chapter two linear programming in finance.ppt

etebarkhmichale 43 views 74 slides Jun 26, 2024
Slide 1
Slide 1 of 74
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74

About This Presentation

ADVICE TO ALL EMPLOYEES

1. Build a home earlier. Be it rural home or urban home. Building a house at 50 is not an achievement. Don't get used to government houses. This comfort is so dangerous. Let all your family have good time in your house.

2. Go home. Don't stick at work all the yea...


Slide Content

CHAPTER TWO
THE CLASSICAL LINEAR REGRESSION MODEL
Prepared by: Dessie M.

Terminology and Notation
6/26/2024 Prepared by: Dessie M.

.
6/26/2024 Prepared by: Dessie M.

Dependentvariable:
the variable that is influenced by the independent
variable(s).
Forexample,inaMultipleLinearRegressionModel
(MLRM),outputisinfluencedbyindependentvariables
likefertilizerscost,laborcost,pesticidescostetc.
Independentvariable:
avariable,whosevaluesdoesnotdependuponother
variable,butinfluencesdependentvariable.
Examplesinclude,fertilizerscost,pesticidescostetc.
6/26/2024 Prepared by: Dessie M.

Regression Analysis
Economictheoriesaremainlyconcernedwiththerelationships
amongvariouseconomicvariables.
Example:demandtheory,supplytheory,consumption
theory,etc.
Theserelationships,whenphrasedinmathematicalterms,can
predicttheeffectofonevariableonanother.
Thefunctionalrelationshipsofthesevariablesdefinethe
dependenceofonevariableupontheothervariable(s)inthe
specificform.
Thespecificfunctionalformsmaybe;
linear,quadratic,logarithmic,exponential,hyperbolic,or
anyotherform.
6/26/2024 Prepared by: Dessie M.

Cont.…
Theobjectiveoflinearregressionanalysis:istoestimate
and/orpredictthemeanoraveragevalueofthedependent
variableonthebasisoftheknownorfixedvaluesofthe
explanatoryvariables.
Thatistoestimatethepopulationregressionfunction(PRF)on
thebasisofsampleregressionfunction(SRF)asaccuratelyas
possible.
6/26/2024 Prepared by: Dessie M.

2.1 The concept of regression Analysis
Regression:isthemostimportanttooltoEconometricians.
Regressionanalysis:
Itisconcernedwiththestudyofthedependenceof
onevariableononeormoreothervariables.
Itiswithaviewtoestimateand/orpredictthe
(population)meanoraveragevalueofthedependent
intermsoftheknownorfixed(inrepeatedsampling)
valuesofthelatter.
6/26/2024 Prepared by: Dessie M.

Cont…
Simple,ortwo-variable,regressionanalysis:ifwearestudying
thedependenceofavariableononlyasingleexplanatory
variable.
E.g.consumptionexpenditureonrealincome
Multipleregressionanalysis:ifwearestudyingthedependence
ofonevariableonmorethanoneexplanatoryvariable.
Note:intwo-variableregressionthereisonlyoneexplanatoryvariable,
whereasinmultipleregressionsthereismorethanoneexplanatoryvariable.
6/26/2024 Prepared by: Dessie M.

Cont…
Simple Linear Regression:
Represented by single equation regression model
Y = f(x)
The dependent variable expressed as a function of
only a single explanatory variable
Causal relationship between variables flow in one
direction only.
Example:
6/26/2024 Prepared by: Dessie M.

Cont…
Multiple Linear Regression:
Dependent variable explained by more than one explanatory
variable.
Example; Y = f(X, Z, K, O)
•Regression equation of Y on X.
Variation in C = systematic variation + random variation.
Consumption = f(Income, Wage rate)
6/26/2024 Prepared by: Dessie M.

Cont…
Note:afrequentobjectiveinresearchisthespecificationofa
functionalrelationshipbetweentwovariables.
E.g.Y=f(x)
Y–Explainedvariable,ordependentvariable,orpredicted
variable.
X-Explanatoryvariable,orindependentvariable,control
variable,orregressor
6/26/2024 Prepared by: Dessie M.

Cont…
Inthischapterweshallconsiderasimplelinearregressionmodel.
i.e.arelationshipbetweentwovariablesrelatedinalinear
form.
Weshallfirstdiscusstwoimportantformsofrelation:
i.stochasticand
ii.non-stochastic,
Note:amongwhichweshallbeusingtheformerineconometric
analysis.6/26/2024 Prepared by: Dessie M.

2.2. Stochastic and Non-stochastic Relationships
Econometricianssayrelationshipbetweenvariables(XandY)are
generallyinexact(stochastic).
6/26/2024 Prepared by: Dessie M.

Cont…
A. Non-Stochastic Model:
ArelationshipbetweenXandY,characterizedasY=f(X)is
saidtobedeterministicornon-stochasticifforeachvalueofthe
independentvariable(X)thereisoneandonlyone
correspondingvalueofdependentvariable(Y).
Example:
Withouttheerror/ordisturbanceterm(u),therelationshipissaid
tobeexact/deterministic,otherwisestochasticorinexact.
6/26/2024 Prepared by: Dessie M.

Cont.…
B. Stochastic /Inexact Relationship
ArelationshipbetweenXandYissaidtobestochasticiffora
particularvalueofXthereisawholeprobabilisticdistributionof
valuesofY.
Insuchacase,foranygivenvalueofX,thedependentvariable
Yassumessomespecificvalueonlywithsomeprobability.
Stochasticmodel:isamodelinwhichthedependentvariableis
notonlydeterminedbytheexplanatoryvariablebutalsoothers
variableswhicharenotincludedinthemodel.
E.g
6/26/2024 Prepared by: Dessie M.

Cont…
Existenceofthedisturbanceisjustifiedinthefollowingpoints:
Omissionofothervariables
Measurementerror/datacollectiondifficulties.
Randomnessinhumanbehavior/humansarenotmachines
thatwilldoasinstructed/
Imperfectspecificationofthemodel
Poorproxyvariable
Note:Inregressionanalysisweareconcernedwithastochastic
orstatisticalrelationshipandnotofadeterministicornon
stochasticormathematicalrelationship.
6/26/2024 Prepared by: Dessie M.

Cont…
Example:assumeasupplyfunction
Thesupplyforacertaincommoditydependsonitsprice(other
determinantstakentobeconstant)andthefunctionbeinglinear,
therelationshipcanbeputas:
ForaparticularvalueofP,thereisonlyonecorrespondingvalue
ofQ.
Thisisadeterministic(non-stochastic)relationshipsinceforeach
pricethereisalwaysonlyonecorrespondingquantitysupplied.
AllthevariationinQisduesolelytochangesinP,andthatthere
arenootherfactorsaffectingthedependentvariable.
6/26/2024 Prepared by: Dessie M.

Cont…
Ifthisweretrueallthepointsofprice-quantitypairs,ifplottedon
atwo-dimensionalplane,wouldfallonastraightline.
However,ifwegatherobservationsonthequantityactually
suppliedinthemarketatvariouspricesandweplotthemona
diagramweseethattheydonotfallonastraightline.
6/26/2024 Prepared by: Dessie M.

Cont…
Note:Thederivationoftheobservationfromthelinemaybe
attributedtoseveralfactors.
Omissionofvariablesfromthefunction
Randombehaviorofhumanbeings
Imperfectspecificationofthemathematicalformof
themodel
Errorofaggregation
Errorofmeasurement
6/26/2024 Prepared by: Dessie M.

Cont…
Totakeintoaccounttheabovesourcesoferrorsweintroducein
econometricfunctionsarandomvariablewhichisusually
denotedbytheletter‘u’or‘ℇ’
Andiscallederrortermorrandomdisturbanceor
stochastictermofthefunction,
Socalledbecauseuissupposedto‘disturb’theexactlinear
relationshipwhichisassumedtoexistbetweenXandY.
Byintroducingthisrandomvariableinthefunctionthemodelis
renderedstochasticoftheform:
6/26/2024 Prepared by: Dessie M.

Cont…
Thusastochasticmodelisamodelinwhichthedependent
variableisnotonlydeterminedbytheexplanatoryvariable(s)
includedinthemodelbutalsobyotherswhicharenotincluded
inthemodel.
Inordertotakeallthesesourcesoferrorintoaccount,we
introducethestochastic/randomdisturbancetermintoour
econometricmodelsandhencethecompletesimpleeconometric
modelbecomes:
6/26/2024 Prepared by: Dessie M.

2.3. Simple Linear Regression model.
Economictheoriesaremainlyconcernedwiththerelationship
amongvarieseconomicvariables.
Thestochasticrelationshipwithoneexplanatoryvariableis
calledsimplelinearregressionmodel.
Asimplelinearregressionmodel:
Itisarelationshipbetweentwovariablesrelatedina
linearform.
6/26/2024 Prepared by: Dessie M.

Cont…
Thetruerelationshipwhichconnectsthevariables
involvedissplitintotwoparts:
i.apartrepresentedbyalineand
ii.apartrepresentedbytherandomterm‘u’.
6/26/2024 Prepared by: Dessie M.

Cont…
Thescatterofobservationsrepresentsthetruerelationship
betweenYandX.
Thelinerepresentstheexactpartoftherelationshipandthe
deviationoftheobservationfromthelinerepresentstherandom
componentoftherelationship.
ThesepointsdivergefromtheregressionlinebyU1,U2,…….Un.
ThefirstcomponentisthepartofYexplainedbythechangesinXand
ThesecondisthepartofYnotexplainedbyX,thatistosaythe
changeinYisduetotherandominfluenceofui.
6/26/2024 Prepared by: Dessie M.

Definition of the simple linear regression model
6/26/2024 Prepared by: Dessie M.
Explains variable in terms of variable “

.
6/26/2024 Prepared by: Dessie M.

2.3.1 Assumptions of the Classical Linear
Stochastic Regression Model.
Theobjectiveofaregressionanalysisisnotonlyestimatethe
unknownparameters,β‘s,(coefficients).
Y=f(X)+U=Β
0+Β
1X+U
i
Theclassicalmadeimportantassumptionintheiranalysisof
regression.
A.SomeassumptionsarerelatedtoYandX
B.SomeassumptionsarerelatedtoXandX
C.SomeassumptionsarerelatedtoU
Themostimportantoftheseassumptionsarediscussedas
folllows.
6/26/2024 Prepared by: Dessie M.

Assumption 1:
A. The model is linear in parameters
Themodelshouldbelinearintheparametersregardlessof
whethertheexplanatoryandthedependentvariablesarelinearor
not.
Thisisbecauseiftheparametersarenon-linearitisdifficultto
estimatethemsincetheirvalueisnotknownbutyouaregiven
withthedataofthedependentandindependentvariable.
6/26/2024 Prepared by: Dessie M.

Cont…
Check yourself whether the following models satisfy the above
assumption or not.
Linearityinvariablesimpliesthatanequationislinearmodelif
itisexpressedinastraightline.
Theparametersareraisedtotheirfirstdegree.
6/26/2024 Prepared by: Dessie M.

Cont…
Note:Linearregressionmeanslinearinparameterbutit
maynotbelinearintheexplanatoryvariable.
6/26/2024 Prepared by: Dessie M.

Assumption 2:
B. Uiis a Random Real Variable
Thismeansthatthevaluewhichumayassumeinanyone
perioddependsonchance;
itmaybepositive,
negativeor
zero.
Everyvaluehasacertainprobabilityofbeingassumedbyuin
anyparticularinstance.
6/26/2024 Prepared by: Dessie M.

Assumption 3:
C. Zero Mean Value of the Error term
Thatis;giventhevalueofXthemeanorexpectedvalue
ofthedisturbancetermiszero.
Technically,theconditionalmeanvalueofεiszero.
Mathematically,
6/26/2024 Prepared by: Dessie M.

Assumption 4:
D.Thevarianceoftherandomvariable(U)isconstantineach
period:(TheassumptionofHomoscedasticity)
Equalvarianceoftheerrorterm.GiventhevalueofX,the
varianceofistheerrorterm(u)thesameforallobservations.
Thevariationofeachℇ
iaroundallvaluesoftheexplanatoryvalue
isthesame.
Thedispersionofthedisturbanceisthesame.
Thisconstantvarianceiscalledhomoscedasticityassumptionand
Theconstantvarianceitselfiscalledhomoscedasticvariance.
6/26/2024 Prepared by: Dessie M.

Assumption 5:
E.TheRandomVariable(U)hasaNormalDistribution
Thismeansthevaluesofu(foreachx)haveabellshaped
symmetricaldistributionaroundtheirzeromeanandconstant
variance ,
NormalityTest
6/26/2024 Prepared by: Dessie M.

Assumption 6:
F.Therandomtermsofdifferentobservations(Ui,Uj)
areindependent.
(The assumption of no autocorrelation)
Thismeansthevaluewhichtherandomtermassumedinone
perioddoesnotdependonthevaluewhichitassumedinany
otherperiod.
6/26/2024 Prepared by: Dessie M.

Assumption 7:
G.Therandomvariable(U)isindependentoftheexplanatoryvariables.
Thereisnocorrelationbetweentherandomvariableandthe
explanatoryvariable.
Iftwovariablesareunrelatedtheircovarianceiszero.
6/26/2024 Prepared by: Dessie M.

Assumption 8:
H. The explanatory variables are measured without error
Y = f(X) + Ui
Uabsorbstheinfluenceofomittedvariablesandpossiblyerrors
ofmeasurementinthey’s.
i.e.,wewillassumethattheregressorsareerrorfree,whiley
valuesmayormaynotincludeerrorsofmeasurement.
6/26/2024 Prepared by: Dessie M.

Cont…
Additionally
Theregressionmodeliscorrectlyspecified.
Thereisnoperfectmulticollinearity(thisholdsinthecaseof
multiplelinearregressionmodel).
Thenumberofobservations(n)mustbegreaterthanthenumber
ofparameters(k)tobeestimated(inmultiplelinearregression
Assumptionofdependantvariable:
Wehavetwoassumptionsofdependentvariables:
oThedependentvariableiYisnormallydistributedand
oSuccessivevaluesofthedependentvariableareindependent.
6/26/2024 Prepared by: Dessie M.

Example 1:
Lety=a+bx:isalinearrelationshipbetweenxandy.
y=a+bx
2
:isanonlinearrelationshipbetweenxandy.
Example:
Firstfindtheinterceptandslopeofafunction
Writethemathematicalrelationshipbetweenxandy
Variable Y Variable X a.Findthefunction.
b.Identifytheslopeandintercept
ofafunction.
c.Interprettheslopeandintercept
ofafunction
2 1
4 2
6 3
8 4
6/26/2024 Prepared by: Dessie M.

Example 2: you are given a data on saving and income of five
households as follows:
The slope varies. But we need to establish a linear r/hip between x and y.
The relationship is not exact.
So math’s failed to do so.
But econometrics can make it. How?
i Y = saving X = income a.writethefunction
b.Whatdoobserve
c.Istheslopethesame
d.Canwesolvetheabove
equationsusingmath's?
1 200 500
2 100 300
3 600 1000
4 700 800
5 400 450
6/26/2024 Prepared by: Dessie M.

Cont…
6/26/2024 Prepared by: Dessie M.

2.2 Multivariate Case of CLRM
Insimpleregressionwestudytherelationshipbetweena
dependentvariableandasingleexplanatory(independent
variable);assumethatadependentvariableisinfluencedby
onlyoneexplanatoryvariable.
However,manyeconomicvariablesareinfluencedby
severalfactorsorvariables.
Forinstance;
Indecisiontoinvestmentstudieswestudytherelationship
betweenquantityinvested(oreithertoinvestornot)and
interestrate,shareprice,exchangerate,etc.
Thedemandforacommodityisdependentonpriceofthe
samecommodity,priceofothercompetingor
complementarygoods,incomeoftheconsumer,etc.
6/26/2024 Prepared by: Dessie M.

Cont….
Hencethetwovariablemodelisofteninadequateinpractical
works.
Therefore,weneedtodiscussmultipleregressionmodels.
Themultiplelinearregressionisentirelyconcernedwiththe
relationshipbetweenadependentvariable(Y)andtwoor
moreexplanatoryvariables(X
1,X
2,…,andX
n).
Why do we need multiple regression?
1.Oneofthemotivationformultipleregressionistheomitted
variablebiasinthesimpleregressionanalysis.
Itistheprimarydrawbackofthesimpleregressionbut
multipleregressionallowsustoexplicitlycontrolformany
otherfactorswhichsimultaneouslyaffectthedependent
variable.
6/26/2024 Prepared by: Dessie M.

Example: wages vs. education
Imaginewewanttomeasurethe(causal)effectofan
additionalyearofeducationonaperson’swage.
Ifwewanttothemodel:wage=β0+β1educ+uand
interpretβ1astheceterisparibuseffectofeduconwage,
wehavetoassumethateducanduareuncorrelated.
Consideradifferentmodelnow:wage=β0+β1educ+
β2exper+u,whereexperisaperson’sworkingexperience
(inyears).
Sincetheequationcontainsexperienceexplicitly,wewill
beabletomeasuretheeffectofeducationonwage,holding
experiencefixed.
Multiple regression analysis is also useful for generalizing
functional relationships between variables
6/26/2024 Prepared by: Dessie M.

Simple Régression vs. Multiple Régression
Mostofthepropertiesofthesimpleregression
modeldirectlyextendtothemultipleregression.
Wederivedmanyoftheformulasforthesimple
regressionmodel;however,withmultiple
variables,formulascangetdifficultwhen
explanatoryvariablesmorethantwo.
Asfarastheinterpretationofthemodelis
concerned,there’sanewimportantfact:the
coefficientβjcapturestheeffectofjthexplanatory
variable,holdingalltheremainingexplanatory
variablesfixed.
6/26/2024 Prepared by: Dessie M.

NOTE
Multipleregressionanalysisisanextensionof
simpleregressionanalysistocovercasesinwhichthe
dependentvariableishypothesizedtodependon
morethanoneexplanatoryvariable.
Muchoftheanalysiswillbeastraightforward
extensionofthesimpleregressionmodel.
Inmultiplelinearregression,wehaveonedependent
variableY,andknumberexplanatoryvariables.
Therelationshipbetweenadependent&two/more
independentvariablesislinearinparameters,and
maynotbelinearinvariables.
6/26/2024 Prepared by: Dessie M.

Cont……
6/26/2024 Prepared by: Dessie M.

What changes as we move from simple to
multiple regression?
Potentiallymoreexplanatorypowerwithmore
variables;
Theabilitytocontrolforothervariables;(andthe
interactionofvariousexplanatoryvariables:
correlationsandmulticollinearity);
Hardertovisualizedrawingalinethroughthreeor
more(n)-dimensionalspace.
TheR
2
isnolongersimplythesquareofthe
correlationcoefficientbetweenYandX.
6/26/2024 Prepared by: Dessie M.

Cont……
6/26/2024 Prepared by: Dessie M.

2.2.1 Assumptions of the Multiple Linear
Regression
Inordertospecifyourmultiplelinearregression
modelandproceedouranalysiswithregardtothis
model,someassumptionsarecompulsory.
Buttheseassumptionsarethesameasinthesingle
explanatoryvariablemodeldevelopedearlierexcept
theassumptionofnoperfectmulticollinearity.
Theseassumptionsare:
6/26/2024 Prepared by: Dessie M.

Cont….
6/26/2024 Prepared by: Dessie M.

Model With Two Explanatory Variables
Inordertounderstandthenatureofmultiple
regressionmodeleasily,westartouranalysiswith
thecaseoftwoexplanatoryvariables,thenextend
thistothecaseofk-explanatoryvariables.
Estimationofparametersoftwo-explanatory
variablesmodel
6/26/2024 Prepared by: Dessie M.

Cont….
6/26/2024 Prepared by: Dessie M.
Sincethepopulationregressionequationisunknowntoany
investigator,ithastobeestimatedfromsampledata.
Letussupposethatthesampledatahasbeenusedtoestimatethe
populationregressionequation.
Weleavethemethodofestimationunspecifiedforthepresent
andmerelyassumethattheequationhasbeenestimatedbysample
regressionequation,whichwewriteas:

Given sample observation on Y, X1,, & X2, we
estimate the model using method of least square (OLS
6/26/2024 Prepared by: Dessie M.

Cont….
6/26/2024 Prepared by: Dessie M.

Cont….
6/26/2024 Prepared by: Dessie M.

Cont…..
6/26/2024 Prepared by: Dessie M.

Cont….
6/26/2024 Prepared by: Dessie M.

2.3.2. Methods of Estimation
Specifyingthemodelandstatingitsunderlyingassumptionsare
thefirststageofanyeconometricapplication.
Thenextstepistheestimationofthenumericalvaluesofthe
parametersofeconomicrelationships.
Theparametersofthelinearregressionmodelcanbeestimatedby
variousmethods.
6/26/2024 Prepared by: Dessie M.

Cont…
Threeofthemostcommonlyusedmethodsare:
Methodofmoments(MM)
Ordinaryleastsquaremethod(OLS)
Maximumlikelihoodmethod(MLM)
But,herewewilldealwiththeOLSmethodsofestimation.
6/26/2024 Prepared by: Dessie M.

2.3.2.2. The Ordinary Least Squares
(OLS Method)
Themodel iscalledthetruerelationshipbetween
YandXbecauseYandXrepresenttheirperspectivepopulation
value,andαandβarecalledthetrueparameterssincethey
areestimatedfromthepopulationvalueofYandX.
ButitisdifficulttoobtainthepopulationvalueofYandX
becauseoftechnicaloreconomicreasons.
SoweareforcedtotakethesamplevalueofYandX.
TheparametersestimatedfromthesamplevalueofYandXare
calledtheestimatorsofthetrueparametersαandβandare
symbolizedasiii XY  
6/26/2024 Prepared by: Dessie M.

Cont.…
6/26/2024 Prepared by: Dessie M.
Estimationof byleastsquaremethod(OLS)or
classicalleastsquare(CLS)involvesfindingvaluesforthe
estimates andwhichwillminimizethesumof
squareofthesquaredresiduals(e
2
).

Cont.…
Meaning,theresidualsshouldbesmall.
Therefore,whenassessingthefitofaline,theverticaldistancesof
thepointsfromthelinearetheonlydistancesthatmatter.
TheOLSmethodcalculatesthebest-fittinglineforadatasetby
minimizingthesumofthesquaresoftheverticaldeviationsfrom
eachdatapointtotheline(theResidualSumofSquares,RSS)
MinimizeRSS=
wewillusedifferentialcalculus
6/26/2024 Prepared by: Dessie M.

Cont.…
Whythesumofthesquaredresiduals?
Whynotjustminimizethesumoftheresiduals?
Topreventnegativeresidualsfromcancellingpositive
ones.
Ifweuse,alltheerrortermse
iwouldreceiveequal
importancenomatterhowclosely/widelyscatteredthe
individualobservationsarefromSRF.
6/26/2024 Prepared by: Dessie M.

Cont.…
6/26/2024 Prepared by: Dessie M.

Rearranging we will get:
Divide both sides by “n”:
6/26/2024 Prepared by: Dessie M.

Rewriting:
Rearrangingtheaboveequationweobtain:
Substitutingthevaluesofαweget:
6/26/2024 Prepared by: Dessie M.

Rewritten in somewhat different way as follows;
6/26/2024 Prepared by: Dessie M.

6/26/2024 Prepared by: Dessie M.

2.3. Statistical Properties of Least Square
Estimators
Therearevariouseconometricmethodswithwhich
wemayobtaintheestimatesoftheparametersof
economicrelationships.
Wewouldliketoanestimatetobeascloseasthe
valueofthetruepopulationparametersi.e.tovary
withinonlyasmallrangearoundthetrue
parameter.
Howarewetochooseamongthedifferent
econometricmethods,theonethatgives‘good’
estimates?
Weneedsomecriteriaforjudgingthe‘goodness’of
anestimate.
6/26/2024
Prepared by: Dessie M.

Cont.…
‘Closeness’oftheestimatetothepopulation
parameterismeasuredbythemeanandvariance
orstandarddeviationofthesamplingdistribution
oftheestimatesofthedifferenteconometric
methods.
Weassumetheusualprocessofrepeated
samplingi.e.weassumethatwegetaverylarge
numberofsampleseachofsize‘n’;wecompute
theestimatesβ’sfromeachsample,andforeach
econometric method andweformtheir
distribution.
6/26/2024 Prepared by: Dessie M.

Cont.…
Wenextcomparethemean(expectedvalue)and
thevariancesofthesedistributionsandwechoose
amongthealternativeestimatestheonewhose
distributionisconcentratedascloseaspossible
aroundthepopulationparameter.
6/26/2024 Prepared by: Dessie M.

.
6/26/2024 Prepared by: Dessie M.
AccordingtotheGauss-Markovtheorem,theOLSestimatorspossessallthe
BLUEproperties.Thatis:

.
6/26/2024 Prepared by: Dessie M.