SlidePub
Home
Categories
Login
Register
Home
Technology
BRAIN TUMOR DETECTION for seminar ppt.pdf
BRAIN TUMOR DETECTION for seminar ppt.pdf
LAXMAREDDY22
109 views
25 slides
Jun 08, 2024
Slide
1
of 25
Previous
Next
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
About This Presentation
BRAIN TUMOR DETECTION
AND CLASSIFICATION USING
ARTIFICIAL INTELLIGENCE
Size:
114.6 KB
Language:
en
Added:
Jun 08, 2024
Slides:
25 pages
Slide Content
Slide 1
BRAIN TUMOR DETECTION
AND CLASSIFICATION USING
ARTIFICIAL INTELLIGENCE
Slide 2
ABSTRACT
Therapidadvancementofartificialintelligence(AI)
hasledtoinnovativesolutionsinthemedicalfield,
particularlyinthedomainofmedicalimage
analysis.Thisprojectintroducesanovelapproach,
"BrainTumorDetectionandClassificationUsing
ArtificialIntelligence,"aimedataccurateand
efficientidentificationofbraintumors.The
proposedsystemintegratescutting-edge
technologiesincludingtheYOLOV2algorithmfor
tumordetectionandtheMobileNetV2architecture
fortumorclassification.
Slide 3
EXISTING SYSTEM
Intherealmofmedicalimaging,thedetectionand
classificationofbraintumorsplayapivotalrolein
diagnosingandtreatingneurologicaldisorders.The
existingsystemforbraintumoranalysis,although
effective,isbeingsignificantlyenhancedbythe
integrationofartificialintelligence(AI)techniques.
Medicalimageprocessinghighlydependson
segmentation.Traditionalsegmentationapproaches
suchasthresholding,clustering,andedge-based
segmentationmethodsarecurrentlyused,buttheydo
notprovideaccuratesegmentationresultsforbrain
abnormalities.
Slide 4
Traditionally,medicalprofessionalsrelyonmanualinterpretationof
magneticresonanceimaging(MRI)scanstoidentifybraintumors.
Radiologistsvisuallyinspectthescansandidentifyanomaliesthat
couldindicatethepresenceoftumors.Thisprocess,whileaccurate,is
time-consumingandsubjecttohumanerror.Therelianceonhuman
expertisealonecanleadtovariationsininterpretationand
potentiallydelaycriticaldiagnoses.
Tomitigatethesechallenges,computer-aideddiagnosis(CAD)
systemswereintroducedintheexistingsystem.Thesesystemsutilized
imageprocessingtechniquestoenhancethevisibilityoftumorsin
MRIscans,makingthemmoredistinguishabletoradiologists.
However,CADsystemsprimarilyfocusedonenhancingthe
visualizationoftumorsratherthanautomatingthedetectionand
classificationprocesses.
Slide 5
Inrecentyears,theexistingsystemhaswitnessed
advancementswiththeintegrationofAIanddeeplearning
techniques.Convolutionalneuralnetworks(CNNs)havebeen
employedtoautomaticallydetecttumorsinMRIscans.
Althoughthesenetworksachievedcommendableresults,the
focusremainedpredominantlyontumordetectionrather
thansubsequentclassification.
Theexistingsystemtypicallyemployedhandcrafted
featuresandtraditionalmachinelearningalgorithmsfor
classificationtasks.Thesealgorithmsrequiredfeature
extractionandselection,aprocessthatwasintricateand
time-intensive.Moreover,theyoftenstruggledwiththe
complexityandvariabilityofmedicalimages.
Slide 6
Inconclusion,theexistingsystemforbraintumor
detectionandclassificationhasevolvedfrommanual
inspectiontocomputer-aideddiagnosis,primarily
focusingonimageenhancement.Whilethese
advancementshaveimproveddiagnosis,theintegration
ofAIanddeeplearningtechniquespromisesto
revolutionizethefieldbyautomatingbothdetection
andclassificationprocesses.Thistransitionfroma
manualandrule-basedsystemtoadata-drivenandAI-
enhancedsystemmarksasignificantleapforwardin
theaccuracyandefficiencyofbraintumoranalysis.
Slide 7
DISADVANTAGES OF EXISTING
SYSTEM
ManualInterpretation:Theexistingsystemheavily
reliesonmanualinterpretationofmedicalimages
byradiologists.Thisprocessistime-consuming,
subjective,andsusceptibletohumanerrorsand
variationsindiagnosis.
LimitedAutomation:Althoughcomputer-aided
diagnosis(CAD)systemshavebeenintroduced,they
primarilyfocusonimageenhancementanddonot
provideacomprehensiveautomatedsolutionfor
tumordetectionandclassification.
Slide 8
LackofReal-timeAnalysis:Traditionalmethodslack
real-timeanalysiscapabilities.Thiscanresultindelays
inobtainingcriticaldiagnosticinformation,impacting
thespeedofdecision-makingandpatientcare.
LimitedSensitivitytoVariability:Handcraftedfeatures
andtraditionalmachinelearningalgorithmsusedfor
classificationstruggletocapturetheintricateand
diversefeaturespresentinmedicalimages.Thislimits
theirabilitytoaccuratelyclassifytumors,particularlyin
casesofcomplexoratypicaltumors.
Slide 9
DependencyonExpertise:Theaccuracyofthe
existingsystemheavilyreliesontheexpertiseof
radiologists.Thiscreatesapotentialbottleneckin
areaswithashortageofskilledprofessionalsand
canleadtodiscrepanciesindiagnoses.
InabilitytoHandleLargeDatasets:Manual
interpretationandtraditionalmethodsarenot
efficientathandlinglargevolumesofmedical
imagingdata.Theprocessbecomestime-consuming
andresource-intensive,whichcanhinderscalability.
Slide 10
Non-adaptivetoNewInformation:Theexistingsystem
lackstheabilitytocontinuouslylearnandadaptfrom
newdata.Thismeansthatitmaynotstayup-to-date
withthelatestmedicalknowledgeandadvancements.
InconsistentQuality:Thequalityofdiagnosisinthe
existingsystemcanvarydependingontheexperience
andexpertiseofindividualradiologists,leadingto
inconsistentandpotentiallyinaccurateresults.
HighCostsandResourceConsumption:Traditional
methodsmayrequiresignificantresources,including
expensivesoftware,hardware,andspecialized
personnel,addingtotheoverallcostofdiagnosis.
Slide 11
LimitedSupportforComplexCases:Complexorrare
tumorcasesmaychallengethecapabilitiesofthe
existingsystem,asitmaynothavethenecessarytools
toaccuratelydiagnosesuchcases.
RiskofMisinterpretation:Misinterpretationofmedical
images,whetherduetohumanerrororlimitationsinthe
CADsystems,canhaveseriousconsequencesforpatient
careandtreatmentplanning.
TraditionalFCMandK-meansclusteringhavenoise
sensitivitylimitationsandareinadequateatdetecting
brainabnormalitiessuchastumors,edema,andcysts.
Slide 12
PROPOSED SYSTEM
Theproposedsystem,"BrainTumorDetectionandClassification
UsingArtificialIntelligence,"presentsacomprehensiveand
innovativeapproachtoaddressthelimitationsoftheexistingsystem
inbraintumordiagnosis.ByintegratingadvancedAItechniquesand
leveragingstate-of-the-arttechnologies,thissystemaimstoenhance
theaccuracy,efficiency,andreliabilityofbraintumordetectionand
classification.
TheproposedsystememploystheYOLOV2(YouOnlyLookOnce
version2)algorithmforaccurateandefficientbraintumordetection
inmagneticresonanceimaging(MRI)scans.YOLOV2isareal-time
objectdetectionalgorithmthatcanlocalizeandidentifytumors
withintheimages.Thisalgorithm'sabilitytoprocessimagesinreal-
timeenhancesthesystem'sresponsiveness,makingitsuitablefor
clinicalsettings.
Slide 13
Followingthedetectionphase,theproposedsystemutilizesthe
MobileNetV2architecturefortumorclassification.MobileNetV2isa
lightweightconvolutionalneuralnetwork(CNN)architecture
optimizedformobileandembeddeddevices.Ithasdemonstrated
excellentperformanceinimageclassificationtaskswhilebeing
computationallyefficient.Thisarchitectureisfine-tunedusinga
datasetcomprisingMRIimagesofbraintumorstoenableaccurate
classificationintotwocategories:BenignandMalignant.
TheproposedsystemseamlesslyintegratestheYOLOV2algorithm
fortumordetectionandtheMobileNetV2architecturefor
classification.AfterYOLOV2identifiesthetumor'slocation,the
correspondingregionofinterestisextractedfromtheimageand
fedintothefine-tunedMobileNetV2model.Thesystemthen
providesaclassificationlabelindicatingwhetherthedetectedtumor
isbenignormalignant.
Slide 14
Thesuccessoftheproposedsystemreliesontheavailabilityofa
diverseandwell-labeleddataset.Thesystemistrainedusinga
datasetcontainingavarietyofbrainMRIimageswithtumorsof
differentsizes,shapes,andlocations.Thedatasetisusedtotrain
boththeYOLOV2algorithmfordetectionandtheMobileNetV2
architectureforclassification.
TheproposedsystemisimplementedusingtheMATLAB
programmingenvironment.MATLABprovidesarichsetofimage
processingandAItoolsthatfacilitatethedevelopment,training,and
evaluationofthesystem.Itsuser-friendlyinterfaceenablesseamless
integrationofthevariouscomponentsandalgorithms,makingita
suitableplatformformedicalprofessionalswithvaryingtechnical
expertise.
Slide 15
Inconclusion,theproposedsystem"BrainTumor
DetectionandClassificationUsingArtificialIntelligence"
introducesanadvancedapproachtobraintumor
diagnosis.ByintegratingtheYOLOV2algorithmfor
detectionandtheMobileNetV2architecturefor
classification,thesystemoffersarobustsolutionfor
accuratetumordetectionandclassification.The
utilizationofMATLABastheimplementationplatform
ensuresaccessibilityandusability,makingitavaluable
toolformedicalprofessionalsinenhancingpatientcare
andtreatmentplanning.
Slide 16
ADVANTAGES OF PROPOSED SYSTEM
AccurateTumorDetection:Theutilizationofthe
YOLOV2algorithmenablespreciseandreal-time
detectionofbraintumorswithinmagneticresonance
imaging(MRI)scans.Thisaccuracyminimizestheriskof
missingpotentialtumorsandensuresearlydetection,
contributingtoimprovedpatientoutcomes.
AutomatedDetectionandClassification:Theproposed
systemautomatesboththedetectionandclassification
processes,reducingdependenceonmanual
interpretation.Thisautomationleadstofasterdiagnosis,
enablingmedicalprofessionalstomakeinformed
decisionsmoreefficiently.
Slide 17
ConsistentandObjectiveResults:Byreplacingmanual
interpretationwithAIalgorithms,thesystemprovides
consistentandobjectiveresults.Thisreducesthe
variabilityindiagnosesthatcanarisefromdifferences
inradiologists'expertiseandinterpretations.
Time-EfficientAnalysis:Thereal-timecapabilitiesofthe
YOLOV2algorithmandthecomputationalefficiencyof
theMobileNetV2architecturecollectivelyleadto
quickeranalysisofMRIscans.Thisefficiency
acceleratesthediagnosisprocessandreducesthetime
patientsneedtowaitforresults.
Slide 18
EnhancedClassificationAccuracy:TheMobileNetV2
architecture'sfine-tuningprocessenhancesitsabilityto
accuratelyclassifytumorsintothecategoriesofBenign
andMalignant.Thishighaccuracyaidsmedical
professionalsinmakingmoreinformeddecisionsabout
treatmentstrategies.
ScalabilityandHandlingDatasets:Theproposed
systemcanefficientlyhandlemedicalimagingdata,
makingitsuitableforbothindividualpatientcasesand
large-scalehealthcarescenarios.Thisscalabilityensures
thesystem'sapplicabilityinvarioushealthcaresettings.
Slide 19
ReductionofHumanError:TherelianceonAI
algorithmsreducesthepotentialforhumanerrors
thatcanoccurduringmanualinterpretation.This
decreaseinerrorscontributestomorereliable
diagnosesandbetterpatientcare.
AdaptabilitytoNewData:TheAI-drivennatureof
theproposedsystemallowsforcontinuouslearning
andadaptationasnewdatabecomesavailable.
Thisensuresthatthesystemremainsup-to-datewith
thelatestmedicalknowledgeandadvancements.
Slide 20
ResourceEfficiency:Thecomputationalefficiencyofthe
MobileNetV2architecturecontributestoresource
efficiency,requiringlesscomputingpowercomparedto
morecomplexneuralnetworks.Thisefficiencymakes
thesystemaccessibletoawiderrangeofhealthcare
facilities.
EmpowermentofMedicalProfessionals:Theproposed
systemservesasavaluabletoolformedical
professionals,providingthemwithmorecomprehensive
andaccuratediagnosticinformation.Thisempowerment
aidsinmakingcriticaldecisionsforpatientcareand
treatmentplanning.
Slide 21
Inconclusion,theadvantagesoftheproposed
systemhighlightitspotentialtorevolutionizebrain
tumordiagnosis.Throughaccurateandautomated
tumordetection,efficientclassification,and
improveddiagnosticreliability,thesystem
addressesthelimitationsoftraditionalmethodsand
significantlyenhancesthecapabilitiesofthe
existingsystem.
Slide 22
SYSTEM ARCHITECTURE
Slide 23
HARDWARE REQUIREMENTS
System : Pentium i3 Processor.
Hard Disk : 500 GB.
Monitor : 15’’ LED
Input Devices : Keyboard, Mouse
Ram :4 GB
Slide 24
SOFTWARE REQUIREMENTS
Operating system : Windows 10 Pro.
Coding Language:MATLAB
Tool :MATLABR2023B
Slide 25
REFERENCE
ShubhangiSolanki;UdayPratapSingh;Siddharth
SinghChouhan;SanjeevJain,“BrainTumor
DetectionandClassificationUsingIntelligence
Techniques:AnOverview”,IEEEAccess(Volume:11),
2023.
Tags
Categories
Technology
Download
Download Slideshow
Get the original presentation file
Quick Actions
Embed
Share
Save
Print
Full
Report
Statistics
Views
109
Slides
25
Age
542 days
Related Slideshows
11
8-top-ai-courses-for-customer-support-representatives-in-2025.pptx
JeroenErne2
46 views
10
7-essential-ai-courses-for-call-center-supervisors-in-2025.pptx
JeroenErne2
46 views
13
25-essential-ai-courses-for-user-support-specialists-in-2025.pptx
JeroenErne2
37 views
11
8-essential-ai-courses-for-insurance-customer-service-representatives-in-2025.pptx
JeroenErne2
34 views
21
Know for Certain
DaveSinNM
21 views
17
PPT OPD LES 3ertt4t4tqqqe23e3e3rq2qq232.pptx
novasedanayoga46
26 views
View More in This Category
Embed Slideshow
Dimensions
Width (px)
Height (px)
Start Page
Which slide to start from (1-25)
Options
Auto-play slides
Show controls
Embed Code
Copy Code
Share Slideshow
Share on Social Media
Share on Facebook
Share on Twitter
Share on LinkedIn
Share via Email
Or copy link
Copy
Report Content
Reason for reporting
*
Select a reason...
Inappropriate content
Copyright violation
Spam or misleading
Offensive or hateful
Privacy violation
Other
Slide number
Leave blank if it applies to the entire slideshow
Additional details
*
Help us understand the problem better