cell,the100cell,orthe101cell.
55RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
CellAdjacency:belowfigshowsAdjacent
cellsonaKarnaughmaparethosethatdiffer
byonlyonevariable.Arrowspointbetween
adjacentcells.
56RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:For
anSOPexpressioninstandardform,a1is
placedontheKarnaughmapforeachproduct
termintheexpression.
Each 1 is placed in a cell corresponding to the
value of a product term.
57RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Example-MapthefollowingstandardSOP
expressiononaKarnaughmap.
ABC+ABC+ABC+ABC
Solution-
58RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Example-MapthefollowingstandardSOP
expressiononaKarnaughmap
ABCD+ABCD+ABCD+ABCD+ABCD+ABCD+
ABCD
Solution-
59RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Example- MapthefollowingSOP
expressiononaKarnaughmap:A+AB+ABC
Solution-TheSOPexpressionisobviously
notinstandardformbecauseeachproduct
termdoesnothavethreevariables.
First expand the terms numerically as follows:
60RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Example- MapthefollowingSOP
expressiononaKarnaughmap:A+AB+ABC
Solution-
61RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Example- MapthefollowingSOP
expressiononaKarnaughmap:A+AB+ABC
Solution-
62RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Example- MapthefollowingSOP
expressiononaKarnaughmap:
BC+AB+ABC+ABCD+ABCD+ABCD
Solution-TheSOPexpressionisobviously
notinstandardformbecauseeachproduct
termdoesnothavefourvariables.
63RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Example- MapthefollowingSOP
expressiononaKarnaughmap:
BC+AB+ABC+ABCD+ABCD+ABCD
Solution–
64RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Example- MapthefollowingSOP
expressiononaKarnaughmap:
BC+AB+ABC+ABCD+ABCD+ABCD
Solution–
65RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Groupingthe1s,youcangroup1sonthe
Karnaughmapaccordingtothefollowing
rulesbyenclosingthoseadjacentcells
containing1s.
Thegoalistomaximizethesizeofthegroups
andtominimizethenumberofgroups.
66RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
1.Agroupmustcontaineither1,2,4,8,or16
cells,whichareallpowersoftwo.Inthecase
ofa3-variablemap,23=8cellsisthe
maximumgroup.
2.Eachcellinagroupmustbeadjacenttoone
ormorecellsinthatsamegroup.
3.Alwaysincludethelargestpossiblenumber
of1sinagroupinaccordancewithrule1.
67RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
4.Each1onthemapmustbeincludedinat
leastonegroup.The1salreadyinagroup
canbeincludedinanothergroupaslongas
theoverlappinggroupsincludenoncommon
1s.
68RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Examples-
69RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Solution–Thegroupingareshownbelow
70RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Solution–Determinetheminimumproduct
termforeachgroup.
a.Fora3-variablemap:
1.A1-cellgroupyieldsa3-variableproductterm
2.A2-cellgroupyieldsa2-variableproductterm
3.A4-cellgroupyieldsa1-variableterm
4.An8-cellgroupyieldsavalueof1forthe
expression
71RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Solution–b. For a 4-variable map:
1.A 1-cell group yields a 4-variable product term
2.A 2-cell group yields a 3-variable product term
3.A 4-cell group yields a 2-variable product term
4.An 8-cell group yields a 1-variable term
5.A 16-cell group yields a value of 1 for the
expression
72RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Example–
73RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
KARNAUGH MAPSOPMINIMIZATION:
Solution–Theresultingminimumproductterm
foreachgroupisshowninfigaboveThe
minimumSOPexpressionsforeachofthe
Karnaughmapsinthefigureare:
(a)AB+BC+ABC (C) AB + AC + ABD
(b) B + A C + AC (d) D + ABC + BC
74RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
75RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
76RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
77RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
78RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
79RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
80RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
81RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
82RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
Simplifyz=f(A,B)=AB+ABusingalgebraic
equationandKarnaughMap(K-Map).
83RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
Simplifyz=f(A,B)=AB+ABusingalgebraic
equationandKarnaughMap(K-Map).
Solution-z=AB+AB
=A(B+B)
=A
84RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
UsingKarnaughMap.
z=AB+AB
NoofVariables2thereforwerequired4cell
map. BA0 1
0
1
85RNB Global University, Bikaner.Course Code -19004000
1
1

KARNAUGH MAP MINIMIZATION
UsingKarnaughMap.
z=AB+AB
NoofVariables2thereforwerequired4cell
map. BA0 1
0 A
1
86RNB Global University, Bikaner.Course Code -19004000
1
1

KARNAUGH MAP MINIMIZATION
Solve
z=f(A,B)=AB+AB+AB
87RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
Solve
z=f(A,B)=AB+AB+AB
NoofVariables2thereforwerequired4cell
map. BA0 1
0
1
88RNB Global University, Bikaner.Course Code -19004000
11
1

KARNAUGH MAP MINIMIZATION
Solve
z=f(A,B)=AB+AB+AB
NoofVariables2thereforwerequired4cell
map. BA0 1
0
1
89RNB Global University, Bikaner.Course Code -19004000
11
1

KARNAUGH MAP MINIMIZATION
90RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
91RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
92RNB Global University, Bikaner.Course Code -19004000

Karnaugh Map (K-Map)
93RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
Simplify–usingKarnaughMap
ABC+ABC+ABC+ABC
94RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
Simplify–usingKarnaughMap
ABC+ABC+ABC+ABC
A BC0001 1110
0
1
95RNB Global University, Bikaner.Course Code -19004000
1
1 1 1

KARNAUGH MAP MINIMIZATION
Simplify–usingKarnaughMap
ABC+ABC+ABC+ABC
A BC0001 1110
0
1
96RNB Global University, Bikaner.Course Code -19004000
1
1 1 1

KARNAUGH MAP MINIMIZATION
Simplify–usingKarnaughMap
ABC+ABC+ABC+ABC BC
A BC0001 1110
0
1 AB
AC =AC+BC+AB
97RNB Global University, Bikaner.Course Code -19004000
1
1 1 1

KARNAUGH MAP MINIMIZATION
SimplifyusingKarnaughMap
f(A,B,C,D)=ABCD+ABCD+ABCD+ABCD+
ABCD+ABCD+ABCD
98RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
f(A,B,C,D)=ABCD+ABCD+ABCD+ABCD+
ABCD+ABCD+ABCD
ABCD00011110
00
01
11
10
99RNB Global University, Bikaner.Course Code -19004000
1
1
1 1 1 1
1

KARNAUGH MAP MINIMIZATION
f(A,B,C,D)=ABCD+ABCD+ABCD+ABCD+
ABCD+ABCD+ABCD
ABCD00011110
00
01
11 AB
10
BC =AB+BC
100RNB Global University, Bikaner.Course Code -19004000
1
1
1 1 1 1
1

KARNAUGH MAP MINIMIZATION
Don’tCareCondition:Sometimesinput
combinationsareofnoconcern
Becausetheymaynotexist
•Example:BCDusesonly10ofpossible16
inputcombinations
Sincewe“don’tcare”whattheoutput,wecan
usethese“don’tcare”conditionsforlogic
minimization
•Theoutputforadon’tcareconditioncanbe
either0or1
WEDON’TCARE!!!
101RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
Don’tCareconditionsdenotedby:
X,-,d,2
•Xisprobablythemostoftenused
•Canalsobeusedtodenoteinputs
Example:ABC=1X1=AC
•Bcanbea0ora1
102RNB Global University, Bikaner.Course Code -19004000

KARNAUGH MAP MINIMIZATION
Don’tCareconditionsdenotedby:
103RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Adderisacircuitwhichaddstwobinarybits.
Inordertounderstandthefunctioningofeither
ofthesecircuits,wemustspeakofarithmetic
interms
“plustables”,specificallythesumofadding
anytwoone–digitnumbers:2+2=4,2+3=
5,etc.
addnumbersthathadmorethanonedigit
each:23+34=57,but23+38=61.
Thisadaptationofadditiontomultipledigit
numbersgivesrisetothefulladder.
104RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Webeginwithtwosimplesums,each
involvingonlysingledigits.2+2=4,and5+5
=10.
Iftheseareso,whydowewritethefollowing
sum25+25as25+25=50,andnotas25+
25=410?Whatdigitiswrittenintheunit’s
columnofthesum?
Thereasonthatwedonotdothisistheidea
ofacarryfromtheunit’scolumntotheten’s
column.
105RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Theadditionasfollows:1.5+5is0,witha
carry–outof1,whichgoesintotheten’s
column.2.2+2is4,butwehaveacarry–inof
1fromtheunit’scolumn,sowesay2+2+1=
5.Thesumdigitinthiscolumnisa5.
Wehavejustnotedthatthedecimalnumber2
isrepresentedinbinaryas10.
Itmustbethecasethat,inbinaryaddition,we
havethesumas1+1=10Thisreadsas“the
addition1+1resultsinasumof0anda
carry–outof1”.
106RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Recallthedecimalsum25+25.
1
25
25
50
The1writtenabovethenumbersintheten’s
columnshowsthecarry–outfromtheunit’s
columnasacarry–intotheten’scolumn.
107RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
TheHalfAdder:Thehalfaddertakestwo
singlebitbinarynumbersandproducesasum
andacarry–out,called“carry”.
Hereisthetruthtabledescriptionofahalf
adder.WedenotethesumA+B.
AB SumCarry
00 0 0
01 1 0
10 1 0
11 0 1
108RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Writtenasastandardsum,thelastrow
representsthefollowing:
01
+01
1o
Thesumcolumnindicatesthenumbertobe
writtenintheunit’scolumn,immediatelybelow
thetwo1’s.Wewritea0andcarrya1
109RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Anadderisadigitallogiccircuitinelectronics
thatimplementsadditionofnumbers.
Inmanycomputersandothertypesof
processors,addersareusedtocalculate
addresses,similaroperationsandtable
indicesintheALUandalsoinotherpartsof
theprocessors.
Addersareclassifiedintotwotypes:halfadder
andfulladder.
Thehalfaddercircuithastwoinputs:AandB,
whichaddtwoinputdigitsandgeneratea
carryandsum.
110RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Thefulladdercircuithasthreeinputs:Aand
C,whichaddthethreeinputnumbersand
generateacarryandsum.
111RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Anadderisadigitalcircuitthatperforms
additionofnumbers.
Thehalfadderaddstwobinarydigitscalledas
augendandaddendandproducestwooutputs
assumandcarry;XORisappliedtoboth
inputstoproducesumandANDgateis
appliedtobothinputstoproducecarry.
Thefulladderadds3onebitnumbers,where
twocanbereferredtoasoperandsandone
canbereferredtoasbitcarriedin.And
produces2-bitoutput,andthesecanbe
referredtoasoutputcarryandsum.
112RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Half-adderTruthTable:
113RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
FullAdder
Thisadderisdifficulttoimplementthanahalf-
adder.
Thedifferencebetweenahalf-adderandafull-
adderisthatthefull-adderhasthreeinputs
andtwooutputs,whereashalfadderhasonly
twoinputsandtwooutputs.
ThefirsttwoinputsareAandBandthethird
inputisaninputcarryasC-IN.
114RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Whenafull-adderlogicisdesigned,youstring
eightofthemtogethertocreateabyte-wide
adderandcascadethecarrybitfromone
addertothenext.
TheoutputcarryisdesignatedasC-OUTand
thenormaloutputisdesignatedasS.
115RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Full-adderTruthTable:
116RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Withthetruth-table,thefulladderlogiccanbe
implemented.YoucanseethattheoutputSis
anXORbetweentheinputAandthehalf-
adder,SUMoutputwithBandC-INinputs.
WetakeC-OUTwillonlybetrueifanyofthe
twoinputsoutofthethreeareHIGH.
So,wecanimplementafulladdercircuitwith
thehelpoftwohalfaddercircuits.Atfirst,half
adderwillbeusedtoaddAandBtoproduce
apartialSumandasecondhalfadderlogic
canbeusedtoaddC-INtotheSumproduced
bythefirsthalfaddertogetthefinalSoutput.
117RNB Global University, Bikaner.Course Code -19004000

Adders –Half & Full Adder
Ifanyofthehalfadderlogicproducesacarry,
therewillbeanoutputcarry.So,COUTwillbe
anORfunctionofthehalf-adderCarry
outputs.Takealookattheimplementationof
thefulladdercircuitshownbelow.
118RNB Global University, Bikaner.Course Code -19004000

Adders –BCD Adder
ABCDadderisacombinationalcircuitwhich
addstwobcdnumbers.
WHATAREBCDNUMBERS?
BCDisaclassofencodinginwhicheach
decimaldigitisrepresentedbysomefixed
numberofbits.Usually4or8bitsareused.
119RNB Global University, Bikaner.Course Code -19004000

Adders –BCD Adder
120RNB Global University, Bikaner.Course Code -19004000

Adders –BCD Adder
Upto9thebcdrepresentationissameasthe
decimalrepresentationandafterthe9.
Thefirst4digitsinBCDrepresentationisused
toshowthefirstdigitindecimalandnextfour
digitsinBCDareusedtorepresentnextdigit
indecimal.
121RNB Global University, Bikaner.Course Code -19004000

Adders –BCD Adder
TruthTable:
122RNB Global University, Bikaner.Course Code -19004000

Adders –BCD Adder
WHYonly4BITADDERCANNOTBEUSED
?:
whenweprovidetwo4bitsBCDnumberto
the4bitadders,theoutputexceedstheBCD
range,orcalledBCDrepresentation.
WEWANTTOOUTPUTALSOINBCD.but
whenwedirectlytaketheoutputofthe4bit
adderthenitwillbeainvalidrepresentation.
Thereforeweneedsomemechanismthrough
whichwecanchangetheoutputofthe4bit
adderintoavalidBCDrepresentation.
123RNB Global University, Bikaner.Course Code -19004000

Adders –BCD Adder
Forthenumberswhichdoesnotsatisfythe
conditionofBCD,6isadded.seeinthe
table,whenthesumis01010thebcd
representationisobtainedbyadding6,so
therepresentationinBCDis10000.
124RNB Global University, Bikaner.Course Code -19004000

Adders –BCD Adder
125RNB Global University, Bikaner.Course Code -19004000

Subtractor
Subtractor:Subtractoristheonewhichused
tosubtracttwobinarynumber(digit)and
providesDifferenceandBorrowasaoutput.In
digitalelectronicswehavetwotypesof
subtractor.
1.HalfSubtractor
2.FullSubtractor
126RNB Global University, Bikaner.Course Code -19004000

Subtractor –Half & Full
HalfSubtractor:HalfSubtractorisusedfor
subtractingonesinglebitbinarydigitfrom
anothersinglebitbinarydigit.Thetruthtableof
HalfSubtractorisshownbelow.
127RNB Global University, Bikaner.Course Code -19004000

Subtractor –Half & Full
HalfSubtractor:HalfSubtractorisusedfor
subtractingonesinglebitbinarydigitfrom
anothersinglebitbinarydigit.Thetruthtable
ofHalfSubtractorisshownbelow.
128RNB Global University, Bikaner.Course Code -19004000

Subtractor –Half & Full
FullSubtractor:AlogicCircuitWhichisused
forSubtractingThreeSinglebitBinarydigitis
knownasFullSubtractor.TheTruthTableof
FullSubtractorisShownBelow.
129RNB Global University, Bikaner.Course Code -19004000

Subtractor –Half & Full
130RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Amultiplexer(MUX)isacircuitthataccept
manyinputbutgiveonlyoneoutput.
Ademultiplexerfunctionexactlyinthereverse
ofamultiplexer,thatisademultiplexer
acceptsonlyoneinputandgivesmany
outputs.
Generallymultiplexeranddemultiplexerare
usedtogether,becauseofthecommunication
systemsarebidirectional.
131RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer:Multiplexermeansmanyintoone.
Amultiplexerisacircuitusedtoselectand
routeanyoneoftheseveralinputsignalstoa
signaloutput.
Ansimpleexampleofannonelectroniccircuit
ofamultiplexerisasinglepolemultiposition
switch.
132RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer:
Howevercircuitsthatoperateathighspeed
requirethemultiplexertobeautomatically
selected.
Amechanicalswitchcannotperformthistask
satisfactorily.Therefore,multiplexerusedto
performhighspeedswitchingareconstructed
ofelectroniccomponents.
133RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer:
Multiplexerhandletwotypeofdatathatis
analoganddigital.Foranalogapplication,
multiplexerarebuiltofrelaysandtransistor
switches.Fordigitalapplication,theyarebuilt
fromstandardlogicgates.
Themultiplexerusedfordigitalapplications,
alsocalleddigitalmultiplexer,isacircuitwith
manyinputbutonlyoneoutput.
134RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer:
Byapplyingcontrolsignals,wecansteerany
inputtotheoutput.Fewtypesofmultiplexer
are2-to-1,4-to-1,8-to-1,16-to-1multiplexer.
Followingfigureshowsthegeneralideaofa
multiplexerwithninputsignal,mcontrol
signalsandoneoutputsignal.
135RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer:
136RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer:Understanding4-to-1Multiplexer:
The4-to-1multiplexerhas4inputbit,2control
bits,and1outputbit.
ThefourinputbitsareD0,D1,D2andD3.only
oneofthisistransmittedtotheoutputy.
TheoutputdependsonthevalueofABwhich
isthecontrolinput.
Thecontrolinputdetermineswhichoftheinput
databitistransmittedtotheoutput.
137RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer: Understanding 4-to-1 Multiplexer:
138RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer: Understanding 4-to-1 Multiplexer:
Forinstance,asshowninfig.whenAB=00,
theupperANDgateisenabledwhileallother
ANDgatesaredisabled.Therefore,databit
D0istransmittedtotheoutput,givingY=Do.
IfthecontrolinputischangedtoAB=11,all
gatesaredisabledexceptthebottomAND
gate.Inthiscase,D3istransmittedtothe
outputandY=D3.
139RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer: Understanding 4-to-1 Multiplexer:
140RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer: Examples:
1.Anexampleof4-to-1multiplexerisIC74153
inwhichtheoutputissameastheinput.
2.Anotherexampleof4-to-1multiplexeris
45352inwhichtheoutputisthecompliment
oftheinput.
3.Exampleof16-to-1linemultiplexeris
IC74150.
141RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
Multiplexer:Applications:Multiplexerareused
invariousfieldswheremultipledataneedto
betransmittedusingasingleline.Following
aresomeoftheapplicationsofmultiplexers
1.Communication system –Multiple data
2.Telephone network –Multiple Audio signals
3.Computer memory –Bus to storage
4.Transmission from the computer system of a
satellite -GPS
142RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
De-Multiplexer(DEMUX):Demultiplexer
meansonetomany.
Ademultiplexerisacircuitwithoneinputand
manyoutput.
Byapplyingcontrolsignal,wecansteerany
inputtotheoutput.Fewtypesofdemultiplexer
are1-to2,1-to-4,1-to-8and1-to16
demultiplexer.
143RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
De-Multiplexer:
144RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
De-Multiplexer:The1-to-4demultiplexerhas1
inputbit,2controlbit,and4outputbits.
Anexampleof1-to-4demultiplexerisIC
74155.The1-to-4demultiplexerisshownin
figurebelow-
145RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
De-Multiplexer:
146RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
De-Multiplexer:Theinputbitislabelledas
DataD.Thisdatabitistransmittedtothedata
bitoftheoutputlines.Thisdependsonthe
valueofAB,thecontrolinput.
WhenAB=01,theuppersecondANDgateis
enabledwhileotherANDgatesaredisabled.
Therefore,onlydatabitDistransmittedtothe
output,givingY1=Data.
IfDislow,Y1islow.IFDishigh,Y1ishigh.
ThevalueofY1dependsuponthevalueofD.
Allotheroutputsareinlowstate.
147RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
De-Multiplexer:Ifthecontrolinputischanged
toAB=10,allthegatesaredisabledexcept
thethirdANDgatefromthetop.Then,Dis
transmittedonlytotheY2output,andY2=
Data.
Exampleof1-to-16demultiplexerisIC74154
ithas1inputbit,4controlbitsand16output
bit.
148RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
De-Multiplexer:ApplicationsofDemultiplexers
are:
1.Demultiplexerarealsoused for
reconstructionofparalleldataandALU
circuits.
2.CommunicationSystem-Themultiplexerand
demultiplexerworktogethertocarryoutthe
processoftransmissionandreceptionofdata
incommunicationsystem.
149RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
De-Multiplexer:ApplicationsofDemultiplexers
are:
3.Demultiplexerisusedtoconnectasingle
sourcetomultipledestinations.
4.Serialtoparallelconverter-Aserialto
parallelconverterisusedforreconstructing
paralleldatafromincomingserialdata
stream.
150RNB Global University, Bikaner.Course Code -19004000

Multiplexer & De-multiplexer
De-Multiplexer:
151RNB Global University, Bikaner.Course Code -19004000

Multiplier & Dividers
Multiplicationofbinarynumbersisperformed
inthesamewayasindecimalnumbers–
partialproduct:themultiplicandismultipliedby
eachbitofthemultiplierstartingfromtheleast
significantbit.
152RNB Global University, Bikaner.Course Code -19004000

Multiplier & Dividers
Multiplicationoftwobits=A*B(AND)0*0=
00*1=01*0=01*1=1.
153RNB Global University, Bikaner.Course Code -19004000

Multiplier & Dividers
154RNB Global University, Bikaner.Course Code -19004000

Multiplier & Dividers
Todesigna4-bitbinarynumberdividerwhich
dividesfourbitsby5(101inbinary).
Itcanbeeasilysolvedusingitstruthtableand
K-map.
Weneedstoconsiderthequotient.Soinorder
towritethetruthtableyouneedonlytwo
outputvariables.Thisisbecausethe
maximumnumberthatcanberepresented
using4bitsis15(1111),whichwhendivided
by5yieldsquotient3(0011).
155RNB Global University, Bikaner.Course Code -19004000

Multiplier & Dividers
156RNB Global University, Bikaner.Course Code -19004000

Multiplier & Dividers
A3toA0representtheinputinbinary.F1and
F0representstheoutputinbinary.
Thistableiseasilyobtainedsincenumbers0
to4upondivisionwith5gives0quotient.5to
9yields1.10to14yields2andsoon.
NowyoucandrawK-mapsforF1andF0.
157RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Encoders:Anencoderisacombinational
circuitthatperformstheinverseoperationofa
decoder.
Ifadeviceoutputcodehasfewerbitsthanthe
inputcodehas,thedeviceisusuallycalledan
encoder.e.g.2
n
-to-n,priorityencoders.
Thesimplestencoderisa2
n
-to-nbinary
encoder,whereithasonlyoneof2
n
inputs=1
andtheoutputisthen-bitbinarynumber
correspondingtotheactiveinput.
ItcanbebuiltfromORgates.
158RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Encoders:4to2Encoder
159RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Encoders:OctaltoBinaryEncoder
Octal-to-Binarytake8inputsandprovides3
outputs,thusdoingtheoppositeofwhatthe3-
to-8decoderdoes.
Atanyonetime,onlyoneinputlinehasa
valueof1.
Thefigurebelowshowsthetruthtableofan
Octal-to-binaryencoder:
160RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Encoders:OctaltoBinaryEncoder
161RNB Global University, Bikaner.Course Code -19004000
IoI1I2I3I4I5I6I7Y2Y1Y0
1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 1 1
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 0 1 0 1
0 0 0 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 1 1 1 1

Decoder -Encoder
Encoders:OctaltoBinaryEncoder
Foran8-to-3binaryencoderwithinputsI0-I7
thelogicexpressionsoftheoutputsY0-Y2are:
Y0=I1+I3+I5+I7
Y1=I2+I3+I6+I7
Y2=I4+I5+I6+I7
162RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Encoders:OctaltoBinaryEncoder
Basedontheaboveequations,wecandraw
thecircuitasshownbelow
163RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Decoder:Acombinationalcircuitthatconverts
binaryinformationfromninputlinestoa
maximumof2nuniqueoutputlines.
n-to-m-linedecoders:generatem(=2nor
fewer)mintermsofninputvariablesAn-to-2n
decodertakesann-bitinputandproduces2n
outputs.Theninputsrepresentabinary
numberthatdetermineswhichofthe2n
outputsisuniquelytrue.
164RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Decoder:
A2-to-4decoderoperatesaccordingtothe
followingtruthtable.–The2-bitinputiscalled
S1S0,andthefouroutputsareQ0-Q3.–Ifthe
inputisthebinarynumberi,thenoutputQiis
uniquelytrue.
Forinstance,iftheinputS1S0=10(decimal
2),thenoutputQ2istrue,andQ0,Q1,Q3are
allfalse.
165RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Decoder:
Thiscircuit“decodes”abinarynumberintoa
“one-of-four”code.
Followthedesignproceduresfromlasttime!
Wehaveatruthtable,sowecanwrite
equationsforeachofthefouroutputs(Q0-
Q3),basedonthetwoinputs(S0-S1).
166RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Decoder:
Inthiscasethere’snotmuchtobesimplified.
Herearetheequations:
Q0=S1’S0’
Q1=S1’S0
Q2=S1S0’
Q3=S1S0
167RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Decoder:
168RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Decoder:Manydeviceshaveanadditional
enableinput,whichisusedto“activate”or
“deactivate”thedevice.•Foradecoder,
–EN=1activatesthedecoder,soitbehaves
asspecifiedearlier.Exactlyoneoftheoutputs
willbe1.
–EN=0“deactivates”thedecoder.By
convention,thatmeansallofthedecoder’s
outputsare0.
Wecanincludethisadditionalinputinthe
decoder’struthtable:
169RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Decoder:
170RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Decoder:3to8decoder
171RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
Decoder:3to8decoder
172RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
COMPARATOR :Comparator compares
binarynumbers.
Logiccomparing2bits:aandb
173RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
COMPARATOR : Digitalor Binary
Comparators aremade up from
standardAND,NORandNOTgatesthat
comparethedigitalsignalspresentattheir
inputterminalsandproduceanoutput
dependingupontheconditionofthoseinputs.
Forexample,alongwithbeingabletoaddand
subtractbinarynumbersweneedtobeableto
comparethemanddeterminewhetherthe
valueofinputAisgreaterthan,smallerthanor
equaltothevalueatinputBetc.
174RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
COMPARATOR :Thedigitalcomparator
accomplishesthisusingseverallogicgates
thatoperateontheprinciplesofBoolean
Algebra.
TherearetwomaintypesofDigital
Comparatoravailableandtheseare.
1.IdentityComparator–anIdentity
Comparatorisadigitalcomparatorwithonly
oneoutputterminalforwhenA=B,eitherA=
B=1(HIGH)orA=B=0(LOW).
175RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
COMPARATOR :2. Magnitude
Comparator–aMagnitudeComparatorisa
digitalcomparatorwhichhasthreeoutput
terminals,oneeachforequality,A=Bgreater
than,A>BandlessthanA<B
ThepurposeofaDigitalComparatoristo
compareasetofvariablesorunknown
numbers,forexampleA(A1,A2,A3,….An,
etc)againstthatofaconstantorunknown
valuesuchasB(B1,B2,B3,….Bn,etc)and
produceanoutputconditionorflagdepending
upontheresultofthecomparison.
176RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
COMPARATOR :Forexample,amagnitude
comparatoroftwo1-bits,(AandB)inputs
wouldproducethefollowingthreeoutput
conditionswhencomparedtoeachother.
A>B,A=B,A<B
Whichmeans:AisgreaterthanB,Aisequal
toB,orAislessthanB
Thisisusefulifwewanttocomparetwo
variablesandwanttoproduceanoutputwhen
anyoftheabovethreeconditionsare
achieved.
177RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
COMPARATOR :
178RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
COMPARATOR :Thentheoperationofa1-bit
digitalcomparatorisgiveninthefollowing
TruthTable.
179RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
CodeConversion:Binary-to-Gray
Belowtableshowsnatural-binarynumbers
(upto4-bit)andcorrespondinggraycodes.
180RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
CodeConversion:Binary-to-Gray
Lookingatgray-code(G3G2G1G0),wefind
thatanytwosubsequentnumbersdifferinonly
onebit-change.
Thesametableisusedastruth-tablefor
designingalogiccircuitrythatconvertsagiven
4-bitnaturalbinarynumberintograynumber.
Forthiscircuit,B3B2B1B0areinputswhile
G3G2G1G0areoutputs.
181RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
CodeConversion:Binary-to-Gray
182RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
CodeConversion:Binary-to-Gray
183RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
CodeConversion:Binary-to-Gray
Sothat’sasimplethreeEX-ORgatecircuit
thatconvertsa4-bitinputbinarynumberinto
itsequivalent4-bitgraycode.Itcanbe
extendedtoconvertmorethan4-bitbinary
numbers.
184RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
CodeConversion:Gray-to-binary
Oncetheconvertedcode(nowinGrayform)is
processed,wewanttheprocesseddataback
inbinaryrepresentation.Soweneeda
converterthatwouldperformreverse
operationtothatofearlierconverter.Thiswe
callaGray-to-Binaryconverter.
Thedesignagainstartsfromtruth-table:.
185RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
CodeConversion:Gray-to–binary
186RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
CodeConversion:Gray-to–binary
187RNB Global University, Bikaner.Course Code -19004000

Decoder -Encoder
CodeConversion:Gray-to–binary
188RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
Thenextthreecombinationalcomponentswe
willstudyare:ROM,PLA,andPAL.
ROM'sPLA'sandPAL'sarestorage
Components.
Amoreprecisedefinitionis:acombinational
componentisacircuitthatdoesn'thave
memoryofpastinputs.(Theoutputsofa
combinationalcomponentarecompletely
determinedbythecurrentinputs.)
189RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ROM:AROMisacombinationalcomponent
forstoringdata.Thedatamightbeatruth
tableorthedatamightbethecontrolwordsfor
amicroprogrammedCPU.(Controlwordsina
microprogrammedCPUinterpretthemacro
instructionsunderstoodbytheCPU.)
AROMcanbeprogrammedatthefactoryor
inthefield.
Thefollowingimageshowsthegenericformof
aROM:
190RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ROM:(x=log
2n<=>2
x
=n)
191RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ROM: An n x m ROM can store the truth table
for m functions defined on log
2n variables:
192RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ROM:Example:Implementthefollowing
functionsinaROM:
F
0=A
F
1=A'B'+AB
SinceaROMstoresthecompletetruthtable
ofafunction(oryoucouldsaythataROM
decodeseverymintermofafunction)
Thefirststepistoexpresseachfunctionasa
truthtable.
193RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ROM:
For the discussion that follows it may be
helpful to keep in mind the canonical form of
the function also:
F
0= AB' + AB
F
1= A'B' + AB
194RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ROM:
WeuseaspecialnotationtoshowtheROM
implementationofafunction:
195RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ROM:
Theimageaboveshowshowa4x3ROMcan
beusedtoimplementthetwofunctionsF
0and
F
1.(Note,thereisroomintheROMfor3
functionsoftwovariables.F
2isn'tused.
196RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ROM:
ROMsprogrammedatthefactoryarecalled
maskROMSbecauseduringfabricationthe
circuitpatternsaredeterminedbyamask.
Thereareseveraldifferenttypesoffield
programmableROMS:
PROM(ProgrammableRead-OnlyMemory)-This
isthetypethatwasdiscussedabove.Connections
arefusedandburnedinthefieldwithaPROM
programmer.
197RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ROM:
EPROM (ErasableProgrammableRead-Only
Memory)-ThistypeofROMcanbere-writtenby
shininganultravioletlightthroughawindowonthe
IC.
EEPROM (ElectricallyErasableProgrammable
Read-OnlyMemory)-Ratherthanultravioletlight
anextrahighvoltageisusedtore-writethe
contentsofthistypeofROM.
FlashMemory-Insteadofrequiringextrahigh
voltagesflashmemorydevicesworkwithregular
devicevoltages.
198RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableLogic:Aprogrammablelogic
deviceworkslikeaROMbutisamoreefficient
solutionforimplementingsparse(Matrixinwhichnon
zeroelementsarelessthannoofzeros)output
functions(Notallmintermsaredecoded).
Therearetwotypesofprogrammablelogicdevices:
1.PLA (Programmable Logic Array)
2.PAL (Programmable Array Logic)
199RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableArrayLogic(PAL):
PALisaprogrammablelogicdevicethathas
ProgrammableANDarray&fixedORarray.
TheadvantageofPAListhatwecangenerateonly
therequiredproducttermsofBooleanfunctioninstead
ofgeneratingallthemintermsbyusingprogrammable
ANDgates.
TheblockdiagramofPALisshowninthefollowing
figure.
200RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableArrayLogic(PAL):
Here,theinputsofANDgatesareprogrammable.
ThatmeanseachANDgatehasbothnormaland
complementedinputsofvariables.
So,basedontherequirement,wecanprogramanyof
thoseinputs.So,wecangenerateonlythe
requiredproducttermsbyusingtheseANDgates.
theinputsofORgatesarenotofprogrammabletype.
So,thenumberofinputstoeachORgatewillbeof
fixedtype.Hence,applythoserequiredproductterms
toeachORgateasinputs.
Therefore,theoutputsofPALwillbeintheform
ofsumofproductsform.
201RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableArrayLogic(PAL):
Example:LetusimplementthefollowingBoolean
functionsusingPAL.
A=XY+XZ′
A=XY′+YZ′
Thegiventwofunctionsareinsumofproductsform.
TherearetwoproducttermspresentineachBoolean
function.So,werequirefourprogrammableAND
gates&twofixedORgatesforproducingthosetwo
functions.
ThecorrespondingPALisshowninthefollowing
figure.
202RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableArrayLogic(PAL):
Example:
203RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableArrayLogic(PAL):
Example:
TheprogrammableANDgateshavetheaccessof
bothnormalandcomplementedinputsofvariables.In
theabovefigure,theinputsX,X′,Y,Y′,Z&Z′,are
availableattheinputsofeachANDgate.
So,programonlytherequiredliteralsinorderto
generateoneproducttermbyeachANDgate.The
symbol‘X’isusedforprogrammableconnections.
Thesymbol‘X’isusedforprogrammableconnections.
204RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableArrayLogic(PAL):
Example:
Here,theinputsofORgatesareoffixedtype.So,the
necessaryproducttermsareconnectedtoinputsof
eachORgate.
SothattheORgatesproducetherespectiveBoolean
functions.
Thesymbol‘.’isusedforfixedconnections.
205RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableLogicArray(PLA):
PLAisaprogrammablelogicdevicethathas
bothProgrammable AND array&
ProgrammableORarray.Hence,itisthemost
flexiblePLD.
TheblockdiagramofPLAisshowninthe
followingfigure.
206RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableLogicArray(PLA):
Here,theinputsofANDgatesareprogrammable.
ThatmeanseachANDgatehasbothnormaland
complementedinputsofvariables.
Basedontherequirement,wecanprogramanyof
thoseinputs.So,wecangenerateonlythe
requiredproducttermsbyusingtheseANDgates.
TheinputsofORgatesarealsoprogrammable.So,
wecanprogramanynumberofrequiredproduct
terms,sincealltheoutputsofANDgatesareapplied
asinputstoeachORgate.Therefore,theoutputsof
PALwillbeintheformofsumofproductsform.
207RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableLogicArray(PLA):
Example-
LetusimplementthefollowingBoolean
functionsusingPLA.
A=XY+XZ′
B=XY′+YZ+XZ′
Thegiventwofunctionsareinsumofproductsform.
Thenumberofproducttermspresentinthegiven
BooleanfunctionsA&Baretwoandthree
respectively.Oneproductterm,Z′XZ′Xiscommonin
eachfunction.
208RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableLogicArray(PLA):
werequirefourprogrammableANDgates&two
programmableORgatesforproducingthosetwo
functions.ThecorrespondingPLAisshowninthe
followingfigure.
209RNB Global University, Bikaner.Course Code -19004000

ROM & Programmable Logic
ProgrammableLogicArray(PLA):
TheprogrammableANDgateshavetheaccessof
bothnormalandcomplementedinputsofvariables.In
theabovefigure,theinputsX,X′,Y,Y′,Z&Z′,are
availableattheinputsofeachANDgate.So,program
onlytherequiredliteralsinordertogenerateone
producttermbyeachANDgate.
Alltheseproducttermsareavailableattheinputsof
eachprogrammableORgate.But,onlyprogramthe
requiredproducttermsinordertoproducethe
respectiveBooleanfunctionsbyeachORgate.The
symbol‘X’isusedforprogrammableconnections.
210RNB Global University, Bikaner.Course Code -19004000

FPGA -Field Programmable Gate
Arrays
FieldProgrammableGateArrays(FPGAs)are
semiconductordevicesthatarebasedaroundamatrix
ofconfigurablelogicblocks(CLBs)connectedvia
programmableinterconnects.
FPGAscanbereprogrammedtodesiredapplicationor
functionalityrequirementsaftermanufacturing.
ThisfeaturedistinguishesFPGAsfromApplication
SpecificIntegratedCircuits(ASICs),whicharecustom
manufacturedforspecificdesigntasks.
211RNB Global University, Bikaner.Course Code -19004000

FPGA -Field Programmable Gate
Arrays
Field-programmablegatearrays(FPGAs)are
reprogrammablesiliconchips.RossFreeman,the
cofounderofXilinx,inventedthefirstFPGAin1985.
FPGAchipadoptionacrossallindustriesisdrivenby
thefactthatFPGAscombinethebestpartsof
application-specificintegratedcircuits(ASICs)and
processor-basedsystems.
FPGAsprovidehardware-timedspeedandreliability,
buttheydonotrequirehighvolumestojustifythe
largeupfrontexpenseofcustomASICdesign.
Reprogrammablesiliconalsohasthesameflexibility
ofsoftwarerunningonaprocessor-basedsystem,but
itisnotlimitedbythenumberofprocessingcores
available. 212RNB Global University, Bikaner.Course Code -19004000

FPGA -Field Programmable Gate
Arrays
Althoughone-timeprogrammable(OTP)FPGAsare
available,thedominanttypesareSRAMbasedwhich
canbereprogrammedasthedesignevolves.
ApplicationsofFPGAs:
1.Aerospace&Defence-Radiation-tolerantFPGAs
alongwithintellectualpropertyforimageprocessing,
waveformgeneration,andpartialreconfigurationfor
SDRs(SpecialDrawingRights).
213RNB Global University, Bikaner.Course Code -19004000

FPGA -Field Programmable Gate
Arrays
ApplicationsofFPGAs:
2.ASICPrototyping-ASICprototypingwithFPGAs
enablesfastandaccurateSoC(SystemonChip)
systemmodelingandverificationofembedded
software
3.Automotive-AutomotivesiliconandIPsolutionsfor
gatewayanddriverassistancesystems,comfort,
convenience,andin-vehicleinfotainment.
4.ConsumerElectronics-Cost-effectivesolutions
enablingnextgeneration,full-featuredconsumer
applications,suchasconvergedhandsets,digitalflat
paneldisplays,informationappliances,home
networking,andresidentialsettopboxes.
214RNB Global University, Bikaner.Course Code -19004000

FPGA -Field Programmable Gate
Arrays
ApplicationsofFPGAs:
5.DataCenter-Designedforhigh-bandwidth,low-
latencyservers,networking,andstorageapplications
tobringhighervalueintoclouddeployments.
6.HighPerformanceComputingandDataStorage-
SolutionsforNetworkAttachedStorage(NAS),
StorageAreaNetwork(SAN),servers,andstorage
appliances.
7.Industrialhigherdegreesofflexibility,fastertime-to-
market,andloweroverallnon-recurringengineering
costs(NRE)forawiderangeofapplicationssuchas
industrialimagingandsurveillance,industrial
automation,andmedicalimagingequipment.
215RNB Global University, Bikaner.Course Code -19004000

FPGA -Field Programmable Gate
Arrays
ApplicationsofFPGAs:
8.Medical-Fordiagnostic,monitoring,andtherapy
applications.
9.Security-offerssolutionsthatmeettheevolving
needsofsecurityapplications,fromaccesscontrolto
surveillanceandsafetysystems.
10.WiredCommunications-End-to-endsolutionsforthe
Reprogrammable NetworkingLinecardPacket
Processing,Framer/MAC,serialbackplanes,and
more.
216RNB Global University, Bikaner.Course Code -19004000

TTL IC
Transistor–transistorlogic(TTL)isaclassofdigital
circuitsbuiltfrombipolarjunctiontransistors(BJTs)
andresistors.
Itiscalledtransistor–transistorlogicbecause
transistorsperformboththelogicfunction(e.g.,AND)
andtheamplifyingfunction(comparewithresistor–
transistorlogic(RTL)anddiode–transistorlogic(DTL).
TTLintegratedcircuits(ICs)werewidelyusedin
applicationssuchascomputers,industrialcontrols,
testequipmentandinstrumentation,consumer
electronics,andsynthesizers.
217RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
TheQuineMcCluskeytabulationmethodisavery
usefulandconvenienttoolforsimplificationofBoolean
functionsforlargenumbersofvariables.
AsweknowthattheKarnaughmapmethodisavery
usefulandconvenienttoolforsimplificationofBoolean
functionsaslongasthenumberofvariablesdoesnot
exceedfour.
Butforcaseoflargenumberofvariables,the
visualizationandselectionofpatternsofadjacentcells
intheKarnaughmapbecomescomplicatedandtoo
muchdifficult.
ForthosecasesQuineMcCluskeytabulationmethod
takesvitalroletosimplifytheBooleanexpression.
218RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
TheQuineMcCluskeytabulationmethodisaspecific
step-by-stepproceduretoachieveguaranteed,
simplifiedstandardformofexpressionforafunction.
Nowtakeanexampletounderstandtheprocess.Let
we have a Boolean expressionF=
(0,1,2,3,5,7,8,10,14,15)andwehavetominimizethat
byQuineMcCluskeytabulationmethod.
219RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
Tostartwithwehavetomaketableandkeptallthe
numbersinsamegroupwhosebinarynumbers
containingequal1s.Like1,2,8(0001,0010,1000)are
insamegroupbecauseallhasequal1sintheirbinary
number.Seeinbelowtable.
220RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
Wehavetoaddanothercolumntorightsideofthat
tablenaming1
st
Nowbetweentwogroupsdepending
uponnumberof1s,wehavetofindsimilarnumber
withonlyonepositionchangeto0to1.
Seethebinarynumberof1(0001)fromfirstgroupand
3(0011)fromsecondgroup.Boththenumberare
similaronlysecondbitpositionfromLSBchange0to
1.Soinnewcolumnweshouldwrite(1,3)00-1(in
placeofnumberchangeweput“–“onthat).Inthis
waywehavetocheckentiretableandmakenew
columnaccordingly.
221RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
222RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
Nowwehavetoagainaddanothercolumntoright
sideofthattablenaming2
nd
Nowbetweentwogroups
from1
st
column,wehavetofindsimilarnumberwith
onlyonepositionchangeto0to1.
Seethebinarynumberof(0,1)(000-)and(2,3)(001-).
Boththenumbersaresimilaronlysecondbitposition
fromLSBchange0to1.Soinnewcolumnweshould
write(0,1,2,3)00–(inplaceofnumberchangeweput
“–“onthat).Inthiswaywehavetocheckentiretable
andmakenewcolumnaccordingly.
223RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
224RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
Mostofwecompletednowwehavetomark
whatarethosecombinationweusedin
2
nd
Likeforfirstone(0,1,2,3),weused0,1and
2,3combinationfrom1
st
column.
Nowmakethefinaltableforgettingthe
simplifiedBooleanexpression.Nowquestion
ishowitpossible?Wehavetomakeatable
withallcombinationof2
nd
columnandunused
portionof1
st
225RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
226RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
227RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
Wecankeeponecrossinanyonecolumn.So
wehavetocutsomerawwhichwasmost
benefitedentirelytomakeonecrossatone
column.Butkeepmindthatweshouldnotcut
thoserawwhichcangiveascrossatsingle
column.
228RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
229RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
NowwecangetthesimplifiedBoolean
expressionfromabovetableandit’s
correspond2
nd
columnvalue.Wehavetotake
uncutrowwithits2
nd
columnvalueand
convertitwithABCDvariable.Likewhereyou
find0takecomplementvalue,1for
uncomplementvalueand“–“fornovariable.
230RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
0,8,2,10(-0 –0)=B^D^
1,3,5,7(0 ––1) = A^D
14,15 (1 1 1 -)=ABC
So answer will be F =B^D^+A^D+ABC
231RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
Example-Letussimplifythefollowing
Boolean
Function,f(W,X,Y,Z)=∑m(2,6,8,9,10,11,14,15)
usingQuine-McClukeytabularmethod.
232RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
Example-
233RNB Global University, Bikaner.Course Code -19004000
Group Minterm W X Y Z
GA1 2 0 0 1 0
8 1 0 0 0
GA2 6 0 1 1 0
9 1 0 0 1
10 1 0 1 0
GA 11 1 0 1 1
14 1 1 1 0
GA4 15 1 1 1 1

Quine McCluskey Tabulation Method
Example-
234RNB Global University, Bikaner.Course Code -19004000
GroupMinterm W X Y Z
GB1 2,6 0 - 1 0
2,10 - 0 0 0
8,9 1 0 0 -
8,10 1 0 - 1
GB2 6,14 - 1 1 0
9,11 1 0 - 1
10,11 1 0 1 -
10,14 1 - 1 0
GB3 11,15 1 - 1 1
14,15 1 1 1 -

Quine McCluskey Tabulation Method
Example-
235RNB Global University, Bikaner.Course Code -19004000
Group Minterm W X Y Z
GB1 2,6,10,14 - - 1 0
2,10,6,14 - - 1 0
8,9,10,11 1 0 - -
8,10,9,11 1 0 - -
GB2 10,11,14,15 1 - 1 -
10,14,11,15 1 - 1 -

Quine McCluskey Tabulation Method
Example-
236RNB Global University, Bikaner.Course Code -19004000
Group Minterm W X Y Z
GB1 2,6,10,14 - - 1 0
8,9,10,11 1 0 - -
GB2 10,11,14,15 1 - 1 -

Quine McCluskey Tabulation Method
Example-
237RNB Global University, Bikaner.Course Code -19004000
Min
terms
/
Prime
Implic
ants
2 6 8 9 10 11 14 15
YZ’ 1 1 1 1
WX’ 1 1 1 1
WY 1 1 1 1

Quine McCluskey Tabulation Method
Example-
238RNB Global University, Bikaner.Course Code -19004000
Min
terms
/
Prime
Implic
ants
2 6 8 9 10 11 14 15
YZ’ 1 1 1 1
WX’ 1 1 1 1
WY 1 1 1 1

Quine McCluskey Tabulation Method
Example-Letussimplifythefollowing
Boolean.
f(W,X,Y,Z)=YZ’+WX’+WY.
239RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
Example-Letussimplifythefollowing.
F(a,b,c,d)=Ʃ(0,5,8,9,10,11,14,15)
240RNB Global University, Bikaner.Course Code -19004000

Quine McCluskey Tabulation Method
Example-Letussimplifythefollowing.
F(a,b,c,d)=Ʃ(0,5,8,9,10,11,14,15)
Ans–AB’+AC+B’C’D’+A’BC’D
241RNB Global University, Bikaner.Course Code -19004000

Reviews
SimplificationofBooleanfunctionbyK-Map.
SimplificationofBooleanfunctionbyQ.M.
Adder–Half,Full,BCD,HighSpeed.
Subtractor,Multiplier,dividers.
ALU,CodeConversion–Encoder,Decoder.
Comparators,Multiplexers,Demultiplexers.
ImplementationusingICs.
242RNB Global University, Bikaner.Course Code -19004000

Thank You!
RNB Global University, Bikaner. 243
Course Code -19004000