Buffer capacity MANIK

9,992 views 28 slides Oct 23, 2017
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

preparation of buffers, buffers and isotonic systems. Methods for
adjustment of tonicity of solutions. Buffers in pharmaceutical and biological systems.


Slide Content

An unbufferedsolution
or a buffered solution
acid added
base added
acid added base added
Md. Imran Nur Manik

A buffer solutionis a solution which resists changes in pH when a
small amount of acidor baseis added.
The resistive action is the result of equilibrium between the weak acid
(HA) and its conjugate base (A
-
).
HA
(aq) + H
2O
(l) → H
3O
+
(aq) + A
-
(aq)
Typically a mixture of a weak acid and a salt of its conjugate base or weak base and a salt of its
conjugate acid.Md. Imran Nur Manik

Two types :
ACIDIC BUFFERS –
Solutionofamixtureofaweakacidandasaltofthis
weakacidwithastrongbase.
e.g. CH
3COOH + CH
3COONa
(weak acid ) (Salt )
BASIC BUFFERS –
Solutionofamixtureofa anda
e.g +
( Weak base) ( Salt)
Md. Imran Nur Manik

HOWBUFFERSWORK
Equilibrium between acid and base.
Example:ACETATEBUFFER
CH
3COOH⇌CH
3COO

+H
+
CH
3COONa⇌CH
3COO

+Na
+
IfmoreH
+
isaddedtothissolution,itsimplyshiftstheequilibrium
totheleft,absorbingH
+
,sothe[H
+
]remainsunchanged.
IfH
+
isremoved(e.g.byaddingOH

)thentheequilibriumshiftsto
theright,releasingH
+
tokeepthepHconstant
Md. Imran Nur Manik

Equilibrium between acid and base.
Example:BasicBuffer
NH
4OH⇌NH
4
+
+OH

NH
4Cl⇌NH
4
+
+Cl

IfmoreOH

isaddedtothissolution,itsimplyshiftstheequilibrium
totheleft,absorbingOH

,sothe[OH

]remainsunchanged.
IfOH

isremoved(e.g.byaddingH
+
)thentheequilibriumshiftsto
theright,releasingOH

tokeepthepHconstant
HOWBUFFERSWORK(CONT..)
Md. Imran Nur Manik

HANDERSONHASSELBALCHEQUATION
LawrenceJosephHendersonwrotean
equation,in1908,describingtheuse
ofcarbonicacidasabuffersolution.
KarlAlbertHasselbalchlaterre-expressed
thatformulainlogarithmicterms,resultingin
theHenderson–Hasselbalchequation.
Md. Imran Nur Manik

K
a=
[H
+
] [A
-
]
[HA]
Take the -log on both sides
The Henderson-HasselbalchEquation derivation
-log K
a= -log [H
+
] -log
[A
-
]
[HA]
pH =pK
a+ log
[A
-
]
[HA]
= pK
a+ log
[Salt]
[Acid]
HA H
+
+ A
-
pK
a= pH-log
[A
-
]
[HA]
Apply p(x) = -log(x)
And finally solve for pH…
Md. Imran Nur Manik

Problem:FindthepHofabuffersolutioncontaining0.20moleperlitreCH
3COONa
and0.15moleperlitreCH
3COOH.Kaforaceticacidis1.810
–5
.
Problem:Calculatetheconcentrationofaceticacidtobeaddedtoa0.1Msolutionof
sodiumacetatetogiveabufferofpH5(pKaofaceticacid=4.66).
Problem:TheKaofpropionicacidis1.34×10
–5
.WhatisthepHofasolutioncontaining
0.5Mpropionicacid,C
2H
5COOH,and0.5sodiumpropionate,C
2H
5COONa.What
happenstothepHofthissolutionwhenvolumeisdoubledbytheadditionofwater?
Problem:Abuffersolutioncontains0.015moleofammoniumhydroxideand0.025mole
ofammoniumchloride.CalculatethepHvalueofthesolution.Dissociationconstantof
NH
4OHattheroomtemperatureis1.80×10
–5
Problem:EstimatethepHat25°Ccontaining0.10Msodiumacetateand0.03M
aceticacidpKaforCH
3COOH=4.57.

Buffercapacityisameasureoftheefficiencyofabuffer,inresisting
changesinpH.Thebuffercapacityisdefinedas
Itisalsoknownasbufferefficiency,
bufferindex,andbuffervalue.
Conventionally,thebuffercapacity(β)isexpressedas
AbuffersolutioncanresistasmallamountofchangeofpHonaddingacid
oralkalitothesolution.Buffercapacitiesrangingfrom0.01-0.1areusually
adequateformostpharmaceuticalsolutions.

In1922,VanSlykefirstintroducedanapproximateequationtodeterminethebuffercapacityby
thefollowingequation:
Inwhichβ=Buffercapacity,deltaΔ=afinitechange,andΔB=thesmallincrementingram
equivalents(gEq)/litreofstrongbaseaddedtothebuffersolutiontoproduceapHchangeofΔpH.
Accordingtoequation,thebuffercapacityofasolutionhasavalueof1whentheadditionof1g
Eqofstrongbase(oracid)to1litreofthebuffersolutionresultsinachangeof1pHunit.
ThehigherthebuffercapacitythelessthebuffersolutionchangesitspH.
Amoreexactequationforbuffercapacity:Thebuffercapacitycalculatedfromabove
equationisonlyapproximate.Itgivestheaveragebuffercapacityovertheincrementofbaseadded.
KoppelandSpiroandVanSlykedevelopedamoreexactequation,
Where,C=thetotalbufferconcentration(i.e.thesumofthemolarconcentrationsofacidand
salt).

BodyfluidscontainbufferingagentsandbuffersystemsthatmaintainpH
atornearpH=7.4.Importantendogenous(natural)buffersystemsinclude
carbonicacid/sodiumbicarbonateandsodiumphosphateinthe
plasmaandhaemoglobin,andpotassiumphosphateinthecells.
AninvivovalueofpH<6.9orpH>7.8canbelifethreatening.
Pharmaceuticalsolutionsgenerallyhavealowbuffercapacityinorderto
preventoverwhelmingthebody’sownbuffersystemsandsignificantly
changingthepHofthebodyfluids.Bufferconcentrationsofbetween0.05
and0.5Mandbuffercapacitiesbetween0.01to0.1areusuallysufficient
forpharmaceuticalsolutions.

Components pH range
HCl,Sodiumcitrate 1–5
Citricacid,Sodiumcitrate2.5-5.6
Aceticacid,Sodiumacetate3.7-5.6
K
2HPO
4,KH
2PO
4 5.8-8
Na
2HPO
4,NaH
2PO
4 6-7.5
Borax,Sodiumhydroxide9.2–11

H
2CO
3⇌H
+
+HCO
3

ThepHofbloodiscontrolledbyabicarbonate(H
2CO
3/HCO
3
–)
buffersystem.WhenthepHgetstoo
high(highOHconcentration),theOH

reactswithcarbonicacid(H
2CO
3)toformHCO
3
–)
andH
2O.
WhenthepHgetstoolow(highH
+
concentration),theH
+
reactswithHCO
3

toformH
2CO
3.Because
H
2CO
3isaweakacid,theH
+
staysassociatedwiththeH
2CO
3.SincepHisanimportantfactorin
manyphysiologicalprocesses,achangeinthebloodpHisapotentiallylifethreateningcondition
requiringimmediateregulation.
ThepHofblood:
TheHCO
3
-
/H
2CO
3buffersystemispresentinbloodingreatestconcentrationandisveryimportantin
maintainingthepHofbloodwithinnormallimit.TheconcentrationofHCO
3
-
andH
2CO
3inbloodare
0.02Mand0.00125Mrespectivelyandhencethe[HCO
3
-
]/[H
2CO
3]ratiois20/1.Inblood,thepKa
valueforfirstionizationstageatbodytemperatureis6.1.
pH=pK
a+Log[salt]/[Acid]
=6.1+Log20/1=6.1+1.2=7.4
Thephosphoricandproteinbuffersofplasmaareofrelativelylittleimportantascomparedwith
bicarbonatebufferinregulatingpH.

Bufferisveryimportantforbiologicalsystem.Someofthepicturesareasfollows
1.Buffermaintainsconstant[H
+
]inthebodyrequiredforoptimumcellularactivity.
2.ThepHofblood(around7.4)iscontrolledbyabicarbonate(H
2CO
3/HCO
3
–)
buffersystem.
3.Thephosphatebuffersystem(HPO
4
2-
/H
2PO
4
-
)playsaroleinplasmaanderythrocytes.
H
2PO
4
-
+H
2O⇌H
3O
+
+HPO
4
2-
M/A:Anyacidreactswithmonohydrogenphosphatetoformdihydrogenphosphate
HPO
4
2-
+H
3O
+
H
2PO
4
-
+H
2O
monohydrogenphosphate dihydrogenphosphate
Thebaseisneutralizedbydihydrogenphosphate
H
2PO
4
-
+OH
-
HPO
4
2-
+H
3O
+
dihydrogenphosphate monohydrogenphosphate
4.Proteinsasabuffer:Proteinscontain–COO
-
groups,which,likeacetateions(CH
3COO
-
),canactasproton
acceptors.Proteinsalsocontain–NH
3
+
groups,which,likeammoniumions(NH
4
+
),candonateprotons.
M/A:Ifacidcomesintoblood,hydroniumionscanbeneutralizedbythe–COO
-
groups
-COO
-
+H
3O
+
-COOH+H
2O
Ifbaseisadded,itcanbeneutralizedbythe–NH
3
+
groups
-NH
3
+
+OH
-
-NH
2+H
2O

PROTEIN BUFFER SYSTEM
Proteinsareverylarge,complexmoleculesin
comparisontothesizeandcomplexitiesofacidsor
bases
Proteinsaresurroundedbyamultitudeofnegative
chargesontheoutsideandnumerouspositivecharges
inthecrevicesofthemolecule
-
-
-
----
-
-
-
-
-
-
-
--
-----
-
---
-
-
-
-
- --
-
+
+
++
+
+
+
+
+
+
+
+
+
++ +
+
+
+
+
+
+
++
+
Md. Imran Nur Manik

PROTEIN BUFFER SYSTEM
H
+
ions are attracted to and held from chemical
interaction by the negative charges
-
-
-
----
-
-
-
-
-
-
-
--
-----
-
---
-
-
-
-
- --
-
+
+
++
+
+
+
+
+
+
+
+
+
++ +
+
+
+
+
+
+
++
+
H
+
H
+
H
+
H
+ H
+ H
+ H
+ H
+ H
+ H
+
H
+
H
+
H
+
H
+
H
+H
+
H
+
H
+
H
+
H
+
H
+
Md. Imran Nur Manik

PROTEIN BUFFER SYSTEM
OH
-
ions which are the basis of alkalosis are attracted
by the positive charges in the crevices of the protein
-
-
-
----
-
-
-
-
-
-
-
--
-----
-
---
-
-
-
-
- --
-
+
+
++
+
+
+
+
+
+
+
+
+
++ +
+
+
+
+
+
+
++
+
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
Md. Imran Nur Manik

PROTEIN BUFFER SYSTEM
-
-
-
----
-
-
-
-
-
-
-
--
-----
-
---
-
-
-
-
- --
-
+
+
++
+
+
+
+
+
+
+
+
+
++ +
+
+
+
+
+
+
++
+
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
OH
-
H
+
H
+
H
+
H
+ H
+ H
+ H
+ H
+ H
+ H
+
H
+
H
+
H
+
H
+
H
+H
+
H
+
H
+
H
+
H
+
H
+
Md. Imran Nur Manik

ToprepareapharmaceuticalbuffersolutionhavingdefinitepHandcapacity,thepharmacistshouldmaintainthe
followingsteps:
1.SelectaweakacidhavingapKaapproximatelyequaltothepHatwhichthebufferistobeused.Thiswill
ensuremaximumbuffercapacity.
2.Fromthebufferequation,calculatetheratioofsaltandweakacidrequiredtoobtainthedesiredpH.(4-10)
3.Considertheindividualconcentrationsofbuffersaltandacidneededtoobtainasuitablebuffercapacity.
(Aconcentrationof0.05to0.5Misusuallysufficient;andabuffercapacityof0.01to0.1isgenerallyadequate.)
4.Otherfactorsofsomeimportanceinthechoiceofapharmaceuticalbufferinclude-
•Availabilityofchemicals
•Sterilityofthefinalsolution
•Stabilityofthedrugandbufferonaging
•Costofmaterials
•Freedomfromtoxicity
e.g.aboratebuffer,becauseofitstoxiceffectscannotbeusedtostabilizeasolutiontobeadministeredorallyor
parenterally.
5.Finally,oneshoulddeterminethepHandbuffercapacityofthecompletedbuffersolutionusingareliablepH
meter.

Osmotic Pressure
Theflowofthesolventthroughasemipermeablemembrane
frompuresolventtosolutionorfromadilutesolutionto
concentratedsolutionistermedosmosis(GreekOsmosmeans
“topush”.)
Osmoticpressuremaybedefinedastheexternalpressure
appliedtothesolutioninordertostoptheosmosisofthesolvent
intothesolutionseparatedbyasemipermeablemembrane.
Amembranewhichispermeabletosolventandnottosoluteis
calledsemipermeablemembrane.
Animalandvegetablemembranesarenotcompletelysemipermeable.Cupric
ferrocyanide,Cu
2Fe(CN)
6,membranedepositedinthewallsofporouspotis
perfectlyasemipermeablemembrane.
Md. Imran Nur Manik

Theflowofthesolventthroughasemipermeablemembranefrompuresolventtosolutionor
fromadilutesolutiontoconcentratedsolutionistermedosmosis.
Osmoticpressure(π)maybedefinedastheexternalpressureappliedtothesolutionin
ordertostoptheosmosisofthesolventintothesolutionseparatedbyasemipermeable
membrane.
IsotonicSolutions
Solutionshavingthesameosmoticpressurearesaidtobeisotonic.Intermsofphysiological
fluids,thesolutionshavingosmoticpressureequaltotheosmoticpressureofintracellular
fluidiscalledisotonicsolution.

soln= π
cell)
Inpharmacyandmedicalscience,isotonicsolutionisthatsolution;whichhaveequaltonicity
withbodyfluidi.e.blood,serum,plasmaorlacrimalfluid.0.9%NaClsolutionisalso
regardedasisotonicsolution.

Hypertonic Solutions
Ascomparedtothebloodplasmaifasolutionhashigherosmoticpressureissaidtobehypertonic
solution.(π
soln>π
cell).
Physiologicalsolutionshavingagreaterosmoticpressurethanthatofbodyfluidor0.9%NaCl
solutionisreferredtoashypertonicsolution.
Hypotonic Solutions
Ascomparedtothebloodplasmaifasolutionhaslowerosmoticpressureissaidtobehypotonic
solution.(π
soln<π
cell).
Physiologicalsolutionswithanosmoticpressurelowerthanthatofbodyfluidor0.9%NaClsolution
isreferredtoashypertonicsolution.
ParatonicSolutions
Thesolutionthatisnotisotonicthatmeansboththehypertonicandhypotonicsolutionsare
calledparatonicsolution.

Effect of tonicity on body( Injection on blood)
Thesolutionswhicharenotisotonicwithplasmamaybeharmfultouse.On
injectingthehypotonicsolutionsintobloodstream,itmayenterthebloodcells
inanattempttoproduceequilibrium,thecellsswellsrapidlyuntilthey
burstleadingtohemolysis.Asthisdamageisirreversiblemayleadtoserious
dangertoRBC.
Whenhypertonicsolutionisinjectedintothebloodstream,thewatercomes
outofthemembraneofRBCinordertoreachequilibrium.Thecellsshrink
leadingtocrenulationwhichisonlyatemporarydamage.Whentheosmotic
pressureoftwosolutionsbecomesequalthedamagedcellswillcometoits
originalposition.Hencehypertonicsolutionsmaythereforebeadministered
withoutpermanentdamagetothebloodcells.Theyshouldbeinjectedslowly
toensurerapiddilutionintothebloodstreamandtominimizethecrenulation
ofbloodcells.

Calculation for the Preparation of Isotonic Solutions
Forthepreparationofisonoticsolutions,thequantitiesofsubstancestobeaddedmay
becalculatedbythefollowingmethods:
1.Basedonthefreezingpointdata(Freezingpointdepression).
2.Basedonmolecularconcentration.
3.BasedonSodiumChlorideequivalents.
4.Graphicalmethodbasedonvaporpressureandfreezingpointdeterminations.
Method:Basedonfreezingpointdepression.
Thefreezingpointisacolligativepropertyoftenusedinthecalculationoftheisotonic
solutionasitcanbemeasuredeasilyandaccurately.Thetemperatureatwhichblood
plasmaandtears(Lacrhrymalsecretions)freezeis–0.52ºCwhichisthesamevalue
ofa0.9%solutionofNaCl.Allsolutionswhichfreezeat–0.52ºCwillbeisotonicwith
bloodplasmaandlachrymalfluid.
Thefreezingpointsareusuallyexpressedintermsof1%solutions.

Thequantityof neededformakingthesolutionsisotonicwith
bloodplasmamaybecalculatedfromthegeneralformulagivenbelow:
PercentageW/Vof needed=
Where,a=freezingpointdepressionofunadjustedsolution.
b=freezingpointdepressionof1%W/Vofthe .
Problem:Findouttheconcentrationof requiredtorenderormakea
1%solutionofcocainehydrochlorideisotonicwithbloodplasma.Thefreezingpointof1%
W/Vsolutionofcocainehydrochlorideis–0.090ºCandthatofNaClis
–0.576ºC.
Problem:Findouttheconcentrationof requiredtorenderormakea
1.5%solutionofproocainehydrochlorideisotonicwithbloodplasma.Thefreezing
pointof1%W/Vsolutionofproocainehydrochlorideis–0.122ºCandthatof is
–0.576ºC.

Method:Based on Sodium Chloride Equivalents
Thismethodhasgainedpopularity.NaClmethodisdefinedasthe
weightofsolutionchloridewhichwillproducethesameosmotic
effectas1gofthedrugtoprepareanisotonicsolution.
Formulla:PercentageofNaCl foradjustmentto
isotonicity=0.9–PercentstrengthofdrugsolutionNaCleqivalentof
thethedrug.
Problem:CalculatethepercentageofKNO
3requiredtomake
a0.5%isotonicsolutionofAgNO
3.TheNaClequivalentofKNO
3
is0.56andNaClequivalentofAgNO
3is0.33.
Hints:0.9-(0.50.33)=0.735÷0.56=1.313%
Md. Imran Nur Manik

Md. Imran Nur Manik