IUPAC nomenclature for carboxylic acids:
parent chain = longest, continuous carbon chain that
contains the carboxyl group alkane, drop –e, add –oic
acid
HCOOH methanoic acid
CH
3CO
2H ethanoic acid
CH
3
CH
2
CO
2
H propanoic acid
CH
3
CH
3
CHCOOH 2-methylpropanoic acid
Br
CH
3CH
2CHCO
2H 2-bromobutanoic acid
Dicarboxylic acids
HOOC-COOH oxalic acid
HO
2
C-CH
2
-CO
2
H malonic acid
HO
2C-CH
2CH
2-CO
2H succinic acid
HO
2C-CH
2CH
2CH
2-CO
2H glutaric acid
HOOC-(CH
2)
4-COOH adipic acid
HOOC-(CH
2)
5-COOH pimelic acid
CO
2H
CO
2H
CO
2H
CO
2H
CO
2H
CO
2H
phthalic acid isophthalic acid
terephthalic acid
C
COOHH
C
COOHH
C
COOHH
C
HHOOC
maleic acid
fumaric acid
salts of carboxylic acids:
name of cation + name of acid: drop –ic acid, add –ate
CH
3
CO
2
Na sodium acetate or sodium ethanoate
CH
3
CH
2
CH
2
CO
2
NH
4
ammonium butyrate
ammonium butanoate
(CH
3
CH
2
COO)
2
Mg magnesium propionate
magnesium propanoate
Physical Properties:
polar + hydrogen bond relatively high mp/bp
water insoluble
exceptions: four carbons or less
acidic turn blue litmus red
soluble in 5% NaOH
RCO
2H + NaOH RCO
2
-
Na
+
+ H
2O
stronger stronger weaker weaker
acid base base acid
•Two molecules of a carboxylic acid can hydrogen bond
together.
CH
3C
O
OH
CH
3
HO
O
C
RCO
2H RCO
2
-
covalent ionic
water insoluble water soluble
Carboxylic acids are insoluble in water, but soluble in 5%
NaOH.
1.Identification.
2.Separation of carboxylic acids from basic/neutral organic
compounds.
The carboxylic acid can be extracted with aq. NaOH and
then regenerated by the addition of strong acid.
1.oxidation of 1
o
alcohols:
CH
3CH
2CH
2CH
2-OH + CrO
3 CH
3CH
2CH
2CO
2H
n-butyl alcohol butyric acid
1-butanol butanoic acid
CH
3
CH
3
CH
3
CHCH
2
-OH + KMnO
4
CH
3
CHCOOH
isobutyl alcohol isobutyric acid
2-methyl-1-propanol` 2-
methylpropanoic acid
General Methods of preparation of Carboxylic Acids:General Methods of preparation of Carboxylic Acids:
CO
2H
CH
2OH
CH
3
Br
CN
MgBr
KMnO
4, heat
KMnO
4
Mg
CO
2; then H
+
H
2O, H+, heat
RCH
O
RCOH
O
RCN
RCH
2
OH
CCRR
H H
RR
RXRLi
RMgX
RCCl
O
RCOR
O
H H
RR
OHOH
or
CO
2
CrO
3
CrO
3
H
2
SO
4
KMnO
4
H
2SO
4
KMnO
4
NaCN
acetone
DIBAL or
Rosenmund
KMnO
4
Li or
Mg
H
2O
H
2
O
H
2SO
4
H
2
SO
4
H
2
O
or KMnO
4
SYNTHESIS OF CARBOXYLIC ACIDSSYNTHESIS OF CARBOXYLIC ACIDS
R'
KMnO
4
( benzene = R
sidechain = R’ )
ROH
SOCl
2
RCH
2
COH
O
RCH
2
CO
O
+NaOH + H
2ONa
+
Carboxylate Ion FormationCarboxylate Ion Formation
pK
a
5
carboxylate ioncarboxylic acid
R
C
O
O
H
R
C
O
O
H
H
R
C
O
O
H
H
+
+
..
..
..
..
..
..
..
..
:
:
H
2
SO
4
R
C
O
O
H
H
H
2
SO
4
..
..
:
+
Protonation and Deprotonation Protonation and Deprotonation
of a Carboxylic Acidof a Carboxylic Acid
R
C
O
O
..
..
:
NaOH
..
:
-
equivalent structures
due to resonance
•Electron-withdrawing Groups:
–strengthen acids
–weaken bases
•Electron-releasing Groups:
–weaken acids
–strengthen bases
CCO
O
XCCOH
O
X +H
+
COH
O
COR
O
CR
O
NO
2
CN
SO
3
H
Substituents with Electron-Withdrawing Substituents with Electron-Withdrawing
Resonance ( - R ) EffectsResonance ( - R ) Effects
-R substituents strengthen acids and weaken bases
carboxyl
alkoxycarbonyl
acyl
nitro
cyano
sulfo
XY
OH
SH
CH
3
NH
2
F
Br
OR
OCR
O
..
CR
3
NR
2
Cl
I
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
::
: :
+R substituents weaken acids and strengthen bases
Substituents with Electron-ReleasingSubstituents with Electron-Releasing
Resonance ( + R ) EffectsResonance ( + R ) Effects
hydroxy
mercapto
methyl
amino
fluoro
bromo
alkoxy
acyloxy
dialkylamino
alkyl
chloro
iodo
Y
..
COH
O
COR
O
CR
O
NO
2
CN
SO
3
H
OR
NH
2
F
Br
OH
SH
NR
2
Cl
I
+
N(CH
3
)
3
Substituents with Electron-WithdrawingSubstituents with Electron-Withdrawing
( - ( - II ) Inductive Effects ) Inductive Effects
-I substituents strengthen acids and weaken bases
carboxyl
alkoxycarbonyl
acyl
hydroxyl
mercapto
amino
chloro
nitro
cyano
sulfonic acid
alkoxy
dialkylamino
trimethylammonium
fluoro
bromo
iodo
X
CH
3
CR
3
O
CO
O
Substituents with Electron-ReleasingSubstituents with Electron-Releasing
Inductive ( + Inductive ( + II ) Effects ) Effects
+I substituents weaken acids and strengthen bases
methyl
alkyl
oxide
carboxylate
R
CH
3
COH
O
CH
2
COH
O
F
CH
2
COH
O
Cl
CH
2
COH
O
Br
CH
2
COH
O
I
CH
2
COH
O
O
2
N
CH
2
COH
O
NH
2
CH
2
COH
O
OH
pK
a
= 4.75
2.66
2.86
2.86
3.12
1.68
3.83
2.34
increasing
acidity
CH
3
COH
O
ClCH
2
COH
O
ClCHCOH
O
Cl
ClCCOH
O
Cl
Cl
COH
O
H
CH
3
COH
O
CH
3
CH
2
COH
O
CH
3
CHCOH
O
CH
3
CH
3
CCOH
OCH
3
CH
3
pK
a = 4.75
2.86
1.29
0.65
3.77
4.75
4.88
4.86
5.05
COOH
Cl
COOH
Cl
COOH
Cl
COOH
NO
2
COOH
NO
2
COOH
O
2
N
Benzoic Acid: pK
a
= 4.19
pK
a = 2.92
3.82
3.98
2.16
3.47
3.41
ortho
meta
para
ortho
meta
para
Benzoic Acid: pK
a
= 4.19
COOH
OCH
3
COOH
OCH
3
COOH
OH
COOH
OH
COOH
OH
2.97
4.06
4.48
4.08
4.46
1.as acids
2.conversion into functional derivatives
a) acid chlorides
b) esters
c) amides
3.reduction
4.alpha-halogenation
5.EAS
Chemical Properties of Carboxylic Acids:Chemical Properties of Carboxylic Acids:
a)with active metals
RCO
2H + Na RCO
2
-
Na
+
+ H
2(g)
b)with bases
RCO
2
H + NaOH RCO
2
-
Na
+
+ H
2
O
c)relative acid strength?
CH
4
< NH
3
< HCCH < ROH < HOH < H
2
CO
3
< RCO
2
H < HF
d)quantitative
HA + H
2
O H
3
O
+
+ A
-
ionization in water
Ka = [H
3
O
+
] [A
-
] / [HA]
1) 1) Salt formation:Salt formation:
RC
OH
O
SOCl
2
or PCl
3
orPCl5
RC
Cl
O
CO
2H + SOCl
2 COCl
CH
3CH
2CH
2C
O
OH
PCl
3
CH
3CH
2CH
2C
O
Cl
2) 2) Formation of acid chlorides:Formation of acid chlorides:
“direct” esterification: H
+
RCOOH + R´OH RCO
2R´ + H
2O
-reversible and often does not favor the ester
-use an excess of the alcohol or acid to shift equilibrium
-or remove the products to shift equilibrium to completion
“indirect” esterification:
RCOOH + PCl
3
RCOCl + R´OH RCO
2
R´
-convert the acid into the acid chloride first; not reversible
3) 3) Formation of esters:Formation of esters:
C C
O
O
CH
3
+ H
2O
SOCl
2
C
CH
3OH
O
OH
+CH
3OH
O
Cl
H
+
“indirect” only.
RCOOH + SOCl
2 RCOCl + NH
3 RCONH
2
amide
Directly reacting ammonia with a carboxylic acid results in an
ammonium salt:
RCOOH + NH
3 RCOO
-
NH
4
+
acid base
OH
O
3-Methylbutanoic acid
PCl
3
Cl
O
NH
3
NH
2
O
4) 4) Formation of amides:Formation of amides:
C
O
OH
PCl
3
C
O
Cl
C
O
NH
2
NH
3
NH
3
amide
C
O
ONH
4
ammonium salt
RCO
2
H + LiAlH
4
; then H
+
RCH
2
OH
1
o
alcohol
Carboxylic acids resist catalytic reduction under normal
conditions.
RCOOH + H
2
, Ni No Reaction (NR)
CH
3CH
2CH
2CH
2CH
2CH
2CH
2COOH
Octanoic acid
(Caprylic acid)
LiAlH
4 H
+
CH
3CH
2CH
2CH
2CH
2CH
2CH
2CH
2OH
1-Octanol
5) 5) Reduction:Reduction:
CH
2C
O
OH
H
2, Pt
NR
LiAlH
4
H
+
CH
2CH
2OH
RCH
2
COOH + X
2
, P RCHCOOH + HX
X
α-haloacid
X
2
= Cl
2
, Br
2
COOH
Br
2,P
NR (no alpha H)
CH
3CH
2CH
2CH
2COOH + Br
2,P CH
3CH
2CH
2CHCOOH
Brpentanoic acid
2-bromopentanoic acid
6) 6) Halogenation of alkyl groupsHalogenation of alkyl groups (Hell-Volhard-Zelinsky (Hell-Volhard-Zelinsky
reaction):reaction):
RCH
2COOH + Br
2,P RCHCOOH + HBr
Br
NH
2
OH
RCHCOOH
RCHCOOH
RCH=CHCOOHRCH
2CHCOOH
Br
aminoacid
N
aO
H
;then H
+
NH
3
KOH(alc)
then H
+
(-COOH is deactivating and meta- directing)
CO
2H
CO
2H
NO
2
CO
2H
SO
3H
CO
2H
Br
NR
HNO
3,H
2SO
4
H
2SO
4,SO
3
Br
2,Fe
CH
3Cl,AlCl
3
benzoic acid
5) 5) Aromatic Substitution:Aromatic Substitution: