CHEM 351@ INORGANIC POLYMERS AND ELECTRON DEFICIENT COMPOUNDS 2.pdf

MichaelAtteh 403 views 204 slides Feb 08, 2024
Slide 1
Slide 1 of 204
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190
Slide 191
191
Slide 192
192
Slide 193
193
Slide 194
194
Slide 195
195
Slide 196
196
Slide 197
197
Slide 198
198
Slide 199
199
Slide 200
200
Slide 201
201
Slide 202
202
Slide 203
203
Slide 204
204

About This Presentation

Polymer


Slide Content

CHEM 351
INORGANIC POLYMERS AND
ELECTRON DEFICIENT COMPOUNDS
10/21/2014 1

COURSE OUTLINE
1.Electron-Deficientcompoundse.g.Boron
compounds.
2.InorganicPolymers,Rings,Cagesandsilicates
10/21/2014 2

REFERENCES
1.ConceptsandModelsofInorganicChemistrybybodiee.
Douglas,DarlH.McDanielandJohnAlexander
2.ConciseInorganicChemistrybyJ.D.Lee.
3.ChemistryoftheElementsbyN.N.Greenwood,A.Earnshaw.
4.Non-MetalRings,CagesandClustersbyJ.DerekWoollins
5.AdvancedInorganicChemistrybyF.A.Cotton,Geoffrey
Wilkinsonetal.
10/21/2014 3

INTRODUCTION
•Theformulasandstructuresofseveralkindsofcompoundscan
bepredictedwiththeaidofthevalencebondtheory,molecular
orbitaltheory,theoctetrule,andthe18-electronrule.However
theelectronicandmolecularstructuresofonelargeclassof
compoundscannotbeunderstoodintheseterms.
•AttheverytimeGN.Lewisproposedtheelectron-pairbond,
AlfredStockwaspreparingaseriesofcompoundswhose
formulasgavenohintastotheirstructuresandwhose
structure-oncedeterminedcouldnotbeaccommodatedbya
simplevalence-bondmodel.
•StockwasabletoprepareandcharacterizeB
2H
6,B
4H
10,B
5H
9,
B
5H
11,B
6H
10andB
10H
14.Thesecompoundscouldbedividedinto
twogroupshydrogen“rich”ofgeneralformulaB
pH
p+6;anda
hydrogen“poor”offormulaB
pH
p+4.Athirdseriesofverystable
anionsB
pH
p
2-
(whichcanbethoughtofasderivedvia
deprotonationofB
pH
p+2)hasbeenprepared(p=6to12)
10/21/2014
4

ELECTRON DEFICIENT COMPOUNDS
•Thesearecompoundswithtoofewelectrons
foraLewisstructuretobewrittenwithanoctet
aroundthecentralatome.g.compoundsof
group1,2and13elementsoftheperiodictable
especiallycompoundsofboron.
•Electron-deficientcompoundsarecompounds
inwhichthenumberofvalenceorbitalsexceed
thenumberofvalenceelectrons.(e.g.BH
3,
B
2H
6,AlH
3)
10/21/2014 5

ELECTRON PRECISE COMPOUNDS
•Compoundswiththecorrectnumberofelectronpairs
forbondformationwithnoneleft-overasnon-bonding
electronpairsonthecentralatom;i.e.allvalence
electronsofthecentralatomareengagedinbond
formation.E.g.carbonandcarbongroupofcompounds
(group14)(CH
4,C
2H
6,SiH
4,SnH
4)
10/21/2014 6

ELECTRON RICH COMPOUNDS
•Compoundswhichhavemoreelectronpairsthanare
neededforbondformationwiththeextraelectronpairs
beingpresentasnon-bondingelectronpairsonthe
centralatom.E.g.compoundsofgroup15,16,17
elements(NH
3,H
2Se,H
2O,H
2Te,H
2S,PH
3,HCl,AsH
3,HF,
SbH
3,HBr,HI)
10/21/2014 7

BORANES
•Boranesarecompoundscomposedsolelyofboronand
hydrogenandmaybeneutraloranionic.
•STRUCTURE
•Boranesfallintofivestructurecategoriesthemost
importantofwhichare:
(a)Closo-B
nH
n
2-
derivedfromtheGreekword
meaning“closedorcaged”.
(b)Nido-B
nH
n+4derivedfromtheLatinwordmeaning
“nest”.
(c)Arachno-B
nH
n+6derivedfromtheGreekword
meaning“spider’sweb”.
10/21/2014 8

CLASSIFICATION OF HIGHER BORANES
(Electron counting)
•Forboranes,thebuildingblocksfromwhichthe
deltahedronisconstructedisassumedtobeaB-Hunit.
•TheelectronsintheotherB-Hbondareignoredinthe
countingprocedurebutalltheothersareincluded
whetherornotitisobviousthattheyhelptoholdthe
skeletontogether.
•Byskeletonwearereferringtotheframeworkofthe
clusterwitheachB-Hgroupcountedasaunit.
•IfBatomhappenstocarrytwoterminalhydrogenatoms
(H
T)onlyoneoftheB-Hbondsistreatedasaunit.
10/21/2014 9

E.g.1 B
4H
10≡ (BH)
4H
6
If the structure or shape is
4(B-H) units 4 x 2e-= 8e-s 4 BHB’s
6H 6 x 1e-= 6e-s 2 additional BHTs
14e-s1 BB
7 bonds
E.g.2. B
5H
11≡ (BH)
5H
6
5(B-H) units5 x 2e-= 10e-s
6H Atoms 6 x 1e-= 6e-s
16e-s
8 bonds
10/21/2014 10

WADE’S RULE
1.Boranesofformula[B
nH
n]
2-
willbefoundtohavethe
CLOSO(caged)structurewithaBunitateachcorner
ofacloseddeltahedronandnoBHBbondsinthe
closostructure.
Suchstructureareknowntohave(n+1)skeletal
electrons.
Theseseriesofanionsisknownforn=5to12
Trigonalbipyramidal[B
5H
5]
2-
Octahedral [B
6H
6]
2-
Icosahedral [B
12H
12]
2-
NB:Theclosohydroboratesandcarboranesareoften
thermallystableandfairlyunreactive.
10/21/2014 11

10/21/2014 12

2.BoraneswiththeformularB
nH
n+4(BH)
nH
4
theNIDO(nest)structure(i.ecanbeviewed
asaclosostructurewhichhaslostonevertex
orcornerandmayhaveaBHBoraBBbond.
Thecompoundsinthisseriescontain(n+2)
skeletalpairsofelectronse.g.B
2H
6,B
5H
9,
B
6H
10,B
10H
14etc.
Ingeneral,thethermalstabilityofNIDO
boraneisintermediatebetweenthatofcloso
andArachnobaranes.
10/21/2014 13

10/21/2014 14

3.TheboraneswithformulaB
nH
n+6≡(BH)
nH
6the
Arachno(spider)structureandarelikeclosoboranes
lesstwoverticesandmayalsohaveBHB’sbonds.They
have(n+2)corneredpolyhedronrequiring(n+3)
skeletalelectrons.Theyarethemostunstable.E.g.
B
4H
10,B
5H
11,B
6H
12,B
8H
14,n-B
9H
15,i-B
9H
15
10/21/2014 15

10/21/2014 16

4.TheboranesofformulaB
nH
n+8≡(BH)
nH
8the
HYPHO(net)structurehavethemostopenstructure
inwhichtheBatomoccupythencornersofan
(n+3)–corneredpolyhedronrequiring(n+4)skeletal
electronpairs.
Noneutralboraneshasyetbeendefinitely
establishedinthisseriesbutknowncompoundsof
B
8H
16andB
10H
18mayprovetobehypho-boranes
andseveraladductsareknowntohavehypho-
structures.
10/21/2014 17

5.TheboraneswithformulaB
nH
n+10≡(BH)
nH
10theKlado
structure.Theyhave(n+4)corneredpolyhedronrequiring
(n+5)skeletalelectrons.
Linkagebetweentwoormoreofthesepolyhedralborane
clustersisindicatedbytheprefixCONJUNCTO-(Latinname
for“Ijointogether”).TheyhavetheformulaB
nH
m.Atleast
fivedifferenttypesofinterconnectedboraneclustershave
beenidentifiedandhavethefollowingfeatures;
(a)FusionbysharingasinglecommonBatome.g.
B
15H
23.
(b) Formation of a direct 2-centre B-B σ–bond between 2
clusters e.g. B
8H
18i.e. (B
4H
9)
2,
10/21/2014 18

(c) Fusion of two clusters via 2B atoms at a
common edge e.g. B
13H
19, B
14H
18, B
14H
20
(d) Fusion of two clusters via 3B atoms at a common
face; no neutral boraneor boraneanion is yet known
with this conformation but solvated complex
(MeCN)
2B
20H
16.MeCN has this structure.#
(e) More extensive fusion of 4 B atoms in various
configurations e.g. B20H16, B20H.182-
10/21/2014 19

SUMMARY
TYPE FORMULASKELETAL
ELECTRON PAIRS
CORNERS OF
POKLYHEDRON
EXAMPLES
Closo [B
nH
n]
2-
n+1 n [B
nH
n]
2-
to[B
12H
12]
2-
Nido B
nH
n+4 n+2 n + 1 B
2H
6, B
2H
6, B
2H
6
ArachnoB
nH
n+6 n+3 n + 2 B
4H
10, B
5H
11
Hypho B
nH
n+8 n+4 n + 3 B
8H
16, B
10H
18
Klado B
nH
n+ 10 n+5 n + 4
ConjunctoB
nH
m B
8H
18, B
15H
23 etc.
10/21/2014 20

Using Wades Rule
E.g.
(i)[B
5H
5]
2-
Closostructure
5(B-H) 5 x 2e = 10e
-s
overall charge 2e-= 2e
-
s
(5+1)e-pairs 12e
-
s
i.e. From the formula [B
nH
n]
2-
with (n+1) pair skeletal
electrons
(ii) B
5H
9 ≡(BH)
5H
4 Nidostructure
5(B-H) 5 x 2e = 10e
-s
4H 4 x 1e = 4e-s
overall charge 2e-= 2e
-
s
(5+2)e
-
pairs 14e
-
s
From B
nH
n+4with n+2 skeletal electron pairs
10/21/2014 21

STRUCTURAL CORRELATION
VeryusefulstructuralcorrelationbetweentheNido
andArachnocompoundsisbasedontheobservation
thatclustershavingthesamenumberofskeletal
electronsarerelatedbyremovalofsuchB-Hgroups
andtheadditionoftheappropriatenumberof
electronsandHatoms.
Thistypeofprocessrelatestheoctahedralcloso
[B
6H
6]
2-
aniontothesquarepyramidalnido-B
5H
9
boranewhichisinturnrelatedtothebutterfly-like
arachno-B
4H
10.
10/21/2014 22

10/21/2014 23

NOMENCLATURE
1.Neutralboronhydridesarenamedborane;aGreekprefixindicates
thenumberofBatoms;andArabicnumberisomittedifonlyborane
containingaparticularcountisknownB
2H
6isusuallyreferredtoas
diborane.
2.Anionic species are named as hydroborates.
Greek prefixes separately indicate the number of H and the charge
on
the anion is given a parentheses following.
E.g. B
5H
8
-
is octahydropentaborate(1-).
The structural type sometimes is specified when anions. i.e. B
5H
8
-
is also
octahydro-nodo-pentaborane.
E.g.
B
5H
9 pentaborane(9)
B
5H
11 pentaborane(11)
B
5H
10 pentaborane(10)
10/21/2014 24

THE BONDING PROBLEM IN BORANES
Localized Bonding picture
Retainingthevalencebondconceptoftherelationship
betweenbonddistanceandbondorderaproblemis
immediatelyencounteredonexaminingtheknown
structuresofboronhydrides.
Thecoordinationnumberofeachboron(andsomeofthe
hydrogens)exceedthenumberoflow-energyorbitals.
Ideallyabondingpictureforelectron-deficientcompounds
wouldallowthesamestraightforwardpredictionof
geometry,reactivity,stoichiometry,redoxproperties,
acidityetc.thatthevalencebondapproachpermits“for
regularcompounds”.
10/21/2014 25

Earlyattemptstoaccountfortheelectronic
structureofdiboranesthesimplestmemberofthe
class,includedtheobservationthatB
2H
6is
isoelectronicwithethaneC
2H
4.
InthisviewwecouldregardthetwobridgingH’sin
thestructureasprotonatingthedoublebondof
B
2H
4
2-
.
Subsequentresearchhasconfirmedtheacidic
natureofbridgeH’sintheboranes.
10/21/2014 26

Howeverthisbondingpictureisdifficulttoextentto
thehigherboranes.
Astraightforwardapplicationofvalencebond
theorytotheelectronicstructureofdiboranes
requiressome20resonancestructures.
10/21/2014 27

PFIZER –BONDED (SP
3
) MODEL
•TwooftheSP
3
-hybridorbitalsofeachboronatomareusedin
bondingwiththeterminalhydrogenandalltheseareinvolvedin
2c,2ebond.
•ThetwopointstowardsthebridgingHandinteractwiththe1S-
orbitalofHtoform3c,2ebonds(HencethebondinginB
2H
6is
diamagneticduetotheabsenceofunpairedelectrons).
10/21/2014 28

BANANA (SP
2
hybrid) Model
This model is better suited to the observation that H
TBH
T
angle ≡ 122

far apart from the that they are also2c, 2e.
Generally bonding in boranesconsist of the following:
(i)BHB (3c, 2e) ≡
(ii)BBB can be in two forms.
(a) closed –3c –BBB (b) Opened –3c –BBB bond
10/21/2014 29

MOLECULAR ORBITAL APPROACH
Simplecovalentbondingtheorymolecularorbitals(MOs)
areformedbythelinearcombinationofatomicorbitals
(LCAO);e.g.twoatomicorbitalscombinetogiveone
bondingandanti-bondingMOsandorbitalsoflower
energywillbeoccupiedbytheelectronpairs.
Thisisaspecialcaseofamoregeneralsituationinwhicha
numberofAOsarecombinedtogetherbytheLCAO
methodstoconstructanequalnumberofMOsofdiffering
energies,someofwhichwillbebonding,somepossibly
non-bondingandsomeanti-bonding.
Inthisway2-centre,3-centreandmulticentreorbitalcan
beenvisaged
10/21/2014 30

Inboranechemistrytwotypesof3-centrebondfinds
considerableapplication:B-H-Bbridgebondsandcentral3-
centreB-B-Bbonds.
Thefigurebelowshowstheformationofa3-centreB-H-B
orbital
1fromanSP
x
hybridorbitaloneachofB(1),B(2)andH
1Sorbital,
H.
ThethreeAOshavesimilarenergyandappreciablespatial
overlap,butonlythecombination;(B
1)+(B
2)hasthecorrect
symmetrytocombinelinearlywith(H).
10/21/2014 31

The three normalized and orthogonal MOs have
the approximate form:
Bonding : 
1½[(B
1) + (B
2)] + 1/2 (H)
Non-bonding (anti-bonding):

21/2 [(B
1) -(B
2)]
Anti-bonding : 
3½[(B
1) + (B
2)] -1/2 (H)
10/21/2014 32

Formationofabondingcentral3-centrebond
1andschematic
representationoftherelativeenergiesofthe3molecularorbitals

1,
2and
3.
TheapproximateanalyticformsoftheseMOsare:
Bonding:
1[(B
1)+(B
2)+(B
3)]/3
Anti-bonding:
2[(B
1)-(B
2)]/2
Anti-bonding:
3[(B
1)+(B
2)-2(B
3)]/6
Forclosoandforlargeropenclusterboranesitbecomes
increasinglydifficulttowriteasimplesatisfactorylocalized
orbitalstructure,andfullMOtreatmentisrequired.
10/21/2014 33

MO Description of bonding in B
2H
6
•TheMOschemeforoneoftheB–H–Bbridging
threecentertwoelectronbonds.
•Thenon-bondingorbitalisactuallyofslightly
lowerenergythanshownandsohasslight
bondingcharacter.
•Thisarisesfromthefactthattheorbitals
involvedintheterminalB–Hbondinghavethe
correctsymmetrytooverlapwiththebridging
bondorbitals,resultinginastabilizationofthe
‘nonbonding’orbital.
10/21/2014 34

10/21/2014 35

MO Description of bonding in closo-B
6H
6
2-
ClosoB
6H
6
2-
hasaregularoctahedralclusterof6
boronatomssurroundedbyalargeroctahedronof
radiallydisposedHatoms.
FrameworkMOsfortheB
6clusterareconstructed
(LCAO)usingthe2S,2P
x,2P
yand2P
zboronatomic
orbitals.
Thesymmetryoftheoctahedronsuggeststheuse
ofSPhybridsdirectedradiallyoutwardand
inwardsfromeachboronalongthecartesianaxes
and2pureporbitalsatrightanglestothese(i.e
orientedtangentiallytotheoctahedron).
10/21/2014 36

Six inward-pointing (SP)
orbitals used for a
1g
framework bonding
molecular orbitals
Components for one
of the t
2gframework
bonding molecular
orbitals –the other
two molecular orbitals
are in the yzand zx
planes
Six outward
pointing (SP)
orbitals Used for σ-
bonding to 6H
t
Components for one of
the t
1uframework
bonding
molecular orbitals-the
other two molecular
orbitals are in the yzand
zxplanes
10/21/2014 37

Thesesetofatomicorbitalscombinewithdueregardto
symmetrytogivetheMOsshown.Inall24AOsonthe6B
atomscombinetogive24MOsofwhich7(n+1)are
bondingframeworkMOs,6areusedtoformB-H
Tbonds
andtheremaining11areanti-bonding.
10/21/2014 38

•Thediagramsalsoindicatewhyneutralcloso-boranes
B
nH
n+2areunknownsincethe2anionicchargesare
effectivelylocatedinthelowlyinginwardlydirecteda
1g
orbitalwhichhasnooverlapwithprotonsoutsidethe
clusteri.e.abovetheedgesorfacesoftheB
6octahedron.
•ReplacementoftheH
tby6Bfurtherbuildsupthebasic
threedimensionalnetworkofhexaboridesMB
6justas
replacementofthe4H
tinCH
4beginstobuildupthe
diamondlattice.
•Thediagramsalsoserve,withminormodificationto
describethebondinginisoelectronicspeciessuchas
closo-CB
5H
6
-
,1,2-closo-C
2B
4H
6,1,6-closo-C
2B
4H
6etc.
10/21/2014 39

•Similarthoughmorecomplexdiagramscanbederivedforall
closo-B
nH
n
2-
(n=6-12).
•Thesehavethecommonfeatureofalowlyinga
1gorbitalandn
otherframeworkbondingMOs:ineachcase,therefore(n+1)
pairsofelectronsarerequiredtofilltheseorbitalsasindicated
byWade’srules.
•ItisatriumphforMOtheorythattheexistenceofB
6H
6
2-
and
B
12H
12
2-
werepredictedbyLonguet-Higginsin1954-5adecade
beforeB
6H
6
2-
wasfirstsynthesizedandsomefiveyearsbefore
the(accidental)preparationofB
10H
10
2-
andB
12H
12
2-
were
reported.
•Itisgeneralfeatureofcloso-B
nH
n
2-
anionsthattherearenoB-
H-BorBH
2groupsand4nboronatomicorbitalsarealways
distributedasfollows:
10/21/2014 40

n in the n(B-H
t) bonding orbital
(n+1) in framework bonding MOs
(2n-1) in non-bonding and anti-bonding
framework MOs.
AseachBatomcontributesoneelectrontoitsB-H
tbondand
twoelectronstotheframeworkMOs,the(n+1)framework
bondingMOarejustfilledbythe2nelectronsfromnB
atomsandthetwoelectronsfromtheanioniccharges.
10/21/2014 41

TOPOLOGICAL APPROACH TO BORON HYDRIDE
STRUCTURE –styxnumbers
•Lipscombetalestablishedasystematicprocedurefor
obtainingthevalencestructureofmorecomplexboron
hydridesincorporatingthree-centrebonding.
•Theprocedureinvolveessentiallydeterminingthetotal
numberoforbitalsandelectronsavailableforbonding.
•ThenumberofB-HbondsandB-H-Bthreecentrebondis
thencountedandtherequisiteorbitalsandelectronsare
assigned.
•Theremainingorbitalsandelectrons,consideredtobe
availableforframe-workbonding,aredistributedamong
two-centreB-Bbondsandthree-centreB-B-Bbonds.
•Asystematicprescriptionforaccomplishingthisis
outlined.
10/21/2014 42

•Consideraneutralboranewhoseformulacanbe
writtenasB
pH
p+q.
•Themoleculeconsistsofp(BH)groupsandq
“extra”hydrogensdistributedbetweenbridging
positionsandBHgroups(convertingthemtoBH
2
groups.
s=numberofB-H-Bbonds
t=numberofB-B-Bbonds
y=numberofB-Bbonds
x=numberofBH
Tbonds
10/21/2014 43

•Severalrelationscanbeformulatedbetweenstructuralfeatures
andavailableorbitalsandelectronscalledequationofbalance:
Forhydrogenbalance: q=s+x………(1)
i.e.Allthe“extra”HydrogensmustbeinB-H-BorBH
Tunits
Fororbitalbalance: p=s+t……..(2)
Thestructurecontainspboronatoms,eachmustparticipatein
onethree-centrebondifitistoattainacompleteoctet.
ThiscanbeeitheraB-H-BorB-B-B
Forelectronbalance:
Thetotalnumberofelectronpairsavailableforframework
bondingispfromtheBHgroupsplus½qfromtheextra‘H’s.
Thesemustbejustenoughtooccupythes+t+yframework
bondsandthexBH
2bonds.
10/21/2014 44

Hence p + 1/2q= s + t + y + x ………..(3)
Substituting (1) and (2) into (3) we obtain
p –1/2q=t + y……………………..(4)
y=½(s –x)…………………..(5)
In general;
s x
but s q
also s q/2
q/2 s q
NB. These equations are diophantineequations
10/21/2014 45

•Applyingtheequationofbalancetoacompoundofgiven
compositionallowsustodetermineasetofstyxnumbersthat
specifyavalencestructure.
eg1. For B
2H
6 (BH)
2H
4 p = 2; q = 4
Andwehave:4=s+x;2=s+t;0=t=yy=-t
Theonlypossiblesolutioniss=2,t=0,y=0,x=2
(written2002)andthestructurecorrespondsto
s t y x
4 -2 2 0
3 -1 1 1
2 0 0 2
10/21/2014 46

eg2. For B
5H
11(BH)
5H
6 : p = 5; q = 6
This formulation gives (4) different styxnumbers
6 = s + x; 5 = s + t; 2 = t + y y = 2 –t; y = ½(s–x)
i.e. (3203),(4112), (5021), (6-130),
s t y x
6 -1 3 0
5 0 2 1
4 1 1 2
3 2 0 3
10/21/2014 47

•For 3203 5B, 3BHB, 2BBB, 0 BB, 3BH
T


OR
•For 4112 5B, 4BHB, 1BBB, 1BB, 2BH
T
10/21/2014 48

•For 5021 5B, 5BHB, 0BBB, 2BB, 1BH
T
10/21/2014 49

•Inchoosingthebeststructuresthefollowingadditional
considerationsmustbekeptinmind:
1.EverypairofadjacentB’smustbebondedtoeachother
throughaB-Bbond,B-H-B,orB-B-Bbonds.
2.PairsofBatomsbondedbyaB-Bbondmaynotbebonded
tooneanotherbyB-B-B,orB-H-Bbond.
3.NonadjacentpairsofBatomsmaynotbebondedby
frameworkbonds.
4.Otherthingsbeingequalthepreferredstructureistheone
withthehighestsymmetry.
Theseconsiderationseliminatestructures(4112)and(5021),
leavingthestructure(3203).
10/21/2014 50

SYNTHESES AND REACTIVITY OF NEUTRAL
BORON HYDRIDES
•ThebestwaytosynthesizeB
4H
10,B
5H
9,B
5H
11,and
B
10H
14,istopyrolyzediborane,B
2H
6undercarefully
controlledconditions.
•Thefactthatsuchanapproachisfeasiblebecomes
clearerifweorganizetheboranefamilysomewhat
differently.
•Thechemicalrelationshipsbetweenboranesmaybe
seenbetterwhenwecombinetheB
pH
p+qformulation
withanothergeneralformula(BH)
n(BH
3)
x,wherencan
assumevaluesbetween0and10inclusivelyandx
assumesthevalues1,2or3.
10/21/2014 51

10/21/2014 52

•Inthetablewehavesomeknownandunknown
boranesandthesearelistedaccordingtotheirn,
qandxnumbers.
•Theusefulnessofthistabularformbecome
apparentwhenitisrecognizedthatitshowsthat
twoboranesmaybeconvertedtooneanotheror
higherboranescanbemadefromsimpleronesby
theapplicationofoneormoreofthefollowing
reactionsintheirpropersequence.
10/21/2014 53

(A)GainorlossofBH
3
•Thisisusedtoconvertaboraneofagivennandx
toaboraneofthesame‘n’butdifferent‘x’.
(B)gainorlossofH
2
•Thisisusedtoconvertaboraneofagiven‘n’and
‘x’tooneofthenexthigherorlower‘n’and‘x’.
(C)GainorlossofaBHunit
Thisisusedtoconvertaboraneofagiven‘n’and
‘x’toaboraneofhigherorlower‘n’butthesame
‘x’.
10/21/2014 54

GENERAL SCHEME
10/21/2014 55

10/21/2014 56

PROPERTIES OF BORON HYDRIDES
PHYSICALPROPERTIES
•Boranesarecolourless,diamagnetic,molecular
compoundsofmoderatetolowthermalstability.
•Thelowermembersaregasesatroomtemperature
butwithincreasingmolecularweightstheybecome
volatileliquidsorsolids.
•Theirboilingpointsareapproximatelythesameas
thoseofthehydrocarbonsofsimilarmolecular
weights.
10/21/2014 57

•Theboranesareallendothermicandtheirfree
energyofformationG
f

isalsopositive:
•Theirthermodynamicinstabilityresultsfrom
exceptionallystronginteratomicbondsinboth
elementalBandH
2ratherthantheinherent
weaknessoftheB-Hbond.
•ThebondenergiesoftypicalboranesareB-H
T-
380,B-H-B–440,B-B–330andB-B-B–380kJmol
-
1
comparedtothebondenergyof436kJmol
-1
for
H
2andheatofatomizationofcrystallineboronof
555kJmol
-1
ofBatoms(ie.1110kJmol
-1
of2B
atoms).
10/21/2014 58

•Physical properties of some boron compounds
Nido-boranes Arachno-boranes
Compoundmp bp H
f
◦/kJm
ol-1
Compoundmp bp
B
2H
6 -164.9

-92.6

36 B
4H
10 120

18

58
B
5H
9 -48.8

60

54 B
5H
11 122

65

67 (93)
B
6H
10 -62.3

108

71 B
6H
12 -82.3

85

(extra)
111
B
8H
12 Decompose
above -35

- B
8H
14 Decompose
above 30

-
B
10H
14 99.5

213

32 n-B
9H
15 120

120

-
10/21/2014 59

CHEMICAL PROPERTIES
•Boranesareextremelyreactiveandseveralare
spontaneouslyflammableinair.
•Arachno-boranestendtobemorereactive(less
stabletothermaldecomposition)thannido-
boranesandreactivityalsodiminisheswith
increasingmolecularweight.
•Closo-boraneanionsareexceptionallystableand
theirgeneralchemicalbehaviorhassuggested
theterm”threedimentionalaromaticity.
10/21/2014 60

•Boronhydridesareextremelyversatile
chemicalreagentsbuttheverydiversityof
theirreactionsmakeageneralclassification
undulycumbersome.
•Instead,therangeofbehaviorwillbe
illustratedbytypicalexamplestakenfromthe
chemistryofthethreemoststudiedboranes:
B
2H
6,B
5H
9andB
10H
14.
10/21/2014 61

Chemistry of diborane, B
2H
6
•B
2H
6occupiesaspecialplacebecauseall
otherboranesarepreparedfromit.
•Itisalsothemoststudiedand
syntheticallyusefulreagentinthewhole
ofchemistry.
10/21/2014 62

PREPARATION
(i)B
2H
6gasismostconvenientlypreparedinsmall
quantitiesbythereactionofI
2onNaBH
4in
diglyme[(MeOCH
2CH
2)
2O]orbythereactionofasolid
tetrahydroboratewithananhydrousacid:
(ii)WhenB
2H
6isusedasreactionintermediatewithoutthe
needforisolationorpurificationthebestprocedureisto
addEt
2OBF
3toNaBH
4inapolyethersuchasdiglyme.
10/21/2014 63

(iii)Ontheindustrialscalebythedirectreductionof
BF
3withNaHat180Candtheproductformed
trappedoutasitisformedtopreventsubsequent
pyrolysis:
10/21/2014 64

REACTIONS OF B
2H
6
(i)Combustion
CareshouldbetakeninthesereactionsbecauseB
2H
6is
spontaneouslyflammable.Hasahigherheatofcombustion
perunitweightoffuelthananyothersubstanceexceptH
2,
BeH
2andBe(BH
4)
2
(ii)Pyrolysis
B
2H
6undergoescomplexpyrolysisinsealedtubesat
temperaturesabove100Cformingavarietyproducts
dependingontheconditions.Theinitiatingstepisthe
unimoleculardissociationequilibrium;
10/21/2014 65

•Initiatingstep:
•StableintermediateB
4H
10isthenfollowedby
B
5H
11
•AcomplexseriesoffurtherstepsgivesB
5H
9,B
6H
10,
B
6H
12andhigherboranesculminatinginB
10H
14as
themoststableendproducttogetherwithpolymeric
materialsBH
xandatraceoficosaboraneB
20H
26.
10/21/2014 66

•Cleavagereactions:Bridgebondsarereadily
cleavedevenbyweakligandstogiveeither
symmetricalorunsymmetricalcleavageproducts.
•Symmetrical products (Homolytic)
•Unsymmetrical products (Heterolytic)
10/21/2014 67

•Thefactorsgoverningthecourseofthesereactionsare
notfullyunderstoodbutstericeffectsplaysomeroleeg.
NH
3,MeNH
2andMe
2NHgiveunsymmetricalcleavage
productswhereasMe
3Ngivesthesymmetriccleavage
productMe
3NBH
3.
•symmetricalcleavageisthemorecommonmodeand
thermochemicalandspectroscopicdataleadtothe
followingsequenceofadductstabilityforLBH
3.
•PF
3COEt
2OMe
2OC
4H
8SEt
2SMe
2Spy
Me
3NH
-
•Therelativestabilityofsulphideadductsismorenotable
andmanyothercomplexeswithN,P,O,Setc.donor
atomsareknown.
10/21/2014 68

•TheH
-
isaspecialcasesinceitgivesthe
symmetricaltetrahedralionBH
4
-
isoelectronic
withCH
4.
•TheBH
4
-
ionitselfprovidearareexampleofa
ligandthatcanbeunidentate,bidentateor
tridentate(eg.[cu
1
(
1
-BH
4)(PMePh
2)
3],[Cu
1
(

2
–BH
4)(PPh
3)
2];[Zr
IV
(
3
–BH
4)
4]).
•Inadditiontopyrolysisandcleavage
reactions,B
2H
6undergoesawiderangeof
substitution,redistributionandsolvolytic
reactions:
10/21/2014 69

10/21/2014 70

Hydroboration
•AdditionofB
2H
6toalkenesandalkynesinethersolventat
roomtemperature.
•Hydroborationisregiospecific,theboronatomshowing
preferentialattachmenttotheleastsubstitutedcarbon
atom(anti-Markovnikov).
•Protonolysisoftheresultingorganoboranebyrefluxingit
withananhydrouscarboxylicacidyieldsthealkane
correpondingtotheinitialalkene.
•Oxidativehydrolysiswithalkalinehydrogenperoxideyields
thecorrespondingprimaryalcohol:
10/21/2014 71

Thermal isomerization
•Diboraneisanelectrophilicreducingagentwhich
preferentiallyattacksamoleculeatapositionofhigh
electrondensity.
•Internalalkanescanbethermallyisomerizedtoterminal
organoboranesandhencetoterminalalkenes(by
displacement)ortoprimaryalcohols;
10/21/2014 72

•Inthecaseofheteropolardoubleandtriplebondsthe
borylgroupBH
2normallyaddstothemoreelectronrich
atomi.e.OatomincarbonylandNatominCNandCN.
•Thusafterprotonolysisaldehydesyieldprimaryalcohol
andketonesyieldsecondaryalcohols,althoughinthe
presenceofBF
3completereductionofCOtoCH
2may
occur.
•Likewisenitrilesarereducedtoamines,oximestoN-
alkylhydroxylamines,andSchiff’sbasestosecondary
amines.
10/21/2014 73

(VI)Reductivecleavage:
Reductivecleavageofstrainedringssuchasthosein
cyclopropanesandepoxidesoccurreadilyandacetals(or
ketals)arealsoreductivelycleavedtoyieldanetherand
analcohol:
10/21/2014 74

(VI)Removalofatoms:
RemovalofOatomsoccureitherwithorwithout
additionofHatomstothemolecule.
Thusphosphineoxidesgivephosphinesand
pyridine-N-Oxidesgivespyridinewithoutaddition
ofHatoms,whereasaromaticnitrosocompounds
arereducedtoaminesandcyclicdionescanbe
successivelyreducedbyreplacementofCObyCH
2
eg.
10/21/2014 75

CHEMISTRY OF NIDO-PENTABORANE, B
5H
9
•Preparation:
(i)B
5H
9canbepreparedbypassinga1:5mixtureofB
2H
6
andH
2atsubatmosphericpressurethroughafurnaceat
250Cwitha3-sresidencetime(orat225Cwitha15-s
residencetime)thereisa70%yieldand30%
conversion.
(ii)PyrolysisofB
2H
6fordaysinahot/coldreactorat180C.
(iii)Apex-substitutedderivatives1-XB
5H
8canbereadily
preparedbyelectrophilicsubstitution(eg.Halogenation
orFriedelCraft’salkylationwithRXoralkenes)
10/21/2014 76

(iv)2-XB
5H
8resultswhennucleophilicreactionisinduced
byaminesorethers,orwhen1-XB
5H
8isisomerizedinthe
presenceofalewisbasesuchashexamethylenetetramine
orether:
(v)Furtherderivativescanbeobtainedbymetathesiseg.
10/21/2014 77

REACTIONS
(i)Lewisbases
B
5H
9reactswithlewisbases(electronpairdonors)toform
adductsegwithPMe
3togive[B
5H
9(PMe
3)
2].
(ii)WeakBronstedacid:
B
5H
9actsasaweakacid.Theacidityincreaseswith
increasingsizeoftheboraneclusterandarachno-boranes
aremoreacidicthannido-boranes.
Nido:B
5H
9B
6H
10B
10H
14B
16H
20B
18H
22
Arachno:B
4H
10B
5H
11B
6H
12andB
4H
10B
6H
10
10/21/2014 78

B
5H
9canbedeprotonatedatlowtemperaturebylossofH
togive
B
5H
8-providingasufficientlystrongbasesuchasalithiumalkyloralkali
metalhydrideisused.
(iii) Cluster expansion :
(iv) Cluster degrading :
10/21/2014 79

(v)Subrogationofa{BH}
Subrogationofa{BH}unitinB
5H
9byan‘isoelectronic’
organometallicgroupsuchas{Fe(
5
-C
5H
5)}canoccurandthis
illustratesthecloseinterrelationbetweenmetalloborates,
metal-metalclustercompoundsandorganometalliccomplexes
ingeneral.Eg.[1-{Fe(CO)
3}B
4H
8];[1-{Co(
5
-C
5H
5)}B
4H
8];[2-
{Co(
5
-C
5H
5)}B
4H
8].
10/21/2014 80

Nido-decaborane, B
10H
14
•Decaboraneisthemoststudiedofall
polyhedralboranesandonetime(mid1950s)
wasmanufacturedonamulti-tonscaleinthe
USasapotentialhigh-energyfuel.
•Itisnowobtainedinresearchquantitiesby
thepyrolysisofB
2H
6at200Cinthepresence
ofcatalystofMe
2O.
10/21/2014 81

Physical Properties
•Itisacolourless,volatile,crystallinesolidinsolublein
waterbutreadilysolubleinawiderangeoforganic
solvents.
•Itsstructureisregardedasderivedfromthe11Batom
clusterB
11H
11
2-
byreplacingtheuniqueBHgroupwith
twoelectronsandappropriateadditionof4H
.
10/21/2014 82

•Molecularorbitalcalculationsgiveasequenceof
electronschargedensitiesatvariousBatomas2,4,1,
3,5,7,8,106,9thoughthetotalrangeofdeviation
fromchargeneutralityislessthan0.1
S = 4
t = 6
y = 2
x = 0
10/21/2014 83

Chemical properties
•ThechemistryofB
10H
14canbeconvenientlybe
discussedundertheheadings
(a)Protonabstraction,
(b)Electronaddition,
(c)Adductformation,
(d)Electrophilicsubstitution:
(e)Nucleophilicsubstitution
(f)Clusteradditionreaction
10/21/2014 84

(a)Protonabstraction
•B
10H
14canbetitratedinaqueous/alcoholicmedia
asamonobasicacid:pka2.70.
•Protonabstractioncanalsobeeffectedbyother
strongbasessuchasH
-
,OMe
-
,NH
2
-
etc.
•X-raystudieson[Et
3NH]
+
[B
10H
13]
-
establishedthat
theionisformedbylossofabridgeprotonas
expectedandthisresultsinconsiderable
shorteningoftheB(5)-B(6)distancefrom179pm
into165pminB
10H
13
-
.
10/21/2014 85

•UndermoreforcingconditionswithNaHasecond
H
canberemovedtogiveNa
2B
10H
12;B
10H
12
2-
;
theanionactsasanormalbidentate(tetrahapto)
ligandwithmanymetals.
(b)Electronaddition
•ElectronadditiontoB
10H
14canbeachievedby
directreactionwithalkalimetalsinether,
benzeneorliquidNH
3.
10/21/2014 86

•AmoreconvenientpreparationoftheB
10H
14
2-
anionusesthereactionofaqueousBH
4
-
inalkaline
solution.
•Calculationsshowthatthisconversionofnido-
boranetoarachno-clusterreversesthesequence
ofelectronchargedensityatthe2,4and6,9
positionssothatforB
10H
14
2-
thesequenceis6,9,
1,3,5,7,8,102,4,thisisparalleledbychangesinthe
chemistry.
10/21/2014 87

(c)Adductformation
•B
10H
14
2-
canformallyberegardedasB
10H
12L
2for
thespecialcaseofL=H
-
.
•CompoundsofintermediatestoichiometryB
10H
13L
areformedwhenB
10H
14isdeprotonatedinthe
presenceoftheligandL:
10/21/2014 88

•The adduct can be prepared by direct reaction of
B
10H
14with L or by ligand replacement reactions:
•LigandsLandL’canbedrawnvirtuallyfromthe
fullrangeofinorganicandorganicneutraland
anionicligandsandindeed,thereactionseverely
limitstherangeofdonorsolventsinwhichB
10H
14
canbedissolved.
10/21/2014 89

•Theapproximatesequenceofstabilityis:
SR
2RCNASR
3RCONMe
2P(OR)
3pyNEt
3
PPh
3.
Bis-ligandadductsofmoderatestabilityplayan
importantroleinactivatingdecarboraneforseveral
typesofreactionseg:
1.Substitution
10/21/2014 90

2.Clusterrearrangement;
3.Clusteraddition;
4.Clusterdegradation
--Intheclusterdegradationreactionitisthe
coordinatedBatomatposition9thatissolvolytically
cleavedfromthecluster.
10/21/2014 91

(d)Electrophilicsubstitution:
•ElectrophilicsubstitutionofB
10H
14followsthe
sequenceofelectrondensitiesintheground
statemolecule.
•HalogenationinthepresenceofAlCl
3leadsto1-
and2-monosubstitutedderivativesand2,4-
disubstitution.
•FriedelCraftsalkylationwithRX/AlCl
3(orFeCl
3)
yieldsmixturessuchas2-MeB
10H
13,2,4-and1,
2-Me
2
B
10H
12,1,2,3-and1,2,4-Me
3
B
10H
11and
1,2,3,4-Me
4
B
10H
10.
10/21/2014 92

(e)Nucleophilicsubstitution
•Thisoccurspreferentiallyatthe6(9)position;eg
LiMeproduces6-MeB
10H
13asthemainproduct
withsmalleramountsof5-MeB
10H
13,6,5(8)–
Me
2
B
10H
12and6,9-Me
2
B
10H
12.
(f)Clusteradditionreaction
•B
10H
14undergoesnumerousclusteraddition
reactionsinwhichBorotheratomsbecome
incorporatedinanexpandedcluster.
10/21/2014 93

•AmoreconvenienthighyieldsynthesisofB
10H
12
2-
isbythedirectreactionofamineboraneswith
B
10H
14intheabsenceofsolvents.
•Heteroatomclusteradditionreactionsare
exemplifiedbythefollowing:
•Thestructureofthehighlyreactiveanion
[AlB
10H
14]
-
isthoughttobesimilartothenido-
B
11H
14
-
withonefacialBatomreplacedbyAl.
10/21/2014 94

•(Theopenfacecomprisesoffluxionalsystem
involvingthethreeadditionalHatoms)
•Themetalalkylsactsomewhatdifferentlytogive
extremelystablemetalloboraneanionswhichcan
bethoughtofascomplexesofbidentateligand
B
10H
12
2-
.
10/21/2014 95

•Manyothercomplexes[M(B
10H
12)
2]
2-
and[L
2M(B
10H
12)]
areknownwithsimilarstructuresexceptthat,whereM
=Ni,Pd,Pt,thecoordinationaboutthemetalis
essentiallysquare-planarratherthanpseudo-
tetrahedralasforZn,CdandHg.
10/21/2014 96

CARBORANES
•Closelyrelatedtothepolyhedralboronhydrides
isalargefamilyofcarboranes(carbaboranes),
whichareclustersthatcontainbothBandC
atoms.
•TYPE1:methyldiboranes(MeB
2H
6-n)wheren=1,
2,3,4not5or6.
•Similarderivativesofdiboraneinwhichthe
boranegroupreplacestheterminalhydrogenof
theparentboranearealsoknown.
10/21/2014 97

TypeII
TheseareactualcarboraneswherebothBandC
featureintheelectrondeficientmolecularskeleton.
Closo-carboranes–C
2B
n-2H
n(n=5ton=12)
•Dicarba-closo-boranes
Theseareneutralspeciesandisoelectronicwith
B
nH
n
2-
Eg.C
2B
3H
5
10/21/2014 98

C
2B
4H
6
NIDOCARBORANES[C
2B
n-2H
n
2-
]
Thesehavencageatomsandn+2pairsofcagebonding
electronsandn+1corners.
Structurallytheyadoptanincompletecagestructure,nidoor
neststructurei.eonecagecornerisleftvacantthoughwhen
obtainedasmetalsalts,themetalcationmayoccupythe
vacantsiteinthecrystal.
Isoelectronicspecieswhichmightallbeexpectedtohavethe
nidostructuresare:B
nH
n
4-
,CB
n-1H
n
3-
,C
2B
n-2H
n
2-
,C
3B
n-3H
n
-
,
C
4B
n-4H
n.
10/21/2014 99

HEXABORANE (10)
B
6H
10isthelimitingmemberofaseriesoffive
compoundscontainingsixcageatomsand8pairof
bondingelectrons.
10/21/2014 100

ARACHNO CARBORANES
•Veryfewoftheseareknown.Theseriesare:B
nH
n
6-
,
CB
n-1H
n
5-
,C
2B
n-2H
n
4-
,C
3B
n-3H
n
3-
,C
4B
n-4H
n
2-
,C
5B
n-5H
n
-
and
C
6B
n-6H
n.
•TheparenthypotheticalanionB
nH
n
6-
areeffectivelythe
skeletonsofa(BH)
pH
qinwhichq=6,eg.B
4H
10andB
5H
11.
•Thesehavencageatomsandn+3pairsofcagebonding
electronsi.etherightnumberforacagewithn+2corners.
•Theyaccordinglyadoptthearachnostructureinwhich
twocagecornersareleftvacanteg.C
2B
7H
13,C
2B
8H
10,
C
2B
3H
7
2-
10/21/2014 101

Preparation and Reactions
of carboranes
•Themostimportantpreparativerouteisthe
reactionofboraneswithacetylenes
•TheisomersoftheclosocompoundC
2B
10H
12have
icosahedralgeometryandexhibitextremelyhigh
kineticandthermodynamicstability.
10/21/2014 102

•The1,2-;1,7-;1,12-isomershavethecommon
nameso-m-andp-carboranesrespectively.
•o-carboranehasbeengiventhefollowingsymbol
inliterature
10/21/2014 103

•ReactionsatBcenterincarboranesparallelthose
ofboranesbridgeprotonabstractionand
electrophilicsubstitution,includinghalogenation.
TheterminalHattachedtoelectrophilicCare
relativelyacidic.
•HencetheseCcenterscanbemetallated
10/21/2014 104

•Themetallatedproductsretainstructuralintegrity
andcanreactwithnucleophilestoproducealarge
numberofC-substitutedderivatives.
•Thermalisomerizationoccur.Thediamond-
square-diamondmechanismhasbeenproposed
fortheisomerizationofthe1,2-to1,7-by
Lipscombbutthe1.12-isomercannotbe
generatedbythismechanism.
•Moreover,theactivationenergyrequiredtopass
throughthecubo-octahedraltransitionstateis
likelytoberathertoohigh.
10/21/2014 105

•Thediamond-square-diamondmechanismconsistsofa
pairoftriangularfacesatrightangleswhichopenintoa
squareandrejoinwithadifferentpairofvertices
connected.
10/21/2014 106

•Analternativeproposalwhichcanleadtoboththe1,7-
and1,12-isomers,isthesuccessiveconcertedrotationof
the3atomsonatriangularface.
•Yetathirdpossiblemechanismthathasbeenenvisaged
involvestheconcertedbasaltwistingoftwoparallel
pentagonalpyramids,comprisingtheicosahedron.
•Itisconceivedthatthevariousmechanismoperatein
differenttemperaturerangesorthattwo(orallthree)
mechanismsareactivesimultaneously.
10/21/2014 107

•O-carboraneisattackedbyabasethatexcisesaBH
group,generatinganidoanionthatretains
structuralintegrity.
•The1,7-isomercanbeobtainedbythermal
rearrangementoftheanionorbystartingwithm-
carborane.
•NaHintetrahydrofurandeprotonatestheanion,
givingadianionB
9C
2H
11
2-
.
•Assumingforconveniencesp
3
hybridizationofthe
fiveatomsontheopenface,asetofMO’s
reminiscentoftheCp
-
anionmaybeconstructed.
•TheMO’sareoccupiedbysixelectrons.
10/21/2014 108

•Hawthornehasexploitedtheanalogybetween
B
9C
2H
11
2-
(thedicarballideion)andCp
-
toprepare
metaldicarballidecomplexesrelatedtothe
metallocenes.
10/21/2014 109

•Ageneraltechniqueforpreparingsuchcomplexes
involvesexcisionofaBHgroupthroughbase
degradationandreactionoftheresultinganionwitha
metalhalide.
10/21/2014 110

Nomenclature for Heteroborates
•Verticesofcloso-nido-andarachno-polyhedraaregiven
numbersbasedbyconventiononplanarprojectionsof
polyhedralstructures.
•Thenumberingisbyzones(planes)perpendiculartothe
majoraxis.
•Interiorverticesontheprojectionarenumberedfirst,
thenperipheralones.
•Thiscorrespondstonumberingapicalverticeswithlower
numbers.
•Thenumberingproceedsclockwisestartingfromthe
twelveo’clockpositionoratthefirstpositionclockwise.
Thelocationofheteroatomscanbespecifiedbynumbers.
10/21/2014 111

•PB
11H
12is phospha-closo-dodecaborane(12). There is no
need to specify the position of P since all icosahedral
vertices are equivalent.
10/21/2014 112

Generalorganizationalschemefortheneutralboron
hydrides,thecloso-polyhedral,hydroborateions,andthe
carboranes
•Giventhemolecularformula,amethodisneededfor
predictingtheprobablestructuralclassificationofaboron
compoundi.e.eitheracloso-,nido-orarachno-.
•Asdescribedearlieron,the(BH)
pH
qsymbolismisbestfor
structuralpurposesandtheseschemehasbeenextendedby
WadeandRudolph.
•Theformulaofanyneutralborane,hydroborateorcarborane
canbewrittenas:
•Wherethenumberofverticesofthepolyhedralfragmentis
(a+p)=nandtheqHsareinvolvedinaBHBorextraBH
T’s.
10/21/2014 113

•Assuming that the number of electron pairs
contributed by CH is 3/2
•The number of framework electrons is given by :
3/2a + p +1/2(q + c)
= 3a + 2p + q + c
=2n + a + q + c
Since n = a + p, 2n = number of vertices
When, a + q + c = 2 closo
a + q + c = 4 nido
a + q + c = 6 arachno
10/21/2014 114

•Eg. [B
6H
6]
2-
(BH)
6
2-
= (6x3e
-s
) + (6x1e
-
) + 2e
-s
= 26e
-s
6B-H = (6x2e
-s
) = -12e
-s
2n + a + q + c = 14e
-s
2n = -12e
-s
Closoa + q + c = 2e
-s
•B
5H
11
(BH)
5= (5x3e
-s
) + (11x1e
-
) = 26e
-s
5B-H = (5x2e
-s
) = -10e
-s
2n + a + q + c = 16e
-s
2n = -10e
-s
Arachnoa + q + c = 6e
-s
10/21/2014 115

Nidoboranes (BH)
pH
4
Arachnoboranes (BH)
pH
6
•Thusanidoboraneisafullyprotonated(BH)
p
4-
andthearachnoboraneisafullyprotonated
(BH)
p
6-
•Whenwelookat(BH)
p
c-
formulationthissuggest
thatagreatrangeofcompoundscontainingthe
(BH)unitsorsomeothergroupalsocapableof
donating2e
-s
tothepolyhedralframeworkcould
beobtained.
•ThusaBHunitcanbereplacedbyCH
+
;P
+
,S
2+,
N
+
orO
2+
.
10/21/2014 116

•Eg.Thecloso-B
4C
2H
6maybegeneratedfroma
closoB
6H
6
2-
bytheremovalof2BHunitsand
adding2CH
+
groupsorunits.
•Theformulaofthision7,8-B
9C
2H
12
-
anionmaybe
writtenas[(CH)
2(BH)
9H]
-
ifwecomparewith[(BH)
11H]
3-
.
The[(CH)
2(BH)
9H]
-
anioncomparedwith[(BH)
9H]
3-
with
2CH
+
unitreplacing2BHunitsandwithaprotonH
+
stitchinguppartoftheopenedface.
10/21/2014 117

•Herethea+q+c=4sinceitisanido
•Deprotonationof7,8-B
9C
2H
12
2-
andthisisacarboraneisoelectronicwiththe
(BH)
11
4-
•Ontheotherhandprotonationofthenido-7,
8-B
9C
2H
12
-
iongivesaneutralcompoundnido
7,8-B
9C
2H
13.
10/21/2014 118

•Pyrolysis of the molecule can give a nido-7, 8-B
9C
2H
13in
solution can give a closo-polyhedron-2, 3-B
9C
2H
11.
9B 9x3e-= 27e- 9B 9 x3e-= 27e- 9B 9 x3e-=
27e-
9H 9 x1e-= 9e- 11H 11 x1e-= 11e- 12H12 x1e-= 12e-
1S
2+
1 x4e-= 4e- 1S
2+
1 x4e-= 4e- 1S
2+
1 x4e-= 4e-
= 40e- = 42e- charge =1x1e
-
= 1e-
= 44e
-
9BH 9 x2e-= -18e- 9BH
T9 x2e-= -18e- 9BH
T9 x2e-= -
18e-
= 22e- = 24e- = 26e-
10 vertices = -20e-10 vertices = -20e- 10 vertices = -20e-
a + q + c = 2e- a + q + c = 4e- a + q + c = 6e-
Closo nido arachno
10/21/2014 119

INORGANIC RINGS
•Themostimportantringsystemoforganic
chemistryistheC
6H
6ringeitherasaseparate
entityorinpolynuclearhydrocarbonsuchas
napththalene,anthracene,phenanthrene,etc.
10/21/2014 120

•InInorganicChemistry,thereareatleasttwoanalogues
ofbenzenenamely:borazine(B
3N
3H
6)andphosphazenes
(P
3N
3X
3).
•WhenBCl
3isheatedwithNH
4Cl(orRNH
3Cl)in
chlorobenzene(C
6H
5Cl)inthepresenceofFe,Ni,orCo
(usedasacatalyst)atabout140C,B,B,B-
trichloroborazineisformed.
•Thisderivativeofborazineonbeingreducedwith
NaBH
4orLiBH
4inpolyethergivesborazine.
10/21/2014 121

•N-orBsubstitutedborazinesmaybemadeby
appropriatesubstitutiononthestartingmaterial
priortothesynthesisofthering;e.g.
10/21/2014 122

BORAZINE
•BorazineisanunsaturatedcompoundofBandNatoms
withtheformulaB
3N
3H
6.
•Itisisoelectronicandisostructuralwithbenzene,having
delocalizedelectronsandaromaticcharacter.
•Thephysicalpropertiesarealsosimilar.
•Howeverdespitetheresemblanceinstructure,thereislittle
chemicalresemblancebetweenborazineandbenzene.
•ThedifferenceinelectronegativityofBandNatomsis
influential.
10/21/2014 123

•Henceinborazinethe–electronsareconcentratedonthe
N-atomsandthereisapartialpositivechargeontheB-
atomswhichleavesthemopenforelectrophilicattackon
theN-atom.
•Consequently borazinein contrast to benzene readily
undergoes addition reactions.
•Also unlike benzene the –electrons are not derived from
all six atoms of the ring but from the 3 nitrogen atoms.
10/21/2014 124

Synthesis of borazines
(1)Stock’sMethod
•Inthismethoddiborane(B
2H
6)andNH
3areheatedin1:2
molarratioatlowtemperature(-120C)toobtain
diammoniateofdiborane(B
2H
6.2NH
3)whichisaddition
compound(adduct).Whentheadductisheatedat200C,
theborazineisobtained
10/21/2014 125

(2) By heating BCl
3with NH
4Cl (or RNH
3Cl)
10/21/2014 126

(3) By heating a mixture of LiBH
4and NH
4Cl
10/21/2014 127

STRUCTURE
•B: 1S
2
2S
2
2P
1
Neutral atom
•*B: 1S
2
2S
1
2P
x
1
P
y
1
P
z
0
SP
2
hybrid
•B
-
: 1S
2
2S
1
2P
x
1
P
y
1
P
z
1
SP
3
hybrid
•N: 1S
2
2S
2
2P
x
1
P
y
1
P
z
1
neutral atom and SP
3
hybrid
•N
+
: 1S
2
2S
2
2P
x
1
P
y
1
P
z
0
SP
2
hybrid
10/21/2014 128

•Inthisstructuralformulatheformal–veand+vecharges
havebeenassignedtotheBandNatomsrespectively.
•Theseillustrationsareisoelectronicwithcarbon(inSP
2
andSP
3
hybridizations)sothattheborazinehasthesame
skeletalconfigurationasinbenzene.
•AllB-Nbonddistancesare1.44Åwhichisbetweenthe
calculatedB-Nsinglebond(1.54Å)andB-Ndouble
bond(1.36Å).
•Thevalencebondapproachdescribesthestructurein
termsoftwocanonicalformswhereasamolecularorbital
descriptioninvolvesthree(3)-orbitalsembracingallsix
(6)atomsinthehexagon.
•Thesedelocalizedorbitalsdiffersomewhatfromtheir
benzeneanaloguesbecausetheconstituent2P
zatomic
orbitalsofBandNarenotidenticalinenergy.
10/21/2014 129

•Physicalproperties
•Borazineisindeedacloseanalogueofbenzene.
--Similarityofthephysicalpropertiesofthealkyl
substituted
derivativesismoreremarkable.
--Forexampletheratiooftheabsoluteboilingpointofthe
substitutedborazinetosimilarlysubstitutedbenzene
derivativesis0.930.01.
•Suchsimilaritiesleadtoadescriptionofborazineasan
inorganicbenzene.
10/21/2014 130

Physical properties of borazineand benzene
Chemicalproperties
•Thechemicalpropertiesofborazineandbenzenearequite
different.
Borazine Benzene
Molecular weight 80.5 78.1
b.p. (C) 55.0 80.10
m.p. (C) -56.2 5.51
Critical temperature (C) 252 288.0
Liquid density at b.p. (g/cm
3
)0.81 0.81
Crystal density at m.p. (g/cm
3
)1.00 1.01
Trouton constant (J/K mole)89.5 88.2
Surface tension (Nm
-2
) 0.0311 0.0310
Dipole moment 0 0
Intermolecular distance(pm)144 142
Bond distance to H (pm)B-H (120), N-
H(102)
C-H (100)
10/21/2014 131

•Bothhave-cloudsofelectrondensitydelocalizationover
alltheringatoms.
•Howeverbecauseofthedifferenceinelectronegativity
betweenBandN,the-cloudinborazineisdescribedas
beinglumpywithmoreelectrondensitylocalizedonthe
nitrogenatomN.
•Thispartialdelocalizationweakensthe-bondinghenceN
retainssomeofitsbasicitywhereasBsomeacidity.
•Asaresultofthis,polarspeciessuchasHClcantherefore
attackthedoublebondbetweenNandB.
•NB:ThedifferentelectronegativityofBandNturnto
stabilizebondingtoBbyelectronegativesubstituentsand
bondingtoNbyelectropositivesubstituents.
10/21/2014 132

Thetendencyforborazinetoundergoadditionreactionratherthan
substitutioniswellcontrastedbytheelectrophilicsubstitutionreaction
ofbenzene(i.ehalogenationofbenzene)asindicatedbelow:
10/21/2014 133

•Borazineanaloguesofnaphthalene,andrelated
hydrocarbonshavebeenmadebypyrolysisofborazineor
itspassingthroughasilentelectricdischarge.
•Thereisalsothefourmemberedaswellasthe8-
memberedringslike
10/21/2014 134

CYCLOBORAZINES
•Unlikehydrogenationofbenzeneyieldingcyclohexanes,straight
forwardhydrogenationofborazinesdonotyieldcycloborazines,
butratheryieldpolymericmaterialsofindefinitecompositions.
•Substitutedderivativesofsaturatedcycloborazineform
readilybyadditionreactions.
•Anothermethodinclude
10/21/2014 135

REACTIONS OF BORAZINES
(1)Additionreactions:
(a)OnemeleculeofB
3N
3H
6addsthreemoleculesofH
2O,
ROH,RXorHXinthecoldwithoutacatalyst
--ThemorenegativegroupisgenerallyattachedtoB,since
B-atomislesselectronegativethanN-atominB-Nbond.
--ForexamplewhenHXderivativeisheatedat50-100Cit
loses3H
2moleculestoyieldB,B’,B”-trihaloborazine.
10/21/2014 136

--Thisadditionreactionshownbyborazineisnotshownby
benzene.
(b)Onemoleculeofborazineadds3moleculesofX
2at0C
andgivesB-trihalo-N-trihaloborazinewhichonheatingat
about60Closes3moleculesofHXandformsB-
trihaloborazinei.e.
--Substitutionoccursinborazinequitemorereadilydueto
the
considerablymorereactivenatureofborazinetobenzene.
--Thisreactioncanbecomparedwiththatshownbybenzene
wheresubstitutiontakesplace.i.e.
10/21/2014 137

(2)Hydrolysis
(a)BorazineisslowlyhydrolyzedbyH
2OtoproduceH
2,
B(OH)
3andNH
3.
--Thehydrolysisisfavouredbyincreaseintemperature
10/21/2014 138

(b)Underproperconditionsborazinereactswith3molecules
ofH
2OtoproduceB-trihydroxyborazine(OH)
3B
3N
3H
3
inwhichtheOHgroupsareattachedtoB-atoms.
(3)Hydrogenation
•Benzenecanbehydrogenatedtoproducecyclohexane,C
6H
12,
Borazineontheotherhandcanbeconvertedtocycloborazine
onlybyspecialtechniquessuchasshown:
--Directadditionyieldspolymericmaterialswithindefinite
composition.
10/21/2014 139

BOROXINE
•Iso-electronicwithborazineisboroxineH
3B
3O
3whichis
formulatedas[XBO]
3
•Boroxineisplanarbuthaslesseven–delocalizationthan
borazineandpossessasixmemberedring.
•Boroxinecanbepreparedbytheexplosiveoxidationof
B
2H
6orB
5H
9,orhightemperaturehydrolysisofboron.
•Althoughthiscompoundisthermodynamicallyunstableat
roomtemperaturewithrespecttoB
2H
6andboricoxide,
neverthelessitcanbecharacterized.
10/21/2014 140

•Aboron-phosphorusanalogueofborazinehasbeen
synthesizedratherrecently.
•TheelectronegativitiesofBandParesimilar,unlike
thoseofBandN.
•Asaresultpolarizationshouldbelessextensiveinthis
compoundthanborazine.
•TheB
3P
3ringisplanarwithequalB-Pbondlengthsand
shortenedB-Pbondssuggestingsignificantaromaticity.
10/21/2014 141

PHOSPHAZENES (Phosphonitriliccompounds)
•Thesearecycliccompoundsofphosphorusandnitrogen
ofgeneralformula[PNCl
2]
n.
•Thereactionproducesamixtureofringcompounds
(NPCl
2)
n,wheren=3,4,5,….andfairlyshortlinear
chains.
•Themostcommonrings(n=3and4)containsixoreight
atoms.
•Theformerareflatandthelatterexistsin‘chairandboat
conformations.
10/21/2014 142

•Analogousbromo-compoundsmaybepreparedinthesame
mannerexceptthatbromineshouldbeaddedtosuppress
thedecompositionofPBr
5.
•ThefluoridemustbepreparedindirectlyusingNaFin
nitrobenzenei.e.
•Theiodidesarenotknown
10/21/2014 143

STRUCTURE
•NitrogenatomsareSP
2
hybridizedandtwosuchhybrid
orbitalsareinvolvedin-bonding.
•SimilarlyeachphosphorusisSP
3
hybridizedandsuch
hybridsareinvolvedin-bonding.
•Thereisthenone“inplane”–bondinginvolvingthelone
pairofN(SP
2
orbital)inxyplaneandthevacantdxyor
dx
2
-y
2
oftheP-atom.
10/21/2014 144

•Therearetwo“outofplane”interactions:
(a)Heteromorphicinteractions:ThesinglyoccupiedPz
1
orbitalonthenitrogenoverlapswiththedxz
0
ordyz
0
orbitalofphosphorus(p–dbonding)
(b)Homomorphicinteractions:ThereareinteractionsofPz
orbitalsoftwonitrogenthroughthedyzorbitalofthe
phosphorusinbetween.
10/21/2014 145

TetramericPhosphonitrilesor cyclotetraphosphaza-
tetraenes
•Theseare[NPCl
2]
4and[NP(NMe
2)
2]
4
•Thetetramericringsoftheabovecompoundsaremore
flexiblethanthoseofthetrimers.
•Thereisenoughstrainandtheyexhibitnon-planar
structureswithoutseriousdeteriorationoftheP─N–
bonding.
•Thechloro-derivativesareusefulforintroducingother
substituentsattheP-atomsinthering.
10/21/2014 146

•Eg.When
hexachlorobis(ethylamino)tetraphosphazatetraene
is treated with excess dimethylaminein chloroform the
product that results is not only the full aminationof both
the
(PCl
2) groups and one of the PClgroup but also one of the
ethylamino(NHEt) group bridges the opposite PClgroup
with the elimination of HCl.
•This arises from an internal trans-annular attack by one of
the NHEtgroups. The product is the only known bicyclic
phosphazenecompound.
10/21/2014 147

•This bicyclo-structure is reminiscent of ADAMANTANE
•TheamidehoweverundergoeseliminationofNH
3with
increasingtemperaturetoformcross-linkingbetween
ringsorpossiblyraptureofringstoformlinearpolymers.
10/21/2014 148

•Verylittleisknownaboutthesepolymers.
•Howeverrelativelylowmolecularweightpolymer
believedtobea3-ringspecieswiththeformulation
Cl
9P
6N
7hasbeenisolated
10/21/2014 149

INORGANIC RUBBERY POLYMERS
•(1)Ifexcessphosphoruspentachlorideisusedinthe
preparationofphosphazene,thenitispossibletoisolate
linearpolymersasindicatedbelow:
•(2)Whenthephosphonitriliccompoundisheateditis
possibletoobtainlinearpolymers.
•NB:Thereactivechlorinearestillsusceptibleto
nucleophilicattackanddisplacement
10/21/2014 150

•IfR=CH
3CF
3(trifluoroethane)thentheproduct
obtainedisawaterrepellentpolymerwhichisusedto
fabricateartificialbloodvesselsandprostheticdevices.
•Althoughthehydrolyticstabilityofthephosphazene
polymersmakethemattractiveasstructuralmaterials,it
ispossibletocreatehydrolyticallysensitive
phosphazenesthatmaybeusefulmedicallyinslow
releasedrugs.
•Steroids,antibiotics,catecholamines(egdopamine&
epinephrine)havebeenlinkedtophosphazenemolecules
withtheintentionthathydrolysiswillprovidethesedrugs
inatherapeuticsteadystate.
10/21/2014 151

•Examples
10/21/2014 152

OTHER HETEROCYCLIC RINGS & CAGES
•1. S-N Ring compounds
•S-N ring compounds are prepared by ammonolysis
10/21/2014 153

•Thecorrespondingtetramerisalsoknowni.e.
(2)Tetrasulphurtetranitrides
•TheammonolysisofsulphurmonochlorideS
2Cl
2either
insolutionorinaninertsolventorheatedoversolid
ammoniumchlorideyieldtetrasulphurtetranitrides;S
4N
4.
•S
4N
4isabrightorangesolidinsolubleinH
2Obutsoluble
insomeorganicsolvent.
10/21/2014 154

•Thestructurehasbeenfoundtohavetwononbonding
S-atomsatadistanceofabout2.58Å.
•Thisisconsiderablyshorterthanthesumofthevander
waalradiiwhichis3.60Å.
•Althoughthisnonbondingdistanceislongerthanthe
normalS─Sbondwhichisabout2.06Å,some
interactionsmustoccurbetweenthetransS-atoms.
•AlltheS─Nbonddistancesareequalandabout1.62Å
indicatingextensivedelocalizationratherthan
alternatingdiscretesingleanddoublebonds.
10/21/2014 155

•Fluorination of S
4N
4
•It produces tetrathiozytetrafluoridei.e.
•Reduction of S
4N
4
10/21/2014 156

•All possible S
x(NH)
8-xisomers except N─N bonds are
known.
10/21/2014 157

•Oxidative chlorination of S
4N
4
•NB: It is unexplained that chlorination produces the
ClSNtrimerwhile fluorination retains the tetramer unit
10/21/2014 158

•SULPHURNURYL CHLORIDE ( NSOCl)
3
•(NSOCl)
3may also be prepared from sulphamicacid.
10/21/2014 159

HOMOCYCLIC INORGANIC RING
COMPOUNDS
•Severalelementsformhomocyclicrings.
•Thethermodynamicallystableformatroom
temperatureconsistsofS
8rings.
•Theoxidationofseveralnon-metalsinstrongly
acidicsystemsproducespoly-atomiccationic
speciesofthegeneraltypeY
n
+m
10/21/2014 160

•ThebestcharacterizedofthesearetheS
4
+2
,Se
4
+2
,Te
4
+2
.
•Thestructuresofthesecompoundshavebeenshowntobe
planarandhasbeenshownthatallthesespeciesaresquare
planar.
•ThestructuresarestabilizedbytheHückelsextetof-
electrons.
•Se
8
+2
isknowntobebicyclic.
•Thetransannularbondis2.84Åwhichislongerthanthoseof
thering2.32.2Åbutareconsiderablylessthanthesumof
thevanderwaalsradiiofabout3.80Å.
10/21/2014 161

•Otherionsofthistype,presumablycyclic,thoughless
thoroughlystudiedaretheS
8
2+
,S
16
2+
,Sb
4
2+
,Sb
8
2+
,Sb
n
n+
,
Te
6
2+
etc.
•Buthavebeensuggestedasproductsofmildoxidation
ofsomenon-metals.
•Theoxidationofredphosphoruswithhypo-halidesin
alkalinesolutionproducestheanionofaninteresting
phosphorusacid.
•Thisacidhasbeenshowntobecyclic.
10/21/2014 162

•CYCLIC OXOCARBON ANION [(CO)
n]
-2 (-4)
•TheoxocarbonateionC
5O
5
2-
isthefirstmembertobe
synthesized.
•Itwasisolatedin1825byGmelinandthusshareswithbenzene
thehonourofbeingthefirstaromaticcompounddiscovered.
•Itwasthefirstinorganicsubstancediscoveredthatisaromatic.
•Itisabacterialmetabolicproductandwaspossiblythefirst
organiccompoundsynthesized.
10/21/2014 163

•Alloftheseoxocarbonanionsarearomaticaccordingto
simpleMOcalculations.
•Thearomaticstabilizationoftheanionisapparently
responsibleforthefactthatsquaricH
2C
4O
4isabout
strongassulphuricacid.
•NB:OxalicacidcontainingCinacomparableoxidation
statebutnotaromatic.
•K
a1≈K
a2forsquaricandsulphuricacid.
•TheK
a2ofoxalicacidis3ordersofmagnitudesmaller.
10/21/2014 164

NON-METAL CAGED COMPOUNDS
•Thesimplestcagedtypemoleculeisfoundinwhite
phosphoruswhichisaP
4molecule.
•Thismoleculeismorestableatroomtemperatureandisa
tetrahedronofphosphorusatoms.
•Suchastructurerequiresbondangleof60
•Inasmuchasthelowestinterorbitalangleavailable
usingonlysandP-orbitalis90
•ThesmallerbondangleinP
4mustbeaccomplishedeither
throughtheintroductionofconsiderabled-characteror
throughtheuseofbentbonds.
10/21/2014 165

•Theformerinvolvingd-orbitalsrequiresconsiderable
promotionenergyandisthereforeunlikely.
•Thelaterinvolvingbent-bondsresultinthelossinbonding
energyofsome96KJmol
-1
duetostrainbutisthoughtto
beenergeticallyfavoured.
•Inanyeventthemoleculeisdestabilizedandquite
reactive.
•P
4cagesreactreadilywithO
2toformamixtureofoxides
andcanalsobeconvertedintoamorestableallotropes.
10/21/2014 166

OXIDES OF PHOSPHORUS
•Thesehavecagestructureoftetrahedralsymmetry
•ThemolecularformulaeP
4O
6orP
4O
10usuallyreferred
toasthetrioxideandpentoxiderespectively.
•Bothareanhydrides.
10/21/2014 167

•Only one phosphorus sulphideP
4S
10is isoelectronic and
isostructuralwith the phosphorus oxide.
•This is obtained by mixing P
4and S
8in appropriate
stoichiometric quantities.
•Other sulphidesare obtained by the reactions below:
10/21/2014 168

INORGANIC CHAINS
SILICATES
•ThesearemetalderivativesofsilicicacidH
4SiO
4.
•Theyarepreparedbyfusingmetaloxidesormetal
carbonateswithsand(SiO
2).
•AllthesilicateshavetheSiO
4
4-
anionformedbySP
3
hybridizationofSi-atoms,butthevarioussilicatesdiffer
fromoneanotherinthemannerinwhichtheSiO
4
4-
anionsarelinkedtogether.
10/21/2014 169

CLASSIFICATION
•Oneclassificationbasedonthearrangementofthesilicon
tetrahedronwithinthestructuredividethesilicatesintosix
classes.
Orthosilicates(Nesosilicates)
•TheycontaindiscreteSiO
4
4-
tetrahedralanions.The
oxygenatomofeachSiO
4
4-
isalsocoordinatedtothe
metaliontoimpartelectricalneutralitytothestructure.
10/21/2014 170

•Orthosilicatesarenotcommoninmineralsalthoughthey
arepresentinmineralssuchasolivine,(Mg,Fe)SiO
4.
•Othermineralsthathavethestructureofsilicatesare:
Phenacite;Be
2SiO
4,Willemite;Zn
2SiO
4,Olivite;
Mg
2SiO
4,Zircon;ZrSiO
4,Garnets;M
3
2+
M
2
3+
(SiO
4)
3
(whereM
2+
=Ca
2+
,Fe
2+
,Mg
2+
etc.andM
3+
=Al
3+
,Cr
3+
,
Fe
3+
etc.).
•InGarnetsSiO
4tetrahedraarearrangedaboutM
2+
and
M
3+
sotheybecome8-and6-coordinatedrespectively.
•Theyarequitehardandcrystalline,sotheyareusedas
abrasivesandcutforgemstones,e.g.Caperugbyand
carbuncle.
•OrthosilicatesarealsothemajorcomponentofPortland
cement
10/21/2014 171

Pyrosilicates(disilicateanion)(Sorosilicates)
•TheycontainthediscreteSi
2O
7
6-
anionwhichisformedby
joiningtwoSiO
4
4-
tetrahedralunitsthroughoneoxygen
atom.
•ThebestexamplearetheHermimorphite,abasichydrated
silicateofzinc,Zn
3(Si
2O
7).Zn(OH)
2.H
2Oandthorteveitite,
Sc
2(Si
2O
7).
Eg. Thorteveitite, Sc
2(Si
2O
7); Hermimorphite,
Zn
3(Si
2O
7).Zn(OH)
2.H
2O
10/21/2014 172

Cyclicorringsilicates(metasilicates,cyclosilicates)
•ThesecompriseoftheSiO
4residuesbridgingthroughtwoopen
oxygenatoms.
•Somanyringsizescouldbeproduced,butmanyarefound
naturally.
•TheycontaincyclicorringanionslikeSi
3O
9
6-
orSi
6O
18
12-
.
•Eg.Benitoite;BaTiSi
3O
9,Wollastonite;Ca
3Si
3O
9,Catapleit;
Na
2ZrSi
3O
9,Beryl;Ba
3Al
2Si
6O
18,Dioptase;Cu
6Si
6O
18.
•Nocyclotrimetasilicates(eg.Benitoite;BaTiSi
3O
9)havebeen
usedassemi-preciousstone.
10/21/2014 173

•ThecyclohexametasilicateionSi
6O
18
12-
occursasberyl;
Ba
3Al
2Si
6O
18inemeralds.
•Tourmarineisanexampleofamixedborosilicatecontaining
thisBO
3
3-
anionswhichoccursinbasicsaltseg.
[Al(OH)
4(BO
3)
3Si
6O
18]
7-
.
•Thisionoccurinsapphire(blue)andtopaz(paleyellow).
•ThecrystalstructuresshowthattheringsofSi
6O
18
12-
occupy
sheetswhichareboundtoothersbymetalionsinbetween
them.
Chainsilicates
PyroxeneandAmphibole(Inosilicates)
•Theycontaintheanionswhichareformedbysharingoftwo
oxygenatomsbyeachtetrahedra.
•Theanionsmaybeofthetypes(a)(SiO
3)
n
2n-
-pyroxes,(b)
(Si
4O
11)
n
6n-
-amphibole
10/21/2014 174

•Thechainsinthesilicatescontaining(SiO
3)
n
2n-
anions
linkedthroughoxygenatomslieparalleltoeachotherand
cationsliebetweenthechainsandbindthemtogether.
•SuchsilicatesarepresentedbythePYROXENEmineral
andseveralsyntheticsilicates.
10/21/2014 175

•Eg.SyntheticLi
2SiO
3,Na
2SiO
3,
•Pyroxene;spodumene;LiAl(SiO
3)
2,Jadeit;
NaAl(SiO
3)
2,
•Enstatite;MgSiO
3,Diopside;CaMg(SiO
3)
3.
•Syntheticsodiummetasilicatepossessthischain
structurewithSi─Obondsmuchshorterthanexpected
forsinglebonds(0.174nm).
•Thisisthoughttoresultthroughp-dbonding
betweenOandSiatoms,andoccursinbothkindsof
Si─Obondsinpyroxenesthoughmoresointhe
terminalSi─Obonds.TheSi─O─Sianglealsoreflects
some-bonding.
10/21/2014 176

•ThesilicatescontainingSi
4O
11
6n-
anionshavedouble
chainsinwhichthesimplecationsareheldtogetherby
sharedoxygenatoms.
•Suchsilicatesarerepresentedbytheamphibolesminerals
whichincludeasbestosminerals.
•Theamphibolesaremorecomplicatedthanthepyroxenes
andcontainrepeatingunitsaswellasmetalsand
hydroxideions.
•Structurally,amphibolesaresimilartopyroxenesthough
theycontainsomeOHgroupswhichareattachedtothe
cations.
10/21/2014 177

•Eg.Tremolite;Ca
2Mg
5[(OH)
2(Si
4O
11)
2],Crocodolite;
Na
2Fe
3
2+
Fe
2
3+
[(Si
4O
11)
2]
2(OH)
2
Asbestos
•Asbestoswasthetermoriginallyusedtodescribefibrous
amphiboles,butitnowincorporatesmanytwo
dimensionalpolymersencounteredamongthe
aluminosilicates.
•Thuschrysotile,onceregardedasanamphibole
(OH)
6MgSi
4O
11.H
2O,isactually(OH)
4Mg
3Si
2O
5.H
2O,the
Si
2O
5anionhavingalayerstructure.
•ReplacingtheMgbyAlgivesthealuminosilicate
(OH)
4Al
2Si
2O
5encounteredinkaolin.
10/21/2014 178

•PolysiloxaneswithtrifunctionalSiatomformladder
polymersandcyclicoligomers(whichinvolvejoiningthe
ladderends).
•ThesilicateSi
6O
15
6-
isanexampleofthistwo6-membered
siloxaneringsbridgedbythreeoxygenatoms,these
providingtheringsoftheladder.
•TheSi─Obondlengthslieintherange0.160–0.167nm,
theterminalonesbeingshorter.
Cleavage/fibrousnature
•TheS─Obondsinthechainarestronganddirectional.
•Adjacentchainsareheldtogetherbythemetalions
present.
•Thustheamphibolesaswellasthepyroxenescleave
paralleltothechainsformingfibers.
10/21/2014 179

Two-dimensionalsheet(layer)structure(Phyllosilicates)
•Thesecontaintwo-dimensionalsheetpolymerssharing
threeapicesofSiO
4tetrahedra.
•Twoarrangementshavebeenfoundnaturallyandare
formulatedasSiO
1+3/2ie(Si
2O
5)
n
2n-
.
•Themetalionspresentholdthelayerstogetherbyweak
electrostaticforces.
•Asaresultthemineralscontainingaresoftandcleave
easily.
•Suchsheetlikeanionsarefoundinmicasanddifferent
typesofclayminerals.
•Eg.Talc;Mg
2(SiO
5)
2Mg(OH)
2,Kaolin;Al
2(OH)
4(SiO
5)
2
10/21/2014 180

Three dimensional or framework silicates (Tectosilicates)-
Aluminosilicates
•WhenallthefouroxygenatomsofaSiO
4tetrahedronare
sharedwithadjacenttetrahedraandtheprocessisrepeated
aninfinite3-dimensionalstructureresults.
•Sincealltheoxygenatomsarethebridgeatoms,thesilicate
isneutral.
10/21/2014 181

•IncaseSiisnotreplacedbyanyothermetalatomthe
silicateisneutralandwillhavetheneutralformula(SiO
2)
n.
•Suchastructureisfoundinquartz,tridymiteand
crystoballite.
•HoweverifsomeotherSi
4+
ionarereplacedbyAl
3+
ionsin
thetetrahedralpositionintheSiO
2structureinorderto
maintainelectricalneutrality,someothermonovalentand
divalentcationsmustbeintroduced.
•SuchreplacementofSi
4+
cationsbyAl
3+
andother
monovalentordivalentcationsgiveriseto
aluminosilicates.
•Thealuminosilicatesaresubdividedintothefollowing
minerals:(1)Feldspars(2)Zeolites(3)Ultramarines.
10/21/2014 182

FELSPAR
•TheseareofgeneralformulaM(Al,Si)
4O
8andarethe
mostimportantrockformingmineralcomprisingsome
2/3
rds
ofigneousrocksuchasgranitewhichisamixture
ofquartz,felsparandmicas.
•ThoseinwhichtheMislargerionsuchasK
+
orBa
2+
normallycrystallizeinamonoclinicsystem,Eg:
orthoclase;K(AlSi
3O
8),Celsian;Ba(Al
2Si
2O
8).
•ThetriclinicorplagioclasefelsparcontainasmallerM
suchasNa
+
and/orCa
2+
,egAlbite;Na(AlSi
3O
8),and
Anorthite;Ca(Al
2Si
2O
8).
10/21/2014 183

ZEOLITES(porotectosilicates)
•Thesearealuminosilicateswithframeworkstructures
enclosingcavitiesoccupiedbylargeionsandwatermolecules,
bothofwhichhaveconsiderablefreemovements,permitting
ion-exchange,reversiblehydrationandabsorptionofgases.
•Theframeworkconsistsofanopenarrangementofcorner-sharing
tetrahdrawhereSiO
4unitsarepartiallyreplacedbyAlO
4tetrahedra
whichrequiresufficientcationstoachieveelectroneutrality.
•ThecavitiesareoccupiedbyH
2Omoleculesandtheidealized
formulaisM
x/n
n+
[(AlO
2)
x(SiO
2)
y]
x-
.zH
2O.
•Eg: Natrolite; Na
2(Al
2Si
2O
8).H
2O, Heulandite;
Ca(Al
2Si
7O
18).6H
2O,Chabazite;Ca(Al
2Si
4O
12).6H
2O.
10/21/2014 184

•Thezeoliteareusedas/for(i)Molecularsieves(ii)catalysts
(iii)catalyticsupportforplatinumgroupandothermetals(iv)
cation-exchangerse.g.forwatersoftening(v)separating
straightchainhydrocarbonsfrombranchedhydrocarbons.
ULTRAMARINES
•Theseareagroupofrelatedcompoundswhichcontainno
water,butcontainanions(i.e.radicalanions)suchasCl
-
,SO
4
2-
,
S
2
2-
,S
3
-
.
•TheyareformulatedasNa
8Al
6Si
6O
24.XwhereXis2Cl
-
,SO
4
2-
,
S
2
2-
,S
3
-
.
•Theyarecloselyrelatedtothezeolitesexceptthattheydo
notcontainwatermoleculesbutratherCl
-
,SO
4
2-
,S
2
2-
,S
3
-
anions.
10/21/2014 185

•Thecationproducesawiderangeofcolourandareused
forpigments.
•E.g. Ultramarine; Na
8[(AlSiO
4)]S
2, Sodalite;
Na
8[(AlSiO
4)
6]Cl
2,Nosean;Na
8[(AlSiO
4)
6]SO
4.
TheSi
4─Si
6ringlayerstructure
•ThisinvolvesalternateSi
4O
4andSi
8O
8ringsbutisrare.
•Apophihyllite(K,Na)Ca
4Si
8O
20(F,OH).8H
2Ohassucha
structurewithterminaloxygenatomsofoneSi
4O
4ring
directedtotheoppositesideofthelayertoitsSi
4O
4
neighbour.
•Cationsholdsthelayerstogether.
10/21/2014 186

Si
6ring
•Theseringcomprisesixsiliconandsixoxygenatoms,
andaterminaloxygenatomsallononeside.
•Consequentlyitistheoreticallypossibletoformadouble
sheetbybridgingattheseterminalpositionsthereby
obtainingalaminatedformofsilicon.
•Replacinghalfofthesiliconatomsinsuchastructureby
isoelectronicAl
-
ionleadstocompoundsofempirical
formulaMAl
2Si
2O
8(M=Ca,Ba).
•Thestructurecomprisesthesedoublelayerbound
togetherbysixcoordinatecations.
10/21/2014 187

Hydroxysilicates
•ThemostimportantlayersilicatesareofteninterleavedbyMg
orAlcationsheldthroughhydroxideions.
•ThesecanbeformulatedasMg
3(OH)
4Si
2O
5(chrysotile)and
Mg
3(OH)
2Si
4O
10(talc),togetherwiththealuminium
compounds.
•PartialreplacementofatomsbyAl
-
ionsgiveschargedlayer
whichareneutralizedbylayerofalkalioralkalineearthmetal
ions,asinmicas.
•Theneutralizinglayercanalsobehydratedionsorpositively
chargedMgorAlhydroxides.Thevariablesinthisstructure
arrayleadtopropertydifferencesintheselaminated
compounds.
10/21/2014 188

(i)ThesinglesilicatelayerSi
2O
5
2-
interleavedwith
Mgoralhydroxideresiduesisthestructuralunitpresent
inchinaclayandkaolinminerals.
ThisisnormallyformulatedasAl
2(OH)
4Si
2O
5(Kaolinite).
(ii)Thoseinvolvingtwosilicateleavesheldtogetherby
magnesiumoraluminumhydroxidesarelikekaolin,electrically
neutral.Theythereforereadilycleave.
TalcMg
3(OH)
2Si
4O
10iswidelyused,thereforeasalubricant
(Frenchchalk)andasafiller.
Meershaumisahydratedmagnesiumsilicateresemblingclay.
Aftersoakingintallowwaxitcanbemadeintopipes,andtakes
onappealingredpolish.
10/21/2014 189

(iii)Thealuminumanalogue,pyrophyllite,isliketalcand
bothcanhaveuptoaquarteroftheSiatomsreplacedby
Al
-
ions.
Aninterleavinglayerofcationsneutralizethecharge
withK
+
ionsinthemicas,phlogopite,
KMg
3(OH)
2Si
3AlO
10 and muscovite,
KAl
2(OH)
2Si
3AlO
10.
SincetheK
+
ionsoccupylargeholeswith12-fold
coordination,theK
+
O
-
electrostaticbondisnecessarily
weak
Somicascleavereadilyalongtheselayers.
10/21/2014 190

FurthersubstitutionwithAl
-
producesbrittlemicas,since
morehighlychargedcationisnecessarytoneutralizethe
extracharge,sotheelectrostaticbondingisstrongerand
themicaisharder.
Thesearewidelyusedintheelectricalindustry.
(iv)Interleavingwithlayersofhydratedcationsgives
hydratedmicaswithmuchsmallercationchargedensity
whichcleaveveryeasily.
10/21/2014 191

FurtherreplacementofbothcationandSiatomsintalc,and
interleavingwithhydratedMg
2+
ionsproducesvermiculite,
(Mg,Fe,Al)
3(Al,Si)
4O
10(OH)
2.4H
2O -
[Mg
2.36Fe
III
0.48Al
0.16)(Si
2.72Al
1.28)O
10(OH)
2]
-0.64
[Mg
0.32(H
2O)
4.32]
+0.64
.
Thisdehydratesreadilytoatalc-likestructure,andisused
widelyasasoilconditionerandporousfiller.
Relative Hardness of Typical Hydroxysilicates
Hydroxysilicate Formula Hardness (Moh’s scale)
Talc Mg
3(OH)
2Si
4O
10 1 -2
Mica KMg
3(OH)
2Si
3AlO
10 2 -3
Brittle CaMg
3(OH)
2Si
2Al
2O
10 31/2 -5
10/21/2014 192

Monimorillonite,[Mg
1/3Al
12/3Si
4AlO
10(OH)
2]
-1/3
results
frompyrophyllitebyreplacingonesixthoftheAl
3+
ions
byMg
2+
ions.
Likemanyclaysminerals,thiscanbereadilyhydratedand
exhibitscation–exchangeproperties.
ItisanimportantconstituentofFullersearth,found
widelyinSouthernEngland.
(v)Withkaolin,talcandpyrophyllitethelayersare
unchargedandsoonlyweaklyboundtogether,whilethe
micasareheldbycationlayersorhydratedcations(eg
vermiculite).
Interleavingwithchargedhydroxidelayersgivesthe
chloriteminerals.
10/21/2014 193

Thusthemicalayers(composition[Mg
3(AlSi
3O
10)(OH)
2]
-
to
[Mg
2Al(Al
2Si
2O
10)(OH)
2]
-
areheldbyions.
Thusinphlogopite,KMg
3(OH)
2Si
3AlO
10),replacingtheK
+
ion
bytheMg
2Al(OH)
6
+
iongivesachloritemineral.
Silica,SiO
2
•Thishasastructurecomprisingofsiliconatoms
tetrahedrallysurroundedbyfouroxygenatoms.
•Polymerizationoccursinavarietyofways,and
transmissionbetweenthevariouscrystallineformsoccur
butwithmuchdifficulty.
•Thehightemperatureformhavethemoreopenstructures,
whilethehighpressureonesaremorecompactaswould
beexpectedfromtheLeChatelier’sprinciple.
10/21/2014 194

•Whilesignificantstructuraldifferencesoccurbetween
thesefourformsofsilica,thosebetweenα-andβ-formare
smallandgenerallyonlyinvolvetherotationofafew
Si─Obonds.
10/21/2014 195

•Thisissupportedbythesameopticalactivitybeing
presentinbothα-andβ-quartz.
•β-quartzhasamoreregularstructurethan–quartzbut
bothinvolvefused6-memberedand12-memberedrings.
•Thestructurethereforeresemblethesilicatesheet
polymers.
•Impureformsofquartzareusedinsemi-precious
jewellery(e.g.amethyst,whichprobablyowesitspurple
colourtomanganese.
10/21/2014 196

•Quartzsandarewidelyusedinthebuildingtradeand
asanabrasive,whilequartzisemployedinpottery
andasahigh-temperatureliningtosurfacesetc.
•Ithasbeenwidelyusedinshort-waveradio
apparatus,duetothinquartzplatespossessingpiezo-
electricproperties.
•Themoreopenstructuresof–christobaliteare
analogoustowurtziteandzincblendeformsofzinc
sulphide.
10/21/2014 197

Nanoparticles
•Nanoparticlesareparticlesbetween1and100
nanometersinsize.
•Innanotechnology,aparticleisdefinedasasmallobject
thatbehavesasawholeunitwithrespecttoitstransport
andproperties.
•Particlesarefurtherclassifiedaccordingtodiameter.
•Ultrafineparticlesarethesameasnanoparticlesand
rangebetween1and100nanometersinsize.
•Fineparticlesaresizedbetween100and2,500
nanometers.
•Coarseparticlescoverarangebetween2,500and10,000
nanometers.
10/21/2014 198

•Nanoclustershaveatleastonedimension
between1and10nanometersandanarrowsize
distribution.
•Nanopowdersontheotherhandare
agglomeratesofultrafineparticles,nanoparticles,
ornanoclusters.
•Nanoparticlesizedcrystalsarecalled
nanocrystals
•Nanoparticleresearchiscurrentlyanareaof
intensescientificinterestduetoawidevarietyof
potentialapplicationsinbiomedical,opticaland
electronicfields.
10/21/2014 199

Synthesis of Nanoparticles
Top-Down Synthesis Processes
•Electron beam lithography
•Reactive-ion etching
•wet chemical etching,
•Focused ion or laser Etching.
•Dry etching.
•Reactive ion etching (RIE).
•Focused ion beam (FIB)
Bottom-up Approach
(1) Wet-chemical methods.
•Molecular beam epitaxy (MBE),
•Sputtering,
•liquid metal ion sources,
(2) vapour-phase methods.
10/21/2014 200

Nanoparticle Applications and the
Environment
•Researchersareusingphotocatalyticcopper
tungstenoxidenanoparticlestobreakdownoil
intobiodegradablecompounds.
•Researchersareusinggoldnanoparticles
embeddedinaporousmanganeseoxideasaroom
temperaturecatalysttobreakdownvolatileorganic
pollutantsinair.
•Ironnanoparticlesarebeingusedtocleanup
carbontetrachloridepollutioningroundwater.
•Ironoxidenanoparticlesarebeingusedtoclean
arsenicfromwaterwells.
10/21/2014 201

Nanoparticle Applications in Medicine
•Forbiologicaldetectionofdiseasecausingorganismsand
diagnosis
•Detectionofproteins
•Isolationandpurificationofbiologicalmoleculesandcells
inresearch
•Probing of DNA structure
•Genetic and tissue engineering
•Destruction of tumourswith drugs or heat
•In MRI studies
•In pharmacokinetic studies.
10/21/2014 202

Nanoparticle Applications in Energy and
Electronics
•Nanotetrapodsstuddedwithnanoparticlesof
carbonarebeingusedtodeveloplowcost
electrodesforfuelcellsbyResearchers.
•Goldnanoparticlescombinedwithorganic
moleculescreatesatransistorknownasa
NOMFET(NanoparticleOrganicMemory
Field-EffectTransistor).
•Acatalystusingplatinum-cobaltnanoparticlesis
beingdevelopedforfuelcellsthatproducestwelve
timesmorecatalyticactivitythanpureplatinum.
10/21/2014 203

•Researchershavedemonstratedthatsunlight,concentrated
onnanoparticles,canproducesteamwithhighenergy
efficiency.
•Aleadfreesolderreliableenoughforspacemissionsand
otherhighstressenvironmentsusingcoppernanoparticles
•Siliconnanoparticlescoatinganodesoflithium-ion
batteriescanincreasebatterypowerandreducerecharge
time.
•Semiconductornanoparticlesarebeingappliedinalow
temperatureprintingprocessthatenablesthemanufacture
oflowcostsolarcells.
•Alayerofcloselyspacedpalladiumnanoparticlesisbeing
usedinahydrogensensor.
10/21/2014 204