5.TheboraneswithformulaB
nH
n+10≡(BH)
nH
10theKlado
structure.Theyhave(n+4)corneredpolyhedronrequiring
(n+5)skeletalelectrons.
Linkagebetweentwoormoreofthesepolyhedralborane
clustersisindicatedbytheprefixCONJUNCTO-(Latinname
for“Ijointogether”).TheyhavetheformulaB
nH
m.Atleast
fivedifferenttypesofinterconnectedboraneclustershave
beenidentifiedandhavethefollowingfeatures;
(a)FusionbysharingasinglecommonBatome.g.
B
15H
23.
(b) Formation of a direct 2-centre B-B σ–bond between 2
clusters e.g. B
8H
18i.e. (B
4H
9)
2,
10/21/2014 18
(c) Fusion of two clusters via 2B atoms at a
common edge e.g. B
13H
19, B
14H
18, B
14H
20
(d) Fusion of two clusters via 3B atoms at a common
face; no neutral boraneor boraneanion is yet known
with this conformation but solvated complex
(MeCN)
2B
20H
16.MeCN has this structure.#
(e) More extensive fusion of 4 B atoms in various
configurations e.g. B20H16, B20H.182-
10/21/2014 19
SUMMARY
TYPE FORMULASKELETAL
ELECTRON PAIRS
CORNERS OF
POKLYHEDRON
EXAMPLES
Closo [B
nH
n]
2-
n+1 n [B
nH
n]
2-
to[B
12H
12]
2-
Nido B
nH
n+4 n+2 n + 1 B
2H
6, B
2H
6, B
2H
6
ArachnoB
nH
n+6 n+3 n + 2 B
4H
10, B
5H
11
Hypho B
nH
n+8 n+4 n + 3 B
8H
16, B
10H
18
Klado B
nH
n+ 10 n+5 n + 4
ConjunctoB
nH
m B
8H
18, B
15H
23 etc.
10/21/2014 20
Using Wades Rule
E.g.
(i)[B
5H
5]
2-
Closostructure
5(B-H) 5 x 2e = 10e
-s
overall charge 2e-= 2e
-
s
(5+1)e-pairs 12e
-
s
i.e. From the formula [B
nH
n]
2-
with (n+1) pair skeletal
electrons
(ii) B
5H
9 ≡(BH)
5H
4 Nidostructure
5(B-H) 5 x 2e = 10e
-s
4H 4 x 1e = 4e-s
overall charge 2e-= 2e
-
s
(5+2)e
-
pairs 14e
-
s
From B
nH
n+4with n+2 skeletal electron pairs
10/21/2014 21
NOMENCLATURE
1.Neutralboronhydridesarenamedborane;aGreekprefixindicates
thenumberofBatoms;andArabicnumberisomittedifonlyborane
containingaparticularcountisknownB
2H
6isusuallyreferredtoas
diborane.
2.Anionic species are named as hydroborates.
Greek prefixes separately indicate the number of H and the charge
on
the anion is given a parentheses following.
E.g. B
5H
8
-
is octahydropentaborate(1-).
The structural type sometimes is specified when anions. i.e. B
5H
8
-
is also
octahydro-nodo-pentaborane.
E.g.
B
5H
9 pentaborane(9)
B
5H
11 pentaborane(11)
B
5H
10 pentaborane(10)
10/21/2014 24
THE BONDING PROBLEM IN BORANES
Localized Bonding picture
Retainingthevalencebondconceptoftherelationship
betweenbonddistanceandbondorderaproblemis
immediatelyencounteredonexaminingtheknown
structuresofboronhydrides.
Thecoordinationnumberofeachboron(andsomeofthe
hydrogens)exceedthenumberoflow-energyorbitals.
Ideallyabondingpictureforelectron-deficientcompounds
wouldallowthesamestraightforwardpredictionof
geometry,reactivity,stoichiometry,redoxproperties,
acidityetc.thatthevalencebondapproachpermits“for
regularcompounds”.
10/21/2014 25
BANANA (SP
2
hybrid) Model
This model is better suited to the observation that H
TBH
T
angle ≡ 122
◦
far apart from the that they are also2c, 2e.
Generally bonding in boranesconsist of the following:
(i)BHB (3c, 2e) ≡
(ii)BBB can be in two forms.
(a) closed –3c –BBB (b) Opened –3c –BBB bond
10/21/2014 29
MO Description of bonding in B
2H
6
•TheMOschemeforoneoftheB–H–Bbridging
threecentertwoelectronbonds.
•Thenon-bondingorbitalisactuallyofslightly
lowerenergythanshownandsohasslight
bondingcharacter.
•Thisarisesfromthefactthattheorbitals
involvedintheterminalB–Hbondinghavethe
correctsymmetrytooverlapwiththebridging
bondorbitals,resultinginastabilizationofthe
‘nonbonding’orbital.
10/21/2014 34
10/21/2014 35
MO Description of bonding in closo-B
6H
6
2-
ClosoB
6H
6
2-
hasaregularoctahedralclusterof6
boronatomssurroundedbyalargeroctahedronof
radiallydisposedHatoms.
FrameworkMOsfortheB
6clusterareconstructed
(LCAO)usingthe2S,2P
x,2P
yand2P
zboronatomic
orbitals.
Thesymmetryoftheoctahedronsuggeststheuse
ofSPhybridsdirectedradiallyoutwardand
inwardsfromeachboronalongthecartesianaxes
and2pureporbitalsatrightanglestothese(i.e
orientedtangentiallytotheoctahedron).
10/21/2014 36
Six inward-pointing (SP)
orbitals used for a
1g
framework bonding
molecular orbitals
Components for one
of the t
2gframework
bonding molecular
orbitals –the other
two molecular orbitals
are in the yzand zx
planes
Six outward
pointing (SP)
orbitals Used for σ-
bonding to 6H
t
Components for one of
the t
1uframework
bonding
molecular orbitals-the
other two molecular
orbitals are in the yzand
zxplanes
10/21/2014 37
•Similarthoughmorecomplexdiagramscanbederivedforall
closo-B
nH
n
2-
(n=6-12).
•Thesehavethecommonfeatureofalowlyinga
1gorbitalandn
otherframeworkbondingMOs:ineachcase,therefore(n+1)
pairsofelectronsarerequiredtofilltheseorbitalsasindicated
byWade’srules.
•ItisatriumphforMOtheorythattheexistenceofB
6H
6
2-
and
B
12H
12
2-
werepredictedbyLonguet-Higginsin1954-5adecade
beforeB
6H
6
2-
wasfirstsynthesizedandsomefiveyearsbefore
the(accidental)preparationofB
10H
10
2-
andB
12H
12
2-
were
reported.
•Itisgeneralfeatureofcloso-B
nH
n
2-
anionsthattherearenoB-
H-BorBH
2groupsand4nboronatomicorbitalsarealways
distributedasfollows:
10/21/2014 40
n in the n(B-H
t) bonding orbital
(n+1) in framework bonding MOs
(2n-1) in non-bonding and anti-bonding
framework MOs.
AseachBatomcontributesoneelectrontoitsB-H
tbondand
twoelectronstotheframeworkMOs,the(n+1)framework
bondingMOarejustfilledbythe2nelectronsfromnB
atomsandthetwoelectronsfromtheanioniccharges.
10/21/2014 41
Hence p + 1/2q= s + t + y + x ………..(3)
Substituting (1) and (2) into (3) we obtain
p –1/2q=t + y……………………..(4)
y=½(s –x)…………………..(5)
In general;
s x
but s q
also s q/2
q/2 s q
NB. These equations are diophantineequations
10/21/2014 45
•Applyingtheequationofbalancetoacompoundofgiven
compositionallowsustodetermineasetofstyxnumbersthat
specifyavalencestructure.
eg1. For B
2H
6 (BH)
2H
4 p = 2; q = 4
Andwehave:4=s+x;2=s+t;0=t=yy=-t
Theonlypossiblesolutioniss=2,t=0,y=0,x=2
(written2002)andthestructurecorrespondsto
s t y x
4 -2 2 0
3 -1 1 1
2 0 0 2
10/21/2014 46
eg2. For B
5H
11(BH)
5H
6 : p = 5; q = 6
This formulation gives (4) different styxnumbers
6 = s + x; 5 = s + t; 2 = t + y y = 2 –t; y = ½(s–x)
i.e. (3203),(4112), (5021), (6-130),
s t y x
6 -1 3 0
5 0 2 1
4 1 1 2
3 2 0 3
10/21/2014 47
•For 3203 5B, 3BHB, 2BBB, 0 BB, 3BH
T
•
•
OR
•For 4112 5B, 4BHB, 1BBB, 1BB, 2BH
T
10/21/2014 48
•For 5021 5B, 5BHB, 0BBB, 2BB, 1BH
T
10/21/2014 49
•Molecularorbitalcalculationsgiveasequenceof
electronschargedensitiesatvariousBatomas2,4,1,
3,5,7,8,106,9thoughthetotalrangeofdeviation
fromchargeneutralityislessthan0.1
S = 4
t = 6
y = 2
x = 0
10/21/2014 83
•The adduct can be prepared by direct reaction of
B
10H
14with L or by ligand replacement reactions:
•LigandsLandL’canbedrawnvirtuallyfromthe
fullrangeofinorganicandorganicneutraland
anionicligandsandindeed,thereactionseverely
limitstherangeofdonorsolventsinwhichB
10H
14
canbedissolved.
10/21/2014 89
•PB
11H
12is phospha-closo-dodecaborane(12). There is no
need to specify the position of P since all icosahedral
vertices are equivalent.
10/21/2014 112
•Assuming that the number of electron pairs
contributed by CH is 3/2
•The number of framework electrons is given by :
3/2a + p +1/2(q + c)
= 3a + 2p + q + c
=2n + a + q + c
Since n = a + p, 2n = number of vertices
When, a + q + c = 2 closo
a + q + c = 4 nido
a + q + c = 6 arachno
10/21/2014 114
•Eg. [B
6H
6]
2-
(BH)
6
2-
= (6x3e
-s
) + (6x1e
-
) + 2e
-s
= 26e
-s
6B-H = (6x2e
-s
) = -12e
-s
2n + a + q + c = 14e
-s
2n = -12e
-s
Closoa + q + c = 2e
-s
•B
5H
11
(BH)
5= (5x3e
-s
) + (11x1e
-
) = 26e
-s
5B-H = (5x2e
-s
) = -10e
-s
2n + a + q + c = 16e
-s
2n = -10e
-s
Arachnoa + q + c = 6e
-s
10/21/2014 115
Nidoboranes (BH)
pH
4
Arachnoboranes (BH)
pH
6
•Thusanidoboraneisafullyprotonated(BH)
p
4-
andthearachnoboraneisafullyprotonated
(BH)
p
6-
•Whenwelookat(BH)
p
c-
formulationthissuggest
thatagreatrangeofcompoundscontainingthe
(BH)unitsorsomeothergroupalsocapableof
donating2e
-s
tothepolyhedralframeworkcould
beobtained.
•ThusaBHunitcanbereplacedbyCH
+
;P
+
,S
2+,
N
+
orO
2+
.
10/21/2014 116
•Henceinborazinethe–electronsareconcentratedonthe
N-atomsandthereisapartialpositivechargeontheB-
atomswhichleavesthemopenforelectrophilicattackon
theN-atom.
•Consequently borazinein contrast to benzene readily
undergoes addition reactions.
•Also unlike benzene the –electrons are not derived from
all six atoms of the ring but from the 3 nitrogen atoms.
10/21/2014 124
(3) By heating a mixture of LiBH
4and NH
4Cl
10/21/2014 127
STRUCTURE
•B: 1S
2
2S
2
2P
1
Neutral atom
•*B: 1S
2
2S
1
2P
x
1
P
y
1
P
z
0
SP
2
hybrid
•B
-
: 1S
2
2S
1
2P
x
1
P
y
1
P
z
1
SP
3
hybrid
•N: 1S
2
2S
2
2P
x
1
P
y
1
P
z
1
neutral atom and SP
3
hybrid
•N
+
: 1S
2
2S
2
2P
x
1
P
y
1
P
z
0
SP
2
hybrid
10/21/2014 128
•Eg.When
hexachlorobis(ethylamino)tetraphosphazatetraene
is treated with excess dimethylaminein chloroform the
product that results is not only the full aminationof both
the
(PCl
2) groups and one of the PClgroup but also one of the
ethylamino(NHEt) group bridges the opposite PClgroup
with the elimination of HCl.
•This arises from an internal trans-annular attack by one of
the NHEtgroups. The product is the only known bicyclic
phosphazenecompound.
10/21/2014 147
•This bicyclo-structure is reminiscent of ADAMANTANE
•TheamidehoweverundergoeseliminationofNH
3with
increasingtemperaturetoformcross-linkingbetween
ringsorpossiblyraptureofringstoformlinearpolymers.
10/21/2014 148
•Fluorination of S
4N
4
•It produces tetrathiozytetrafluoridei.e.
•Reduction of S
4N
4
10/21/2014 156
•All possible S
x(NH)
8-xisomers except N─N bonds are
known.
10/21/2014 157
•Oxidative chlorination of S
4N
4
•NB: It is unexplained that chlorination produces the
ClSNtrimerwhile fluorination retains the tetramer unit
10/21/2014 158
•SULPHURNURYL CHLORIDE ( NSOCl)
3
•(NSOCl)
3may also be prepared from sulphamicacid.
10/21/2014 159
HOMOCYCLIC INORGANIC RING
COMPOUNDS
•Severalelementsformhomocyclicrings.
•Thethermodynamicallystableformatroom
temperatureconsistsofS
8rings.
•Theoxidationofseveralnon-metalsinstrongly
acidicsystemsproducespoly-atomiccationic
speciesofthegeneraltypeY
n
+m
10/21/2014 160
•Only one phosphorus sulphideP
4S
10is isoelectronic and
isostructuralwith the phosphorus oxide.
•This is obtained by mixing P
4and S
8in appropriate
stoichiometric quantities.
•Other sulphidesare obtained by the reactions below:
10/21/2014 168
Synthesis of Nanoparticles
Top-Down Synthesis Processes
•Electron beam lithography
•Reactive-ion etching
•wet chemical etching,
•Focused ion or laser Etching.
•Dry etching.
•Reactive ion etching (RIE).
•Focused ion beam (FIB)
Bottom-up Approach
(1) Wet-chemical methods.
•Molecular beam epitaxy (MBE),
•Sputtering,
•liquid metal ion sources,
(2) vapour-phase methods.
10/21/2014 200
Nanoparticle Applications and the
Environment
•Researchersareusingphotocatalyticcopper
tungstenoxidenanoparticlestobreakdownoil
intobiodegradablecompounds.
•Researchersareusinggoldnanoparticles
embeddedinaporousmanganeseoxideasaroom
temperaturecatalysttobreakdownvolatileorganic
pollutantsinair.
•Ironnanoparticlesarebeingusedtocleanup
carbontetrachloridepollutioningroundwater.
•Ironoxidenanoparticlesarebeingusedtoclean
arsenicfromwaterwells.
10/21/2014 201
Nanoparticle Applications in Medicine
•Forbiologicaldetectionofdiseasecausingorganismsand
diagnosis
•Detectionofproteins
•Isolationandpurificationofbiologicalmoleculesandcells
inresearch
•Probing of DNA structure
•Genetic and tissue engineering
•Destruction of tumourswith drugs or heat
•In MRI studies
•In pharmacokinetic studies.
10/21/2014 202
Nanoparticle Applications in Energy and
Electronics
•Nanotetrapodsstuddedwithnanoparticlesof
carbonarebeingusedtodeveloplowcost
electrodesforfuelcellsbyResearchers.
•Goldnanoparticlescombinedwithorganic
moleculescreatesatransistorknownasa
NOMFET(NanoparticleOrganicMemory
Field-EffectTransistor).
•Acatalystusingplatinum-cobaltnanoparticlesis
beingdevelopedforfuelcellsthatproducestwelve
timesmorecatalyticactivitythanpureplatinum.
10/21/2014 203