carboxylic-acids.ppt suitable for tutoring

polymaththesolver 56 views 41 slides Sep 05, 2024
Slide 1
Slide 1 of 41
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41

About This Presentation

Carboxylic acid slides suitable for tutoring.


Slide Content

Carboxylic Acids
SANTOSH
CHEMISTRY DEPT

Carboxylic acids:
R-COOH, R-CO
2
H,
Common names:
HCO
2
H formic acid
CH
3CO
2H acetic acid
CH
3
CH
2
CO
2
H propionic acid
CH
3CH
2CH
2CO
2H butyric acid
CH
3
CH
2
CH
2
CH
2
CO
2
H valeric acid
RC
OH
O

5 4 3 2 1
C—C—C—C—C=O
δ γ β α used in common names
CH
3CH
2CH
2CHCOOH
Br
CH
3CHCH
2COOH
CH
3
bromovaleric acid -methylbutyric acid
isovaleric acid

COOH
COOH COOH COOH
CH
3
CH
3
CH
3
benzoic acid
o-toluic acid m-toluic acid p-toluic acid

IUPAC nomenclature for carboxylic acids:
parent chain = longest, continuous carbon chain that
contains the carboxyl group  alkane, drop –e, add –oic
acid
HCOOH methanoic acid
CH
3CO
2H ethanoic acid
CH
3
CH
2
CO
2
H propanoic acid
CH
3
CH
3
CHCOOH 2-methylpropanoic acid
Br
CH
3CH
2CHCO
2H 2-bromobutanoic acid

Dicarboxylic acids
HOOC-COOH oxalic acid
HO
2
C-CH
2
-CO
2
H malonic acid
HO
2C-CH
2CH
2-CO
2H succinic acid
HO
2C-CH
2CH
2CH
2-CO
2H glutaric acid
HOOC-(CH
2)
4-COOH adipic acid
HOOC-(CH
2)
5-COOH pimelic acid

CO
2H
CO
2H
CO
2H
CO
2H
CO
2H
CO
2H
phthalic acid isophthalic acid
terephthalic acid
C
COOHH
C
COOHH
C
COOHH
C
HHOOC
maleic acid
fumaric acid

salts of carboxylic acids:
name of cation + name of acid: drop –ic acid, add –ate
CH
3
CO
2
Na sodium acetate or sodium ethanoate
CH
3
CH
2
CH
2
CO
2
NH
4
ammonium butyrate
ammonium butanoate
(CH
3
CH
2
COO)
2
Mg magnesium propionate
magnesium propanoate

Physical Properties:
polar + hydrogen bond  relatively high mp/bp
water insoluble
exceptions: four carbons or less
acidic turn blue litmus  red
soluble in 5% NaOH
RCO
2H + NaOH  RCO
2
-
Na
+
+ H
2O
stronger stronger weaker weaker
acid base base acid
•Two molecules of a carboxylic acid can hydrogen bond
together.
CH
3C
O
OH
CH
3
HO
O
C

RCO
2H RCO
2
-
covalent ionic
water insoluble water soluble
Carboxylic acids are insoluble in water, but soluble in 5%
NaOH.
1.Identification.
2.Separation of carboxylic acids from basic/neutral organic
compounds.
The carboxylic acid can be extracted with aq. NaOH and
then regenerated by the addition of strong acid.

1.oxidation of 1
o
alcohols:
CH
3CH
2CH
2CH
2-OH + CrO
3  CH
3CH
2CH
2CO
2H
n-butyl alcohol butyric acid
1-butanol butanoic acid
CH
3
CH
3
CH
3
CHCH
2
-OH + KMnO
4
 CH
3
CHCOOH
isobutyl alcohol isobutyric acid
2-methyl-1-propanol` 2-
methylpropanoic acid
General Methods of preparation of Carboxylic Acids:General Methods of preparation of Carboxylic Acids:

2.Oxidation of alkylbenzenes:
CH
3
CH
3
H
3C
CH
2CH
3
KMnO
4, heat
KMnO
4, heat
KMnO
4, heat
COOH
COOH
HOOC
COOH
toluene benzoic acid
p-xylene terephthalic acid
ethylbenzene benzoic acid
+ CO
2
note: aromatic acids
only!

+CO
2
ether
+
RMgX RCO
O
MgX
RCOH
O
+ MgX(OH)
H
3
O+
( R-Li )
3. Carbonation of Grignard Reagents:

CH
3
Br
Mg
CH
3
MgBr
CO
2 H
+
CH
3
COOH
p-toluic acid
CH
3
Br
2, hv
CH
2Br
Mg
CH
2MgBr
CO
2
H
+
CH
2COOH
phenylacetic acid

RCH
2
Cl RCH
2
CN+
_
: : +CN Cl
RCH
2
COH
O
+NH
4
+
Hydrolysis of NitrilesHydrolysis of Nitriles
DMSO
H
2
SO
4
H
2
O
heat
S
N2

CH
3
Br
2, hv
CH
2Br
NaCN
CH
2CN
H
2O, H+, heat
CH
2COOH
CH
3CH
2CH
2CH
2CH
2CH
2-Br
KCN
CH
3CH
2CH
2CH
2CH
2CH
2-CN
H
2O, H+, heat
CH
3CH
2CH
2CH
2CH
2CH
2-COOH
1-bromohexane
heptanoic acid
toluene
phenylacetic acid

CO
2H
CH
2OH
CH
3
Br
CN
MgBr
KMnO
4, heat
KMnO
4
Mg
CO
2; then H
+
H
2O, H+, heat

RCH
O
RCOH
O
RCN
RCH
2
OH
CCRR
H H
RR
RXRLi
RMgX
RCCl
O
RCOR
O
H H
RR
OHOH
or
CO
2
CrO
3
CrO
3
H
2
SO
4
KMnO
4
H
2SO
4
KMnO
4
NaCN
acetone
DIBAL or
Rosenmund
KMnO
4
Li or
Mg
H
2O
H
2
O
H
2SO
4
H
2
SO
4
H
2
O
or KMnO
4
SYNTHESIS OF CARBOXYLIC ACIDSSYNTHESIS OF CARBOXYLIC ACIDS
R'
KMnO
4
( benzene = R
sidechain = R’ )
ROH
SOCl
2

RCH
2
COH
O
RCH
2
CO
O
+NaOH + H
2ONa
+
Carboxylate Ion FormationCarboxylate Ion Formation
pK
a
5
carboxylate ioncarboxylic acid

R
C
O
O
H
R
C
O
O
H
H
R
C
O
O
H
H
+
+
..
..
..
..
..
..
..
..
:
:
H
2
SO
4
R
C
O
O
H
H
H
2
SO
4
..
..
:
+
Protonation and Deprotonation Protonation and Deprotonation
of a Carboxylic Acidof a Carboxylic Acid
R
C
O
O
..
..
:
NaOH
..
:
-
equivalent structures
due to resonance

•Electron-withdrawing Groups:
–strengthen acids
–weaken bases
•Electron-releasing Groups:
–weaken acids
–strengthen bases
CCO
O
XCCOH
O
X +H
+

COH
O
COR
O
CR
O
NO
2
CN
SO
3
H
Substituents with Electron-Withdrawing Substituents with Electron-Withdrawing
Resonance ( - R ) EffectsResonance ( - R ) Effects
-R substituents strengthen acids and weaken bases
carboxyl
alkoxycarbonyl
acyl
nitro
cyano
sulfo
XY

OH
SH
CH
3
NH
2
F
Br
OR
OCR
O
..
CR
3
NR
2
Cl
I
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
::
: :
+R substituents weaken acids and strengthen bases
Substituents with Electron-ReleasingSubstituents with Electron-Releasing
Resonance ( + R ) EffectsResonance ( + R ) Effects
hydroxy
mercapto
methyl
amino
fluoro
bromo
alkoxy
acyloxy
dialkylamino
alkyl
chloro
iodo
Y
..

COH
O
COR
O
CR
O
NO
2
CN
SO
3
H
OR
NH
2
F
Br
OH
SH
NR
2
Cl
I
+
N(CH
3
)
3
Substituents with Electron-WithdrawingSubstituents with Electron-Withdrawing
( - ( - II ) Inductive Effects ) Inductive Effects
-I substituents strengthen acids and weaken bases
carboxyl
alkoxycarbonyl
acyl
hydroxyl
mercapto
amino
chloro
nitro
cyano
sulfonic acid
alkoxy
dialkylamino
trimethylammonium
fluoro
bromo
iodo
X

CH
3
CR
3
O
CO
O
Substituents with Electron-ReleasingSubstituents with Electron-Releasing
Inductive ( + Inductive ( + II ) Effects ) Effects
+I substituents weaken acids and strengthen bases
methyl
alkyl
oxide
carboxylate
R

CH
3
COH
O
CH
2
COH
O
F
CH
2
COH
O
Cl
CH
2
COH
O
Br
CH
2
COH
O
I
CH
2
COH
O
O
2
N
CH
2
COH
O
NH
2
CH
2
COH
O
OH
pK
a
= 4.75
2.66
2.86
2.86
3.12
1.68
3.83
2.34
increasing
acidity

CH
3
COH
O
ClCH
2
COH
O
ClCHCOH
O
Cl
ClCCOH
O
Cl
Cl
COH
O
H
CH
3
COH
O
CH
3
CH
2
COH
O
CH
3
CHCOH
O
CH
3
CH
3
CCOH
OCH
3
CH
3
pK
a = 4.75
2.86
1.29
0.65
3.77
4.75
4.88
4.86
5.05

COOH
Cl
COOH
Cl
COOH
Cl
COOH
NO
2
COOH
NO
2
COOH
O
2
N
Benzoic Acid: pK
a
= 4.19
pK
a = 2.92
3.82
3.98
2.16
3.47
3.41
ortho
meta
para
ortho
meta
para

Benzoic Acid: pK
a
= 4.19
COOH
OCH
3
COOH
OCH
3
COOH
OH
COOH
OH
COOH
OH
2.97
4.06
4.48
4.08
4.46

1.as acids
2.conversion into functional derivatives
a)  acid chlorides
b)  esters
c)  amides
3.reduction
4.alpha-halogenation
5.EAS
Chemical Properties of Carboxylic Acids:Chemical Properties of Carboxylic Acids:

a)with active metals
RCO
2H + Na  RCO
2
-
Na
+
+ H
2(g)
b)with bases
RCO
2
H + NaOH  RCO
2
-
Na
+
+ H
2
O
c)relative acid strength?
CH
4
< NH
3
< HCCH < ROH < HOH < H
2
CO
3
< RCO
2
H < HF
d)quantitative
HA + H
2
O  H
3
O
+
+ A
-
ionization in water
Ka = [H
3
O
+
] [A
-
] / [HA]
1) 1) Salt formation:Salt formation:

RC
OH
O
SOCl
2
or PCl
3
orPCl5
RC
Cl
O
CO
2H + SOCl
2 COCl
CH
3CH
2CH
2C
O
OH
PCl
3
CH
3CH
2CH
2C
O
Cl
2) 2) Formation of acid chlorides:Formation of acid chlorides:

“direct” esterification: H
+
RCOOH + R´OH  RCO
2R´ + H
2O
-reversible and often does not favor the ester
-use an excess of the alcohol or acid to shift equilibrium
-or remove the products to shift equilibrium to completion
“indirect” esterification:
RCOOH + PCl
3
 RCOCl + R´OH  RCO
2

-convert the acid into the acid chloride first; not reversible
3) 3) Formation of esters:Formation of esters:

C C
O
O
CH
3
+ H
2O
SOCl
2
C
CH
3OH
O
OH
+CH
3OH
O
Cl
H
+

“indirect” only.
RCOOH + SOCl
2  RCOCl + NH
3  RCONH
2
amide
Directly reacting ammonia with a carboxylic acid results in an
ammonium salt:
RCOOH + NH
3  RCOO
-
NH
4
+
acid base
OH
O
3-Methylbutanoic acid
PCl
3
Cl
O
NH
3
NH
2
O
4) 4) Formation of amides:Formation of amides:

C
O
OH
PCl
3
C
O
Cl
C
O
NH
2
NH
3
NH
3
amide
C
O
ONH
4
ammonium salt

RCO
2
H + LiAlH
4
; then H
+
 RCH
2
OH
1
o
alcohol
Carboxylic acids resist catalytic reduction under normal
conditions.
RCOOH + H
2
, Ni  No Reaction (NR)
CH
3CH
2CH
2CH
2CH
2CH
2CH
2COOH
Octanoic acid
(Caprylic acid)
LiAlH
4 H
+
CH
3CH
2CH
2CH
2CH
2CH
2CH
2CH
2OH
1-Octanol
5) 5) Reduction:Reduction:

CH
2C
O
OH
H
2, Pt
NR
LiAlH
4
H
+
CH
2CH
2OH

RCH
2
COOH + X
2
, P  RCHCOOH + HX
X
α-haloacid
X
2
= Cl
2
, Br
2
COOH
Br
2,P
NR (no alpha H)
CH
3CH
2CH
2CH
2COOH + Br
2,P CH
3CH
2CH
2CHCOOH
Brpentanoic acid
2-bromopentanoic acid
6) 6) Halogenation of alkyl groupsHalogenation of alkyl groups (Hell-Volhard-Zelinsky (Hell-Volhard-Zelinsky
reaction):reaction):

RCH
2COOH + Br
2,P RCHCOOH + HBr
Br
NH
2
OH
RCHCOOH
RCHCOOH
RCH=CHCOOHRCH
2CHCOOH
Br
aminoacid
N
aO
H
;then H
+
NH
3
KOH(alc)
then H
+

(-COOH is deactivating and meta- directing)
CO
2H
CO
2H
NO
2
CO
2H
SO
3H
CO
2H
Br
NR
HNO
3,H
2SO
4
H
2SO
4,SO
3
Br
2,Fe
CH
3Cl,AlCl
3
benzoic acid
5) 5) Aromatic Substitution:Aromatic Substitution:
Tags