Braided River

HosseinMohajer1 463 views 44 slides Apr 10, 2021
Slide 1
Slide 1 of 44
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44

About This Presentation

Fluvial Processes & Sediment Regimes, Methodology


Slide Content

Braided River
(Fluvial Processes & Sediment Regimes,
Methodology)
BY: H.MOHAJER SOLTANI
2021

Concepts:
Braidedriversarecharacterizedbyanunstablenetworkof
multiplechannelsandveryactivechannelprocesses.
1

Concepts:
Theycanbefoundindifferentclimateregions(e.g.fromglacial
areastoaridregions)
Braidedriversareverydifferentphysiographicsettings(e.g.
fromsteepmountainareastolowcoastalplains)
2

Concepts:
Braidingprocessesoccurwhentherearenon-cohesive
materials(e.g.gravelandsand),highsedimentsupply,and
absenceorlimitedlateralconfinement.
Sedimentsizeofbraidedriversrangesfromcobblestosilt.
3

Morphology:
Braidedmorphologyischaracterizedbyanunstablenetworkof
multiplechannelsseparatedbyephemeralbars.
Understandingofbraidedrivermorphologyandprocesseshas
developedthroughphysicalmodeling,fieldobservations,and,
toalesserextent,numericalmodelingSedimentsizeofbraided.
4

Morphology:
Fieldstudiesarenoteasytocarryoutinabraidedsystembut
remotesensingandrecenttechnologies(e.g.LiDAR,TLS)have
improvedourcapabilityofobservationinthefield
Aerialphotographsandsatelliteimageshavebeencommonly
usedtodescribethemainelementsofbraidedriverplanform,
while,morerecently,newtechnologieshaveallowed
constructionofDigitalElevationModelsand,therefore,more
comprehensivedescriptionofbraidedmorphology
5

Morphology:
6
Detrended digital elevation model (a) and bathymetric map (b) of the Ahuriri River

Morphology:
Thebraidplain,alsocalled“braidbelt”or“braidedchannel
belt”braidplainiscomposedbydifferentbartypes,mainand
secondarychannels,commonlycalledanabranches,and,in
somecases,islands.
Barsarethemaindepositionalfeaturesandareexposedmost
ofthetime.
Anabranches,representingthelowesttopographicfeatures,
cancarrywatermostofthetimeinmorehumidenvironments,
butcanbealsodryformostoftheyearinaridclimatesorin
smallstreams
7

8

Morphology:
Braidingintensity,ordegreeofbraiding,isabasic
morphologicalpropertyanalogoustosinuosityinsingle-thread
channels.
Channelbifurcationsandconfluencesareotherbasic
morphologicalfeaturesofbraidedrivers.
HundeyandAshmore(2009)foundthatthereisalinear
relationshipbetweenchannelwidthandthedistancebetween
anabranchconfluencesanddownstreambifurcation.
Inaphysicalmodel,confluencebifurcationlengthsturnedout
tobe4–5timesthewidthofthemainchannel
9

10
Relation between the average width of the main channel and confluence bifurcation length
(from Hundey and Ashmore 2009)

Morphology:
Bifurcationscontrolthepartitionofflowandsedimentdischarge
intheanabranchesofabraidednetwork.
Bifurcationsmaybesymmetricorasymmetric.
InthesymmetricBifurcationsbothanabranchesconveyflow
andtransportbedmaterial
inasymmetricbifurcationsonlyoneanabranchtransportsbed
materialandoneorbothanabranchesconveywater
11

Morphology:
Ingravel-bedrivers,whereShieldsstressisrelativelylow,
bifurcationsevolvetowardasymmetricalconfigurations.
insand-bedrivers,whereShieldsstressishigher,theymay
evolvetoasymmetricalconfiguration
InasymmetricalBifurcations:
anunbalancedwaterdistributionanddifferentwidthofthedownstreambranches
thelateralshiftofthemainbranch,theonecarryingmorewater,towardsthe
externalbank,wheremostoferosiontakesplace
12

Morphology:
confluencerepresentatransferzonebetweenupstreamlateral
erosionsitesanddownstreamsedimentationsites.
SomeconfluencesdisplayasimplesymmetricalYshapebutin
mostcasestheirmorphologyismorecomplicated.
Thistypeofconfluenceischaracterizedbyadeepscouratits
centerandmid-channelbar.
Scoursizeanddepthisprimarilycontrolledbyconfluenceangle
anddischargeoftheconfluentanabranches
13

14
Sedimentary description
Miall(1985)proposedanelaboratedlithofaciescodeto
describeandclassifyfluvialdeposits
Thislithofaciescodewasfurtherdevelopedandextendedby
Keller(1996)andHeinzandAigner(2003).Thiscodeisoftentoo
detailedtodescribeinastraightforwardmannercomplex,
laterally-varyingsedimentheterogeneity.
Furthermore,thenumerouslithofaciesgenerallytranslateintoa
handfulofhydrofaciesasdemonstrated byhydraulic
measurementsofsamplesorempiricallawslinkinggrain-size
distributiontohydraulicconductivity

15
Lithofacies code by Keller (1996) and Heinz and Aigner (2003)

16
Sedimentary description
HuggenbergerandRegli(2006)proposedanovelclassification
schemetodescribethemaincharacteristicheterogeneitiesof
coarse,braidedriverdepositsforhydrogeologicalapplications
Sedimentary textures, structures, and depositional elements proposed by Huggenberger and Regli (2006)

17
Sedimentary Textures
open-frameworkgravel(OW):Awell-sortedgravel,inwhich
porespaceisfreeofsandandsilt,althoughclayandsilt
particlesoccasionallydrapethepebbles.
A fining-upward open-framework gravel

18
Sedimentary Textures
bimodalgravel(BM):Agravelconsistingofamatrixofwell-
sortedmediumsandthatfillsintersticesofaframeworkofwell-
sortedpebblesandoccasionalcobbles.
open-framework–bimodal gravel couplets

19
Sedimentary Textures
poorly-sortedgravel(GP):poorly-sortedgravel,containingcoarse
sand,granules,pebblesand,rarely,cobbles.Thegravelparticles
arewell-rounded.Clayandsiltparticlesnevermakeupmorethan
5%.
Poorly-sorted gravel

20
Sedimentary Textures
Poorly-sorted,sandygravel(GM):poorly-sortedgravelwith
sandandsilt.
horizontal to sub-horizontal layering of 3-m-thick poorly-sorted gravel

21
Sedimentary Textures
Siltygravel(SG):poorly-sortedgravel,oftencontainingupto
30%sandandnearly20%siltandclay.
Silty gravel

22
Sedimentary Textures
Sand (SA): Poorly sorted to well-sorted sand without significant
silt or clay fractions.
Silt (SI): Poorly graded silt.
Sand

23
Sedimentary Structure
Among allthesedimentarystructuresidentifiedby
HuggenbergerandRegli(2006).
Open-framework–bimodalgravel(OW–BM)structureisthemost
singular.Itconsistsoffining-upwards,normalgradedsequences
ofbimodalgravel(BM)atthebaseandOWatthetopwitha
sharpboundarybetweenthesandintheBMandtheopen
poresoftheOW.

24
Other sedimentary description
Andersonetal.(1999)identifiedinanoutcropinWisconsin
(U.S.A.)11lithofaciesthatwerecondensedinto7hydrofacies.
About85%ofthecoarse,braidedriverdepositsconsistedof
only4lithofacies.TheynoticedthesignificantimpactoftheOW
ontheflowsystemeveniftheOWproportionwasverysmall
(about4%ofthedeposits).
Klingbeiletal.(1999)identifiedintheSingenbasin(south
Germany)23(!)lithofaciesthatweremergedinto5hydrofacies
afterhydraulicmeasurements:(i)BM,(ii)OW,(iii)
planar/trough/horizontalgravels,(iv)massivegravels,and(v)
SA.

25
Other sedimentary description
Heinzetal.(2003)distinguished5mainlithofaciesinthe‘former
fluvialdrainagezonesoftheRhineglacier’(southGermany):(i)
SA,(ii)wellsortedgravel(GS-x),(iii)GP(themostfrequently
observedlithofacies),(iv)OW–BMcouplets,and(v)GM.But
theysophisticatedtheirhydrofaciesdescriptionby
Bayeretal.(2011)identified4lithofacies:(i)GP(themost
frequentlyobservedlithofacies),(ii)OW–BMcouplets,(iii)well
sortedgravelandsand(GS-x),and(iv)SA.FollowingHeinzetal.
(2003)theyderived10hydrofaciesbutnoticedthattheir
classificationcouldbesimplifiedbygroupinghydrofacieswith
similarhydraulicproperties.

26
Depositional elements
Depositionalelementsaretheresultsofeitherdepositional
processesorerosionalanddepositional(orcut-and-fill)
processesthatleaveaspecificstructureinthesubsurface.
Inverticaloutcropexposures,depositionalelementscanbe
identifiedby(i)erosionallower-boundingsurfaces,(ii)
sedimentarystructures,and(iii)clastorientation(Siegenthaler
andHuggenberger,1993).
Fourmaindepositionalelementsaregenerallyobservedin
coarse,braidedriverdeposits:

27
Depositional elements
Horizontallybeddedgravelsheet:mainlyconsistofGPwitha
beddedappearancethatextendsuptotensofmeters.
Occasionally,somesingleGMbedsalternatewiththeGP
Thethicknessofthesegravelsheetstypicallyvariesbetween
0.1mand0.3mbutcanreach1m.
Thehorizontallybeddedgravelsheetsmostlikelyoriginatefrom
remnantofgravelsheetsbecausethegravelsheetistheonly
geomorphologicalelementthathasadepositionalcharacter
andisvery

28
Depositional elements
Massivecoarse-grainedgravelsheets:Laterallyextensive,
massiveandcoarse-grainedgravelsheetsarecomposedof
GM.
Theirthicknessrangesbetweenfewdecimetersuptoseveral
meters.
Themassive,coarse-grainedlayersofGMweresurely
depositedbylargemagnitudedischargeswithsolid-solid
momentumtransfer(e.g.,debrisflow,glacialoutburst)

29
Depositional elements
Troughfills:withclear-cuterosionallower-boundingsurfaceand
tangentialcross-bedsarecommonly observedinvertical
exposuresingravelcarries.
Simplified conceptual model of a single trough fill (with alternating open-framework–
bimodal gravel (OW–BM) couplets) embedded into layers of poorly-sorted gravel (GP).

30
Depositional elements
Trough sizes estimated from interpreted three-dimensional ground-penetrating radar datasets

31
Depositional elements
Onsectionsperpendiculartotheformermainflowdirection,the
troughfillsshowcirculararc-likeerosionallower-bounding
surfaceswithstronglycurvedtangentialcrossbedswhileon
parallelsectionstheerosionallower-boundingsurfacesare
spoon-shapedwithstraighterbutstilltangentialcross-beds

32
Depositional elements
Vertical gravel pit exposure perpendicular to the former main flow direction.
(The diameter of the red circle is about 90 cm)

33
Depositional elements
Gravel pit exposure (Huentwangen, northeast Switzerland) perpendicular to the former main flow direction

34
Gravel pit exposure (Marthalen, northeast Switzerland) perpendicular to the former main flow direction

35
Braided river in the reserves exploration
Consideringthepoorapplicabilityofconventionalgeological
modelingtotightsandgasreservoirinbraidedriverfacies,a
modelingmethodof“multi-stageconstraints,hierarchicalfacies
controlandmulti-stepmodeling”wasputforwardtaking
explorationhydrocarbonfield.

36
Braided river in the reserves exploration
ThemethodobtainstheGRfieldbyseismicinversion
constrainedbyloggingdata,andGRmodelisbuiltunderthe
controlofthepriorgeologicalknowledge;therelation
regressionisrealizedbetweentheGRmodelandthesandstone
probability,sandstoneprobabilitymodelisbuilt.
rockfaciesmodelisobtainedbymulti-pointgeostatistics
theory;sedimentarymicrofaciesmodelcontrolledbyrock
faciesandbraidedriver-systemismade;andeventuallyan
effectivesandbodymodelisbuiltbyintegratingsedimentary
microfacies,effectivesandbodyscaleandreservoirproperties
distribution.

37
Geological modeling process

38
Braided river in the reserves exploration
GRmodelwassetupbyusingsequentialGaussianmethod.This
wayreducesthemultiplicityofseismicdata,clarifiesthe
geologicalmeaningofpredictedsands,andguaranteestheGR
valuecontinuitybetweenthewellpointsandinter-wellplaces

39
Comparison of wave impedance inversion and GR inversion

40
Braided river sedimentary system and sedimentary microfacies plan

41
Comparison of sand isopach map based on model and sand isopach based on manual drawing

42
Verification by modeling well pattern coarsening (the data of blue
wells are used and that of red wells are not in the modeling)

Thank you for your attention