Chapter 5. Comparative statistics.pdf

Jaafar47 467 views 16 slides Jul 24, 2023
Slide 1
Slide 1 of 16
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16

About This Presentation

Eco


Slide Content

C
HAPTER
3.C
OMPARATIVE
S
TATISTICS
1

T
HENATUREOFCOMPARATIVESTATISTICS

Comparativestatics,asthenamesuggests,isconcernedwiththe
comparisonofdifferentequilibriumpositionsassociatedwiththe
differentvaluesoftheexogenousvariablesandtheparametersin
themodel.

Comparativestaticsanswersthequestion“howwillthe
equilibriumvalueofanendogenousvariablechangewhenthere
isachangeinanyoftheexogenousvariablesorparameters.”isachangeinanyoftheexogenousvariablesorparameters.”

Comparativestaticsallowseconomiststoestimatesuchthings
as:

theresponsivenessofconsumerdemandtoaprojectedexcisetax,tariff,
orsubsidy;

theeffectonnationalincomeofachangeininvestment,government
spending,ortheinterestrate;and

thelikelypriceofacommoditygivensomechangeinweatherconditions,
priceofinputs,oravailabilityoftransportation.
2

E
XAMPLE
: T
HE
M
ARKET
M
ODEL

Consider the simple one-commodity market model:

At equilibrium Q
d
=Q
s
, using this the market clearing
solutions to the problem will be:
3

E
XAMPLE
: T
HE
M
ARKET
M
ODEL

Thesesolutionsarereferredtoasareducedform
equation

thetwoendogenousvariableshavebeenreducedtoexplicit
expressionsofthefourmutuallyindependentparameters
a,b,c,andd.

Tofindhowaninfinitesimalchangeinoneofthe
parameterswillaffectthevalueofP*,wesimplyparameterswillaffectthevalueofP*,wesimply
differentiate(1)w.r.teachoftheparameters.

Similarly,wecandrawqualitativeorquantitative
conclusionsfromthepartialderivativesofQ*w.r.t
eachparameter,suchas:

Toavoidmisunderstanding,however,aclear
distinctionshouldbemadebetweenthetwo
derivativesand
4
*
Q



*
Q



Q


C
ONT

D

Thelaterderivativeisaconceptappropriatetothe
demandfunctiontakenalone,andwithoutregardto
thesupplyfunction.

Thederivativepertains,ontheotherhand,tothe
equilibriumquantityin(2),whichtakesintoaccount
theinteractionofdemandandsupplytogether.
ConcentratingonP*forthetimebeing,wecangetthe
*
Q




ConcentratingonP*forthetimebeing,wecangetthe
followingfourpartialderivativefromequation1given
as:
5

E
XAMPLE
: T
HE
M
ARKET
M
ODEL
6

E
XAMPLE
: T
HE
M
ARKET
M
ODEL

Sincealltheparametersarerestrictedtobeing
positiveinthepresentmodel,wecanconcludethat:
Forafullerappreciationoftheresultsin(3),letus

Forafullerappreciationoftheresultsin(3),letus
lookatFigure1,whereeachdiagramshowsachange
inoneoftheparameters.

NoticethatweareplottingQ(ratherthanP)onthe
verticalaxis.
7

E
XAMPLE
: T
HE
M
ARKET
M
ODEL
8

E
XAMPLE
: T
HE
N
ATIONAL
-I
NCOME
M
ODEL

Considerasimplenational-incomemodelwithtwo
exogenousvariables,investment(I
0
)andgovernment
expenditure(G
0
):

ThismodelcanbesolvedforYbysubstitutingthe
thirdequationof(4)intothesecondandthen
substitutingtheresultingequationintothefirst.

Theequilibriumincome(inreducedform)is
9

E
XAMPLE
: T
HE
N
ATIONAL
-I
NCOME
M
ODEL

Similarequilibriumvaluescanalsobefoundforthe
endogenousvariablesCandT,butweshall
concentrateontheequilibriumincome.

From(5),therecanbeobtainedsixcomparative-
equilibriumderivatives.

Amongthese,thefollowingthreehavespecialpolicy
significance:significance:
10

C
OMPARATIVE
S
TATICSOF
G
ENERALFUNCTIONMODELS

Inthecomparativestaticproblemsconsideredbefore,
equilibriumvaluesofendogenousvariablesofthe
modelcouldbeexplicitlyexpressedintermsofthe
exogenousvariables,

Accordingly,thetechniqueofsimplepartial
differentiationwasallweneedtoobtainthedesireddifferentiationwasallweneedtoobtainthedesired
comparativestaticinformation.

However,whenamodelcontainsfunctionsexpressed
ingeneralform,explicitsolutionsarenotavailable.

Insuchcases,anewtechniquemustbeemployedthat
makesuseofsuchconceptsas implicitfunctionruleto
findthecomparativestaticderivativesdirectlyfrom
thegivengeneralfunctionmodel.
11

C
ONT

D

Example:-Consideramarketmodel:
Atequilibrium


0,
0,0,
0
01











p
s
psQs
y
D
p
D
ypDQd

Atequilibrium

Where,p=endogenous
Y
0=
exogenous

Weknowthateveryequationpriceisafunctionof
income.i.e..

Therefore,theequilibriumconditioncanbetakentobe
anidentifyintheequilibriumsolution.
0)(),()(),(
00  PSyPDPSyPD

0
*
ypp
12

C
ONT

D

Thecomparativestaticanalysisofthismodelwill
thereforebeconcernedwithhowachangeiny
0
will
affecttheequilibriumpositionofthemodel,i.e.
i.whatistheeffectofachangeinY
0
onp
*
?
 

0,
0,
0
*
*
0
*


ypF
psypD
i.whatistheeffectofachangeinY
0
onp?
0
)()(
*
*
0
*
0
0
*













p
s
p
D
yD
pF
y
F
dy
dp
13

C
ONT

D

Thus, increase y P
*
or the other way.

What is the effect of a change in Y
0
on Q
*
?

At equation , Q
*
=Qd=Qs

We can write ,


0
***
., yPPandPSQ 

Thus, the comparative static results convey the proposition
that an up –ward shift of the demand curve ( due to a rise in
income) will result in a higher equilibrium price as well as a
higher equilibrium quantity.
0.
0
*
0
*

dy
dp
dp
ds
dy
dQ
14

L
IMITATIONSOFCOMPARATIVESTATICANALYSIS

By its very nature, comparative statics has the
following limitations.

Ignores the process of adjustment from the old equilibrium
to the new one.

Neglects the time element (length of time ) involved in the
adjustment process from one to another equilibrium.

Assumes that a new equilibrium can be defined and

Assumes that a new equilibrium can be defined and
attained after a disequilibrating change in a parameter,

i.e. disregards the possibility that the new
equilibrium may not be attained ever because of
the inherent instability of the model all these
limitation are addressed by dynamic analysis
which will be dealt in the next chapter.
15


Reading assignment

Differentiating systems of equations

The Jacobianand hessian determinants
16
Tags