Circuit Breakers for Engineering Students

kannan348865 315 views 100 slides May 13, 2024
Slide 1
Slide 1 of 100
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100

About This Presentation

Circuit Breakers


Slide Content

EE3601 Protection and
Switchgear

UNIT V CIRCUIT BREAKERS
Physicsofarcingphenomenonandarcinterruption-DCandAC
circuitbreaking–re-strikingvoltageandrecoveryvoltage-rateofriseof
recoveryvoltage-resistanceswitching-currentchopping-interruption
ofcapacitivecurrent-Typesofcircuitbreakers–airblast,airbreak,oil,
SF6andvacuumcircuitbreakers–comparisonofdifferentcircuit
breakers–RatingandselectionofCircuitbreakers.

Circuit Breakers
•Acircuitbreakerisapieceofequipmentwhich
can
(i)makeorbreakacircuiteithermanuallyorby
remotecontrolundernormalconditions
(ii)breakacircuitautomaticallyunderfault
conditions
(iii)makeacircuiteithermanuallyorbyremote
controlunderfaultconditions

Circuit breaker Operating principle
•Acircuitbreakeressentiallyconsistsoffixedand
movingcontacts,calledelectrodes.Undernormal
operatingconditions,thesecontactsremain
closedandwillnotopenautomaticallyuntiland
unlessthesystembecomesfaulty.
•Ofcourse,thecontactscanbeopenedmanually
orbyremotecontrolwheneverdesired.
•Whenafaultoccursonanypartofthesystem,the
tripcoilsofthecircuitbreakergetenergisedand
themovingcontactsarepulledapartbysome
mechanism,thusopeningthecircuit.

Circuit breaker Operating principle
•Whenthecontactsofacircuitbreakerare
separatedunderfaultconditions,anarcisstruck
betweenthem.Thecurrentisthusableto
continueuntilthedischargeceases.
•Theproductionofarcnotonlydelaysthecurrent
interruptionprocessbutitalsogenerates
enormousheatwhichmaycausedamagetothe
systemortothecircuitbreakeritself.
•Therefore,themainprobleminacircuitbreakeris
toextinguishthearcwithintheshortestpossible
timesothatheatgeneratedbyitmaynotreacha
dangerousvalue.

Arc Phenomenon
•Shortcircuit–largecurrent–contactsopen–
heatproduced–ionization–arcstruckbetween
contacts–arcprovideslowresistancepath–
potentialacrosscontactsislow.
•Duringthearcingperiod,thecurrentflowing
betweenthecontactsdependsuponthearc
resistance.
•Thegreaterthearcresistance,thesmallerthe
currentthatflowsbetweenthecontacts.

Arc Phenomenon
•Thearcresistancedependsuponthefollowing
factors:
•(i)Degreeofionisation—thearcresistance
increaseswiththedecreaseinthenumberof
ionisedparticlesbetweenthecontacts.
•(ii)Lengthofthearc—thearcresistance
increaseswiththelengthofthearci.e.,
separationofcontacts.
•(iii)Cross-sectionofarc—thearcresistance
increaseswiththedecreaseinareaofX-section
ofthearc.

Principles of Arc Extinction
•Before discussing the methods of arc extinction, it
is necessary to examine the factors responsible
for the maintenance of arc between the contacts.
These are :
•(i) p.d. between the contacts
•(ii) ionised particles between contacts

Principles of Arc Extinction
•Takingtheseinturn,
•(i)Whenthecontactshaveasmallseparation,thep.d.
betweenthemissufficienttomaintainthearc.Oneway
toextinguishthearcistoseparatethecontactstosucha
distancethatp.d.becomesinadequatetomaintainthe
arc.However,thismethodisimpracticableinhigh
voltagesystemwhereaseparationofmanymetresmay
berequired.
•(ii)Theionisedparticlesbetweenthecontactstendto
maintainthearc.Ifthearcpathisdeionised,thearc
extinctionwillbefacilitated.Thismaybeachievedby
coolingthearcorbybodilyremovingtheionised
particlesfromthespacebetweenthecontacts.

Methods of Arc Extinction
•There are two methods of extinguishing the arc in circuit
breakers viz.
•1. High resistance method.
•2. Low resistance or current zero method

Methods of Arc Extinction
•1. High resistance method. In this method, arc resistance
is made to increase with time so that current is reduced
to a value insufficient to maintain the arc. Consequently,
the current is interrupted or the arc is extinguished. The
principal disadvantage of this method is that enormous
energy is dissipated in the arc. Therefore, it is employed
only in d.c. circuit breakers and low-capacity a.c. circuit
breakers.

Methods of Arc Extinction
•Theresistanceofthearcmaybeincreasedby:
•(i)Lengtheningthearc.Theresistanceofthearcisdirectlyproportionaltoits
length.Thelengthofthearccanbeincreasedbyincreasingthegapbetween
contacts.
•(ii)Coolingthearc.Coolinghelpsinthedeionisationofthemediumbetween
thecontacts.Thisincreasesthearcresistance.Efficientcoolingmaybeobtained
byagasblastdirectedalongthearc.
•(iii)ReducingX-sectionofthearc.IftheareaofX-sectionofthearcisreduced,
thevoltagenecessarytomaintainthearcisincreased.Inotherwords,the
resistanceofthearcpathisincreased.Thecross-sectionofthearccanbe
reducedbylettingthearcpassthroughanarrowopeningorbyhavingsmaller
areaofcontacts.
•(iv)Splittingthearc.Theresistanceofthearccanbeincreasedbysplittingthe
arcintoanumberofsmallerarcsinseries.Eachoneofthesearcsexperiences
theeffectoflengtheningandcooling.Thearcmaybesplitbyintroducingsome
conductingplatesbetweenthecontacts.

Methods of Arc Extinction
•LowresistanceorCurrentzeromethod.Thismethodisemployedforarc
extinctionina.c.circuitsonly.Inthismethod,arcresistanceiskeptlowuntil
currentiszerowherethearcextinguishesnaturallyandispreventedfrom
restrikinginspiteoftherisingvoltageacrossthecontacts.Thede-ionisationof
themediumcanbeachievedby:
•(i) lengthening of the gap. The dielectric strength of the medium is
proportional to the length of the gap between contacts. Therefore, by opening
the contacts rapidly, higher dielectric strength of the medium can be achieved.
•(ii) high pressure. If the pressure in the vicinity of the arc is increased, the
density of the particles constituting the discharge also increases. The increased
density of particles causes higher rate of de-ionisation and consequently the
dielectric strength of the medium between contacts is increased.
•(iii) cooling. Natural combination of ionised particles takes place more rapidly if
they are allowed to cool. Therefore, dielectric strength of the medium between
the contacts can be increased by cooling the arc.
•(iv) blast effect. If the ionised particles between the contacts are swept away
and replaced by unionised particles, the dielectric strength of the medium can
be increased considerably. This may be achieved by a gas blast directed along
the discharge or by forcing oil into the contact space.r a.c. circuit breakers
employ this method for arc extinction.

Fault clearing time of a circuit breaker

Arcvoltage:Itmaybedefinedasthevoltagethatappears
acrossthecontactduringthearcingperiod,whentheelectric
currentflowismaintainedintheformofanarc.
Thevoltagedropacrossthearciscalledarcvoltage,Atypical
valuemaybeabout3%ofratedvoltage

Restrikingvoltage:Itmaybedefinedasthetransientvoltagethat
appearsacrossthebreakingcontactattheinstantofarcextinction.
Recoveryvoltage:Itmaybedefinedasthevoltagethatappearsacross
thebreakercontactafterthecompleteremovaloftransientoscillations
andfinalextinctionofarchasresultedinallthepoles.

Arc Interruption
There are two methods of arc interruption.
1.High resistance Interruption
Cooling of arc
Lengthening of arc
Splitting of arc
Constraining of arc
2.Low resistance interruption (or) current zero interruption
Arc resistance is kept low until current zero

There are two theories to explain the zero current interruption
of the arc.
1.Recovery rate theory (Slepain’sTheory)
2.Energy balance theory (Cassie’s Theory)
Recovery rate theory
The arc is a column of ionised gases.
To extinguish the arc, the electrons and ions are to be removed from the
gap immediately after the current reaches a natural zero
Ions and electrons can be removed either by recombining them into
neutral molecules or by sweeping them away by inserting insulating
medium (gas or liquid) into the gap.
The arc is interrupted if ions are removed from the gap at a rate faster
than the rate of ionisation.

In this method , the rate at which the gap recovers its dielectric
strength is compared with the rate at which the restriking voltage
(transient voltage) across the gap rises.
If the dielectric strength increases more rapidly than the restriking
voltage, the arc is extinguished.
If the restriking voltage rises more rapidly than the dielectric strength,
the ionization persists and breakdown of the gap occurs, resulting in
an arc for another half cycle.

Energy balance theory
The space between the contacts contains some ionised gas immediately
after current zero and hence, it has a finite post-zero resistance.
At the current zero moment, power is zero because restriking voltage is
zero.
When the arc is finally extinguished the power again becomes zero, the
gap is fully de-ionised and its resistance is infinitely high.

Inbetweenthesetwolimits,firstthepowerincreasesreachesa
maximumvalue,thendecreasesandfinallyreacheszerovalueas
showninFig.5.4.
Duetotheriseofrestrikingvoltageandassociatedcurrent,energyis
generatedinthespacebetweenthecontacts.
Theenergyappearsintheformofheat.Thecircuitbreakeris
designedtoremovethisgeneratedheatasearlyaspossibleby
coolingthegap,givingablastofairorflowofoilathighvelocity
andpressure.
Iftherateofremovalofheatisfasterthantherateofheatgeneration
thearcisextinguished.Iftherateofheatgenerationismorethanthe
rateofheatdissipation,thespacebreaksdownagainresultinginan
arcforanotherhalfcycle.

Expression for Restriking Voltage and RRRV

The maximum value of restriking voltage occurs at t=π/ω
n
The maximum value of restriking voltage =2 V
m
The rate of rise of restriking voltage,
RRRV=
The maximum value of RRRV occurs at t=π/2ω
n
The maximum value of RRRV =ω
nV
m

Resistance Switching
Toreducetherestrikingvoltage,RRRVandseverityofthe
transientoscillations,aresistanceisconnectedacrossthecontacts
ofthecircuitbreaker
Thisisknownasresistanceswitching.Theresistanceisin
parallelwiththearc.
Apartofthearccurrentflowsthroughthisresistanceresultingin
adecreaseinthearccurrentandincreaseinthedeionizationofthe
arcpathandresistanceofthearc.
Thisprocesscontinuesandthecurrentthroughtheshunt
resistanceincreasesandarccurrentdecreases.Duetothedecrease
inthearccurrent,restrikingvoltageandRRRVarereduced

Theanalysisofresistanceswitchingcanbemadetofindoutthe
criticalvalueoftheshuntresistancetoobtaincompletedampingof
transientoscillations.Figureshowstheequivalentelectricalcircuit
forsuchananalysis.

Problem:
In a 220 kV system, the reactance and capacitance up to the location
of circuit breaker is 8Ω and 0.025 μF, respectively. A resistance of
600 ohms is connected across the contacts of the circuit breaker.
Determine the following:
1. Natural frequency of oscillation
2. Damped frequency of oscillation
3. Critical value of resistance which will give no transient oscillation
4. The value of resistance which will give damped frequency of
oscillation, one-fourth of the natural frequency of oscillation.

Current Chopping
•Whenlowinductivecurrentisbeinginterruptedandthearc
quenchingforceofthecircuitbreakerismorethannecessaryto
interruptalowmagnitudeofcurrent,thecurrentwillbeinterrupted
beforeitsnaturalzeroinstant.
•Insuchasituation,theenergystoredinthemagneticfieldappearsin
theformofhighvoltageacrossthestraycapacitance,whichwill
causerestrikingofthearc.
•Theenergystoredinthemagneticfieldis½Li
2
,ifiisthe
instantaneousvalueofthecurrentwhichisinterrupted.Thiswill
appearintheformofelectrostaticenergyequalto½cv
2
.Asthese
twoenergiesareequal,theycanberelatedasfollows.

•Ifthevalueofvismorethanthewithstandingcapacityof
thegapbetweenthecontacts,thearcappearsagain.
•Sincethequenchingforceismore,thecurrentisagain
chopped.
•Thephenomenoncontinuestillthevalueofvbecomes
lessthanthewithstandingcapacityofthegap.

Acircuitbreakerinterruptsthemagnetisingcurrentofa100
MVAtransformerat220kV.Themagnetisingcurrentofthe
transformeris5%ofthefullloadcurrent.Determinethe
maximumvoltagewhichmayappearacrossthegapofthe
breakerwhenthemagnetisingcurrentisinterruptedat53%ofits
peakvalue.Thestraycapacitanceis2500μF.Theinductanceis
30H.

Interruption of capacitive current
•Theinterruptionofcapacitivecurrentproduceshighvoltage
transientsacrossthegapofthecircuitbreaker.
•Thisoccurswhenanunloadedlongtransmissionlineora
capacitorbankisswitchedoff.
•Thefigureshowsanequivalentelectricalcircuitofasimple
powersystem.Crepresentsstraycapacitanceofthecircuit
breaker.C
Lrepresentslinecapacitance.ThevalueofC
Lis
muchmorethan

•AttheinstantM,thecapacitancecurrentiszeroandthe
systemvoltageismaximum.Ifaninterruptionoccurs,the
capacitorsC
Lremainschargedatthemaximumvalueofthe
systemvoltage.AfterinstantM,thevoltageacrossthebreaker
gapisthedifferenceofV
candV
CL.AtinstantN,i.e.half-cycle
fromA,thevoltageacrossthegapistwicethemaximumvalue
ofV
c.Atthismoment,thebreakermayrestrike.
•Ifthearcrestrikes,thevoltageacrossthegapbecomes
practicallyzero.Thus,thevoltageacrossthegapfallsfrom
2V
cmaxtozero.Aseverehighfrequencyoscillationoccurs.

•AtinstantP,thesystemvoltagereachesitspositivemaximum
shownbythepointTinthefigure,andatthismomentthe
voltageacrossthegapbecomes4emax.Thecapacitivecurrent
reacheszeroagainandtheremaybeaninterruption
•Inthisway,thevoltageacrossthegapgoesonincreasing.But
inpractice,itislimitedto4timesthepeakvalueofthesystem
voltage.Thus,itisseenthatthereisaproblemofhigh
transientofhightransientvoltagewhileinterruptinga
capacitivecurrent.

Classification of Circuit Breakers
•Classification based on Voltage
–Low voltage Circuit Breaker (less than 1 kV)
–Medium voltage Circuit Breaker ( 1 kV to 52 kV)
–High Voltage Circuit Breaker (66 kV to 220 kV)
–Extra High voltage circuit breaker ( 300 kV to 765 kV
–Ultra High voltage Circuit breaker ( above 765 kV)
Classification based on Location
Indoor type
Outdoor type
•Classification based on medium used for arc quenching
–Air break circuit breaker
–Oil circuit breaker
–Air blast circuit breaker
–Sulphur hexafluoride SF
6circuit breaker
–Vaccumcircuit breaker

Oil circuit breakers
Types of oil circuit breakers
•Bulk oil circuit breakers
Plain break oil circuit breakers
Arc control oil circuit breakers
•Low oil circuit breakers

Bulk Oil Circuit Breaker

Plain break oil circuit breakers

Disadvantages of Plain break oil circuit breakers
•There is no special control over the arc other than
the increase in length by separating the moving
contacts.
•These breakers have long and inconsistent arcing
times
•These breakers do not permit high speed
interruption.

Arc control oil circuit breakers
•Self blast oil circuit breakers
Plain explosion pot
Cross jet explosion pot
Self-compensated explosion pot
•Forced blast oil circuit breakers

Plain explosion pot

Cross jet explosion pot

Self-compensated explosion pot

Low oil (or) minimum oil circuit breakers

Practical View of oil CB

Air break CB
ACBs are still preferable choice up to voltage 15 KV

Air Blast CB

Axial blast air circuit breaker

Cross blast air circuit breaker

Advantages of Air blast circuit breaker
•Thereisnochanceoffirehazardcausedbyoil.
•Thebreakingspeedofcircuitbreakerismuchhigherduring
operationofairblastcircuitbreaker.
•Arcquenchingismuchfasterduringoperationofairblastcircuit
breaker.
•Thedurationofarcissameforallvaluesofsmallaswellashigh
currentsinterruptions.
•Asthedurationofarcissmaller,solesseramountofheatrealized
fromarctocurrentcarryingcontactshencetheservicelifeofthe
contactsbecomeslonger.
•Thestabilityofthesystemcanbewellmaintainedasitdependson
thespeedofoperationofcircuitbreaker.
•Requiresmuchlessmaintenancecomparedtooilcircuitbreaker.

SF
6CB
sulphur hexafluoride gas (SF6)gas at a pressure ofabout 2.8 kg/cm2

AdvantagesofSF
6circuitbreaker
•DuetothesuperiorarcquenchingpropertyofSF6,suchcircuit
breakershaveveryshortarcingtime.
•SincethedielectricstrengthofSF6gasis2to3timesthatofair,such
breakerscaninterruptmuchlargercurrents.
•TheSF6circuitbreakergivesnoiselessoperationduetoitsclosedgas
circuitandnoexhausttoatmosphereunliketheairblastcircuitbreaker.
•Theclosedgasenclosurekeepstheinteriordrysothatthereisno
moistureproblem.
•ThereisnoriskoffireinsuchbreakersbecauseSF6gasisnon-
inflammable.
•Therearenocarbondepositssothattrackingandinsulationproblems
areeliminated.
•TheSF6breakershavelowmaintenancecost,lightfoundation
requirementsandminimumauxiliaryequipment.
•SinceSF6breakersaretotallyenclosedandsealedfromatmosphere,
theyareparticularlysuitablewhereexplosionhazardexistse.g.,coal
mines.

Vacuum CB

Cross sectional view of vaccum CB

•Service life of vacuum circuit breaker is much longer than other
types of circuit breakers.
•There is no chance of fire hazard as oil circuit breaker.
•It is much environment friendly than SF
6Circuit breaker.
•Beside of that contraction of VCB is much user friendly.
•Replacement of vacuum interrupter (VI) is much convenient.

Vaccum VI Interrupter

References:
http://www.openelectrical.org/wiki/index.php
?title=Circuit_breakers

Miniature Circuit Breaker (MCB)
•AMCBisanelectromechanicaldevicewhich
makesandbreaksthecircuitinnormaloperation
anddisconnectsthecircuitundertheabnormal
conditionwhencurrentexceedsapresetvalue.
•MCBisahighfaultcapacitycurrentlimiting,trip
free,automaticswitchingdevicewiththermal
andmagneticoperationtoprovideprotection
againstoverloadandshortcircuit.

Miniature Circuit Breaker (MCB)

Miniature Circuit Breaker (MCB)

Miniature Circuit Breaker (MCB)

Features of Miniature Circuit Breaker (MCB)
•Itsoperationisveryfastandopensinlessthanone
millisecond
•Notrippingcircuitisnecessaryandtheoperationis
automatic
•Providesprotectionagainstoverloadandshortcircuit
withoutnoise,smokeorflame.
•Itcanberesetveryquicklyaftercorrectingthefault,just
byswitchingabutton.Norewiringisrequired.
•Itcannotbereclosediffaultpersists.
•Themechanicallifeisuptoormorethanonelakh
operatingcycle.

Features of Miniature Circuit Breaker (MCB)
•GenerallyMCBsareratedfora.c.voltageof240Vfor
singlephase,415Vforthreephaseor220Vd.c.
•Thecurrentratingavailableisform0.5Ato63A.
•Itisavailableassinglepole(SP),DoublePole(DP),
TripplePole(TP)withshortcircuitbreakingcapacityform
1kAto10kAwitharatedfrequency.

Moulded Case Circuit Breaker (MCCB)
•Itisusedforcircuitshavingcurrentrangesform63Ato
3000A.
•Itsworkingisbasedonthermalmechanism.Ithasa
bimettaliccontactwhichexpandsandcontractswhen
therearechangesintemperature.
•Undernormalcondition,thecontactsareclosedallowing
currenttopass.
•Underoverloadorshortcircuitcondition,current
exceedsitssafevalue.Duetothis,heatisgeneratedand
thecontactsareopenedtointerruptthecircuit.

Moulded Case Circuit Breaker (MCCB)
•Duetotheinterruptionofhighcurrent,there
isarcformation.HenceinMCCBtherearearc
extinguisherswhichsuppressthearc.
•Thereisadisconnectionswitch,withthehelp
ofwhich,theMCCBcanbeoperated
manually.

Moulded Case Circuit Breaker (MCCB)
•Practicallyithasadjustabletripsettingsand
henceitcanbeusedforhighcurrent
application.
•Itcanbeeasilyresetafterthefault
rectification.Thusitprovidesoperational
safetyandconvenience.
•AlltheoperatingpartsofMCCBarecovered
withinaplasticmouldedhousingmadeintwo
halves.

Moulded Case Circuit Breaker (MCCB)
•Thetwohalvesarejoinedtogethertoform
thewholestructure.
•ThebasicdifferencebetweenMCBandMCCB
isthecurrentrating.
•HenceMCCBsareusedforindustrialand
commercialapplicationssuchasmainfeeder
protection,generatorandmotorprotection,
capacitorbankprotection,welding
applicationsandapplicationswhichrequire
adjustabletripsetting.

Moulded Case Circuit Breaker (MCCB)

Comparison of MCB and Fuse
S.No.Fuse MCB
1 Theoperationoffuseishighly
dependentonselectionofitsproper
rating.Iffusewireisnotselected
properlythenitresultsinnonoperation
offuseevenincaseofshortcircuit
MCBinstantlydisconnectsthesupply
automaticallyintheeventofshortcircuit
oroverload.Itthuseliminatestheriskof
fireandpreventsdamagetowiring
system
2 Ifthefusewireafteroperationis
replacedwithaneweronebutgoloose
thenitmaybedangerous.Alsoto
replaceablownfuseinbetweencurrent
carryingpointsisdangerousspeciallyin
dark.
Restartingpowersupplyaftertripping
duetooverloadorshortiseasy
3 Duringreplacementoffusewire,the
exactsizeoffusewiremaynotbe
available.Alsoforreplacementakitof
handtoolshastobekeptready
Nomaintenanceandrepairsisrequired
forMCB.Thedistributionsystem
employingMCBprovidessatisfactory
operationandlastsforyears.
4 Theboardemployingfuseisnot
compact
TheboardemployingMCBsgivebeautiful
lookasitiscompactandelegant

Rating of circuit breaker
A circuit breaker has to perform the following major duties under short-
circuit conditions.
1. To open the contacts to clear the fault
2. To close the contacts onto a fault
3. To carry fault current for a short time while another circuit breaker is
clearing the fault
Therefore, in addition to the rated voltage, current and frequency, circuit
breakers have the following important ratings
(i)Breaking Capacity
(ii)Making Capacity
(iii)Short-time Capacity

Breaking Capacity
•Itiscurrent(r.m.s.)thatacircuitbreakeris
capableofbreakingatgivenrecoveryvoltage
andunderspecifiedconditions(e.g.,power
factor,RRRV).

Breaking Capacity
Thebreakingcapacityofacircuitbreakerisoftwotypes
(i)Symmetricalbreakingcapacity
(ii)Asymmetricalbreakingcapacity
Symmetricalbreakingcapacity
ItistheRMSvalueoftheaccomponentofthefaultcurrentthat
thecircuitbreakeriscapableofbreakingunderspecified
conditionsofrecoveryvoltage.
Asymmetricalbreakingcapacity
ItistheRMSvalueofthetotalcurrentcomprisingofbothacand
dccomponentsofthefaultcurrentthatthecircuitbreakercan
breakunderspecifiedconditionsofrecoveryvoltage.

Breaking capacity:
Thebreakingcapacityofacircuitbreakerisgenerallyexpressedin
MVA.Forathree-phasecircuitbreaker,itisgivenby
Breakingcapacity=√3xratedvoltageinkVxratedcurrentinkA.
Thebreakingcapacitywillbesymmetricaliftheratedcurrentinthe
aboveexpressionissymmetrical.

Making Capacity
•Thepeakvalueofcurrent(includingd.c.
component)duringthefirstcycleofcurrentwave
aftertheclosureofcircuitbreakerisknownas
makingcapacity.
Making current = √2 x 1.8 x symmetrical breaking current.
Making capacity = √2 x 1.8 x symmetrical breaking capacity

Short-time rating
•Itistheperiodforwhichthecircuitbreakerisable
tocarryfaultcurrentwhileremainingclosed.
•Theshort-timecurrentratingisbasedonthermal
andmechanicallimitations.
•Thecircuitbreakermustbecapableofcarrying
short-circuitcurrentforashortperiodwhile
anothercircuitbreaker(inseries)isclearingthe
fault.

Short-time rating
•Theshort-timeratingofacircuitbreakerdepends
uponitsabilitytowithstand
(a)theelectro-magneticforceeffects
(b)thetemperaturerise.

Normal current rating
•Itisther.m.s.valueofcurrentwhichthecircuit
breakeriscapableofcarryingcontinuouslyatits
ratedfrequencyunderspecifiedconditions.The
onlylimitationinthiscaseisthetemperaturerise
ofcurrent-carryingparts.

Rated operating duty:
Theoperatingdutyofacircuitbreakerprescribesitsoperations
whichcanbeperformedatstatedtimeintervals
Forthecircuitbreakerswhicharenotmeantforautoreclosing,there
aretwoalternativeoperatingdutiesasgivenbelow:
(i)O-t-CO-t’-CO
(ii)O-t”-CO
WhereOdenotesopeningoperation,COdenotesclosingoperation
followedbyopeningwithoutanyintentionaltimelag,andt,t’andt”
aretimeintervalsbetweensuccessiveoperations

Selection of Circuit Breaker
•Thefollowingparametersarerequiredtobe
knownforselectingproperratingcircuitbreaker
atagivenlocationonapowersystem:
•(a)themaximumfaultcurrentwhichistobe
interruptedbythebreaker
•(b)themaximumcurrenttobecarried
momentarily.
•Thefaultcurrentconsistsofbotha.c.andd.c.
componentsanditscorrectcalculationisvery
complex.Asimplifiedmethodisrecommendedby
IEEEcommitteeisgivenbelow.

Selection of Circuit Breaker
•Todeterminefirstlytherequiredinterruption
capacityofcircuitbreakerthehighestvalueof
initialr.m.salternatingcurrentforanytypeand
locationoffault.
•Itcanbeconsideredasthreephasefaultasit
carriesmaximumfaultcurrentexceptinsome
cases.
•Thiscurrentcanbeobtainedbyusingsub-
transientreactanceforgeneratorsandtransient
reactanceforsynchronousmotorswhileinduction
motorsaretobeneglected.

Selection of Circuit Breaker
•Followingmultiplyingfactorscanbeappliedto
takeintoaccountthed.c.componentsofcurrents
anddecrementsofbotha.c.andd.c.components.
8cycleorslowbreaker1.0
5cyclebreaker 1.1
3cyclebreaker 1.2
2cyclebreaker 1.4
beforeapplyingmultiplyingfactor,allthegiven
factorsareincreasedby0.1forthebreakersonthe
generatorbuswhere3phaseshortcircuitKVA
exceed5,00,000.

Selection of Circuit Breaker

HVDC Breaking
The additional circuit creates artificial current zeros which are utilised
for arc interruption
C
pand L
pare connected in parallel to produce artificial current zero
after the separation of the contacts in the main circuit breaker MCB.
Tags