Chapter 4 Inverters.pdf

2,236 views 50 slides Jun 22, 2023
Slide 1
Slide 1 of 50
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50

About This Presentation

Inverters


Slide Content

CHAPTER 4
INVERTERS: 
Converting DC to AC

CONTENTS
I CSifNUplinNS
I casnl4hfnSlnryes4Nv4CSDefief
I RnStye(r.ase4)ayv(cfnUte4RBpafe(LaDe4CSDefief I RnStye(r.ase4gpyy(cfnUte4RBpafe(LaDe4CSDefief
I -pasn4CSDefief
I E.fee(r.ase4nSDefief
I gNpfnef4Refnes4aSU4)afbNSnls4:Saydsns
I hpyse(LnUi.4qNUpyainNS4uhLqw

Definition:
Converts DC to AC power by switching the DC input 
voltage in a pre-determined sequence so as to 
generate AC voltage.
INTRODUCTION
Applications:
Induction motor drives, traction, standby power 
supplies, and uninterruptible ac power supplies (UPS).

INTRODUCTION
V
V+ +
V
dc
V
ac
- -
General block diagram

Three types of inverter:
INTRODUCTION
(a) Voltage source inverter (VSI) (b) Current source inverter (CSI)

Three types of inverter: (cont.)
INTRODUCTION (c) Current regulated inverter 

BASIC PRINCIPLES
The schematic of single-phase full-bridge square-wave 
inverter circuit 

BASIC PRINCIPLES

Single-phase Half-bridge 
Square-wave Inverter
V
0
1
.
V
+
-
2
V
0
G
.
V
DC
The basic single-phase half-bridge inverter circuit 

C
The total RMS value of the load output voltage,
C
The instantaneous output voltage is: (refer to slid e 30/pp:88) 
Single-phase Half-bridge 
Square-wave Inverter
2 2
22/
0
2
DC
T
DC
O
V
dt
V
T
V=
















=

C
The fundamental rms output voltage (n=1)is    
2,4,....  n  for           0       
sin
2
,... 5,3,1
= =
=∑
=n
DC
O
tn
n
V
v
ω
π
DC
DC
OV
V
V45.0
2
1 2
1=





=
π

C
In the case of RL load, the instantaneous load curr ent i
o
,
where 
Single-phase Half-bridge 
Square-wave Inverter


=

+
=
,.. 5,3,1
2 2
) sin(
) (
2
n
n
DC
o
tn
Ln R n
V
i
θ ω
ω π
)
/
(
tan
1
R
L
n
ω
θ

=
where 
C
The fundamental output power is 
)
/
(
tan
1
R
L
n
n
ω
θ

=








+
=
=
=
2 2
2
1
1 1 1 1
) ( 2
2
cos
L R
V
RI
IV P
DC
o
o o o
ω π
θ

C
The total harmonic distortion (THD), 
Single-phase Half-bridge 
Square-wave Inverter


=


2
1
V
THD


=

=,.... 7,5,3
2
1
1
n
n
O
V
V
THD
(
)
2
1
2
1
1
o o
O
V V
V
THD− =

Example 3.1
The single-phase half-bridge inverter has a resisti ve load of R = 
2.4= and the DC input voltage is 48V. Determine:
(a) the rms output voltage at the fundamental frequ ency
(b) the output power
Single-phase Half-bridge 
Square-wave Inverter
(c) the average and peak current of each transistor .
(d) the THD

Solution 
VDC = 48V and R = 2.4=
(a) The fundamental rms output voltage, 
V
o1
= 0.45V
DC
= 0.45x48 = 21.6V Single-phase Half-bridge 
Square-wave Inverter
(b) For single-phase half-bridge inverter, the outpu t voltage 
V
o
= V
DC
/2
Thus, the output power, 
W
R V P
o o
240
4.2
)2 /48(
/
2
2
=
=
=

Solution 
(c) The transistor current I
p
= 24/2.4 = 10 A
Because each of the transistor conducts for a 50% d uty cycle, 
the average current of each transistor is I
Q
= 10/2 = 5 A.
Single-phase Half-bridge 
Square-wave Inverter
(d)   
2
1
2
1
1
o o
O
V V
V
THD− =
( )
%
34.
48
45.0
2 45.0
1
2
2
=
−





=
DC
DC
DC
V
V
xV

C
The switching in the second leg is delayed by 180 
degrees from the first leg. 
C
The maximum output voltage of this inverter is twice 
that of half-bridge inverter. 
Single-phase Full-bridge 
Square-wave Inverter

C
The output RMS voltage 
C
And the instantaneous output voltage in a Fourier s eries is Single-phase Full-bridge 
Square-wave Inverter
DC DC O
V dt V
T
V=






=

2
2
C
The fundamental RMS output voltage
C
In the case of RL load, the instantaneous load curr ent 

=
=
,... 5,3,1
sin
4
n
DC
O
tn
n
V
v
ω
π
DC
DC
V
V
V9.0
2
4
1
= =
π
( )
( )
n
n
DC
o
tn
Ln R n
V
i
θ ω
ω π

+
=


=
sin
4
,... 5,3,1
2 2

Example 3.2
A single-phase full-bridge inverter with V
DC= 230 and 
consist of RLC in series. If R = 1.2=, ωL = 8 = and 
1/ωC = 7 =, find:
(a) The amplitude of fundamental rms output current, 
Single-phase Full-bridge 
Square-wave Inverter (a) The amplitude of fundamental rms output current, 
i
o1
(b) The fundamental component of output current in 
function of time.
(c) The power delivered to the load due to the 
fundamental component.

Example 3.3
A single-phase full-bridge inverter has an RLC load wit h R 
= 10=, L = 31.5mH and C = 112μF. The inverter frequency 
is 60Hz and the DC input voltage is 220V. Determine:
(a) Express the instantaneous load current in Fourier se ries.
(b) Calculate the rms load current at the fundamental 
Single-phase Full-bridge 
Square-wave Inverter (b) Calculate the rms load current at the fundamental  frequency.
(c) the THD of load current
(d) Power absorbed by the load and fundamental power.
(e) The average DC supply current and
(f) the rms and peak supply current of each transistor

Three-Phase Inverter

C
Viewed as extensions of the single-phase bridge cir cuit. 
C
The switching signals for each switches of an inver ter leg are 
displaced or delayed by 120
o
.
C
With 120
o
conduction, the switching pattern is T6T1 – T1T2 –
T2T3 – T3T4 – T4T5 – T5T6 – T6T1 for the positive A-B-C 
sequence.  
C
When an upper switch in an inverter leg connected w ith the  Three-Phase Inverter
C
When an upper switch in an inverter leg connected w ith the  positive DC rail is turned ON, the output terminal  of the leg 
(phase voltage) goes to potential + V
DC
/2.
C
When a lower switch in an inverter leg connected wi th the 
negative DC rail is turned ON, the output terminal  of that leg 
(phase voltage) goes to potential -V
DC
/2.

C
The line-to-neutral voltage can be expressed in Fou rier series Three-Phase Inverter



=

=






− =






+ =
,.. 5,3,1
,.. 5,3,1
2
sin
3
sin
2
6
sin
3
sin
2
n
dc
bn
n
dc
an
t n
n
n
V
v
t n
n
n
V
v
π
ω
π
π
π
ω
π
π
C
The line voltage is v
ab
= √3v
an
with phase advance of 30
o


=






− =
,.. 5,3,16
7
sin
3
sin
2
n
dc
cn
t n
n
n
V
v
π
ω
π
π
( )




=

=

=
− =






− =






+ =
,.. 5,3,1
,.. 5,3,1
,.. 5,3,1
sin
3
sin
32
3
sin
3
sin
32
3
sin
3
sin
32
n
dc
ca
n
dc
bc
n
dc
ab
t n
n
n
V
v
t n
n
n
V
v
t n
n
n
V
v
π ω
π
π
π
ω
π
π
π
ω
π
π

C
Fourier series is a tool to analyze the wave shapes  of the 
output voltage and current in terms of Fourier seri es. 
Fourier Series and 
Harmonics Analysis
( )


θ
π
2
0
1
dvf a
o
Inverse Fourier
(
)
(
)


+
+
=
sin
cos
1
n
bn
n
a
a
v
f
θ
θ
π
0
( ) ( )


θ θ
π
2
0
cos
1
d n vf a
n
( ) ( )


θθ
π
2
0
sin
1
dn vf b
n
(
)
(
)

=
+
+
=
1
0
sin
cos
21
n
n
n
bn
n
a
a
v
f
θ
θ
Where 
t
ω
θ
=

C
If no DC component in the output, the output voltag e and 
current are
Fourier Series and 
Harmonics Analysis
( )


=
+ =
1
sin )(
n
n n otn V tv
θ ω(
)


+
=
sin
)
(
t
n
I
t
i
φ
ω
C
The rms current of the load can be determined by 
(
)

=
+
=
1
sin
)
(
n
n n o
t
n
I
t
i
φ
ω
2
1 1
2
,
2
∑ ∑

=

=






= =
n
n
n
rms n rms
I
I I
Where   
n
n
n
Z
V
I=

C
The total power absorbed in the load resistor can b e 
determined by 
Fourier Series and 
Harmonics Analysis
∑ ∑

=
∞ =
= =
1
2
,
1
n
rms n
n
nR I P P
=
=
1
1
n
n

C
Since the objective of the inverter is to use a 
DC voltage source to supply a load that 
requiring AC voltage, hence the quality of 
the non-sinusoidal AC output voltage or 
current can be expressed in terms of THD. Total Harmonics
Distortion
current can be expressed in terms of THD.
C
The harmonics is considered to ensure that 
the quality of the waveform must match to 
the utility supply which means of power 
quality issues. 
C
This is due to the harmonics may cause 
degradation of the equipments and needs to 
be de-rated.

Total Harmonics
Distortion

C
The THD of the load voltage is expressed as, Total Harmonics
Distortion
rms
rms rms
rms
n
rms n
v
V
V V
V
V
THD
,1
2
,1
2
,1
2
2
,
) (−
= =


=
C
The current THD can be obtained by replacing the 
harmonic voltage with harmonic current,
rms
n
rms n
i
I
I
THD
,1
2
2
,
) (∑

=
=

Harmonics of Square-
wave Waveform
DC
V
0
1
0
2
0=





− + =∫ ∫
π π
π
θ
π
DC DCV d V a
0
)
cos(
)
cos(
2
=



=


π π
θ
θ
θ
θ
π
d
n
d
n
V
a
DC
n
π
2
π
t
ω
θ
=
DC
V−
0
)
cos(
)
cos(
0
=



=

∫ π
θ
θ
θ
θ
π
d
n
d
n
a
n
[ ] [ ] ( )
[ ]
π
π
π
π π π
π
θ θ
π
θ θ θ θ
π
π
π
π
π π
π
n
n
n n n
n
V
n n
n
V
d n d n
V
b
DC
DC
DC
n
cos 1
2
) cos 2 (cos ) cos 0 (cos
) cos( ) cos(
) sin( ) sin(
2
0
0
2
− =
− + − =
+ − =






− =∫ ∫

C
When the harmonics number, n of a waveform is 
even number, the resultant of
Therefore, Harmonics of Square-wave 
Waveform
1 cos
=
π
n
0
=
b
Therefore,
C
When n is odd number,
Hence,
0
=
n
b
1 cos

=
π
n
π
nV
b
DC
n
4
=

Spectrum of Square-
wave
• Harmonic decreases with 
a factor of (1/n).
• Even harmonics are 
absent

Nearest harmonics is the 
(0.33)
(0.2)
(0.14)
(0.11)
(0.09)

Nearest harmonics is the  3rd. If fundamental is 
50Hz, then nearest 
harmonic is 150Hz.
• Due to the small 
separation between the 
fundamental and 3rd 
harmonics, output low-
pass filter design can be 
very difficult.

Quasi-square wave 
a
n
= 0, due to half-wave symmetry

Quasi-square wave 
Therefore,
If n is even, b
n
= 0;
If n is odd, 
α
π
cos
4
nV
b
dc
n
=

Example 3.4
The full-bridge inverter with DC input voltage of 100 V, 
load resistor and inductor of 10= and 25mH 
respectively and operated at 60 Hz frequency. 
Determine: Determine: (a) The amplitude of the Fourier series terms for the 
square-wave load voltage.
(b) The amplitude of the Fourier series terms for load  
current.
(c) Power absorbed by the load.
(d) The THD of the load voltage and load current for 
square-wave inverter.

Amplitude and 
Harmonics Control
π
π
2
t
ω
α
α
α
α
The output voltage of the full-
bridge inverter can be controlled 
by adjusting the interval of  on 
each side of the pulse as zero .

The rms value of the voltage waveform is
The Fourier series of the waveform is expressed as
Amplitude and 
Harmonics Control
π
α
ω
π
απ
α
2
1 )(
1
2
− = =∫

DC DC rmsVtdV V
The amplitude of half-wave symmetry is

=
odd n
n Otn V tv
,
) sin( )(
ω
) cos(
4
)() sin(    
2
α
π
ω ω
π
απ
α
n
n
V
tdtn V V
DC
DC n





= =∫

The amplitude of the fundamental frequency is contr ollable by 
adjusting the angle of α.
Amplitude and 
Harmonics Control
α
π
cos
4
1


=
DCV
V
The nth harmonic can be eliminated by proper choice of 
displacement angle αif
α
π
cos
1


=
V
0 cos
=
α
n
OR
n
o
90
=
α

C
Pulse-width modulation provides a way to decrease 
the total harmonics distortion (THD). C
Types of PWM scheme  H
Natural or sinusoidal sampling
Pulse-Width Modulation 
(PWM)
H
Natural or sinusoidal sampling
HRegular sampling
HOptimize PWM
HHarmonic elimination/minimization PWM
HSVM

C
Several definition in PWM
(i) Amplitude Modulation, M
a
Pulse-Width Modulation 
(PWM)
 tri ,sin ,
carrier  ,
 ,
m
e m
m
reference m
a
V
V
V
V
M= =
If M
a≤ 1, the amplitude of the fundamental 
frequency of the output voltage, V
1is linearly 
proportional to M
a.
(ii) Frequency Modulation, M
f
 tri ,
carrier  ,
m
m
e
tri carrier
f
f
f
f
f
M
sin reference
= =

Bipolar Switching of PWM
Pulse-Width Modulation 
(PWM)
vtri (carrier) vsine (reference)
V
DC
-V
DC
(a)
(b)
S1 and S2  ON when Vsine > Vtri
S3 and S4 ON when Vsine < Vtri

Sinusoidal PWM Generator -Bipolar Pulse-Width Modulation 
(PWM)
G1, G2 G
3
, G
4
G
3
, G
4

Unipolar Switching 
of PWM
Pulse-Width Modulation 
(PWM)
vtri (carrier) vsine (reference)
(a) (b)
(c)
S4
S2
V
o
V
dc
0
V
dc
0
S1 is ON when Vsine > Vtri
S2 is ON when –Vsine < Vtri
S3 is ON when –Vsine > Vtri
S4 is ON when Vsine < Vtri

Sinusoidal 
PWM 
Generator-
Unipolar

■Advantages of PWM switching
- provides a way to decrease the THD of load current .
- the amplitude of the o/p voltage can be controlled  with the 
modulating waveform.
-
reduced filter requirements to decrease harmonics. Pulse-Width Modulation 
(PWM)
-
reduced filter requirements to decrease harmonics.
■Disadvantages of PWM switching
- complex control circuit for the switches
- increase losses due to more frequent switching.

Harmonics of Bipolar PWM
Assuming the PWM output is symmetry, the 
harmonics of each kth PWM pulse can be 
expressed
PWM Harmonics Finally, the resultant of the integration is
 

 

+ =
=
∫ ∫

+
+
+ k k
kk k
t dtn -V t dtn V
t dtn tv V
DC DC
T
nk
δ α
α
α
δ α
ω ω ω ω
π
ω ω
π
1k
)() sin( ) (   ) () sin(  
2
)() sin( )(
2
0
[ ]
) ( cos 2 cos cos
2
1k k k k
DC
nk
n n n
nV
V
δ α α α
π
+ − + =
+

PWM Harmonics
k
α
k k
δ α
+
1+k
α
k
δ
Symmetric sampling

Harmonics of Bipolar PWM
The Fourier coefficient for the PWM waveform is the 
sum of V
nkfor the ppulses over one period.
PWM Harmonics

=
p
V
V
The normalized frequency spectrum for bipolar 
switching for m
a= 1 is shown below

=
=
k
nk n
V
V
1
m
a
= 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
n=1 1.00 0.90 0.80 0.70 0.60 0.50 o.40 0.30 0.20 0.10
n = m
f
0.60 0.71 0.82 0.92 1.01 1.08 1.15 1.20 1.24 1.27
n=m

+
2 0.32 0.27 0.22 0.17 0.13 0.09 0.06 0.03 0.02 0.00
Normalized Fourier Coefficients V
n/V
dcfor Bipolar PWM

Example 3.5
The inverter has a resistive load of 10= and 
inductive load of 25mH connected in series with 
the fundamental frequency current amplitude of 
9.27A. The THD of the inverter is not more than  9.27A. The THD of the inverter is not more than  10%. If at the beginning of designing the inverter,  
the THD of the current is 16.7% which is does 
not meet the specification, find the voltage 
amplitude at the fundamental frequency, the 
required DC input supply and the new THD of the 
current. 

Example 3.6
The single-phase full-bridge inverter is used to produce 
a 60Hz voltage across a series R-L load using bipolar 
PWM. The DC input to the bridge is 100V, the 
amplitude modulation ratio is 
0
.
8
, and the frequency 
amplitude modulation ratio is 
0
.
8
, and the frequency 
modulation ratio is 21. The load has resistance of R = 
10= and inductance L = 20mH. Determine:
(a) The amplitude of the 60Hz component of the output  
voltage and load current.
(b) The power absorbed by the load resistor
(c) The THD of the load current 
Tags