Combinational circuit It is a digital logic circuit whose output at any instant of time depends only on the present inputs at that time It contains no memory element It is easy to design Faster in speed High cost Less flexibility
Sequential circuits consist of combinational logic as well as memory elements . Outputs depend on BOTH current input values and previous output values (kept in the storage elements) Sequential circuit
Combinational Circuits A combinational circuit consists of logic gates whose outputs , at any time, are determined by combining the values of the inputs. For n input variables, there are 2 n possible binary input combinations. For each binary combination of the input variables, there is one possible output . A truth table that lists the output values for each combination of the input variables, or 5
Design Procedure 1. From the specification of the circuit , determine the required number of inputs and outputs and assign a symbol to each. 2. Derive the truth table that defines the required relationship between inputs and outputs. 3 . Obtain the simplified Boolean functions for each output as a function of input variables. 4. Draw the logic diagram and verify the correctness of the design. 6
Binary Adder Digital computers perform variety of Information processing task. One is various arithmetic operations. Basic arithmetic operation is addition of two binary digits. Augend Addend Carry Sum 1 + 1 = 1 0 7 Addition 0 + 0 = 0 0 + 1 = 1 1 + 0 = 1 1 + 1 = 10
When the augend and addend number contain more significant digits, the carry obtained from addition of two bits is added to the next higher order pair of significant digits. Ex: 1 1 0 1 1 0 1 1 (+) ---------------- 1 1 0 0 0 8
Half Adder A combinational circuit that performs the addition of two bits is called a half adder . Adds 1-bit plus 1-bit Produces Sum and Carry x y Carry Sum 0 0 0 0 0 1 1 1 0 1 1 1 1 x + y ─── C S x y S C HA x y S C S = x ⊕ y C = xy
Full Adder One that performs the addition of three bits (two significant bits and a previous carry) is a full adder . Adds 1-bit plus 1-bit plus 1-bit Produces Sum and Carry x y z C S 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1 1 1 1 0 1 1 1 1 1 1 x + y + z ─── C S FA x y z S C y 1 1 x 1 1 z y 1 x 1 1 1 z S = xy'z' + x'yz' + x'y'z + xyz = x y z C = xy + xz + yz
Binary Adder Full Adder x y z S C x y z S C S = xy'z' + x'yz' + x'y'z + xyz = x y z C = xy + xz + yz
Binary Adder Full Adder x y z S C HA x y z HA S C
Design Procedure Given a problem statement: Determine the number of inputs and outputs Derive the truth table Simplify the Boolean expression for each output Produce the required circuit Example: Design a circuit to convert a “BCD” code to “Excess 3” code 4-bits 0-9 values 4-bits Value+3 ?
Design Procedure BCD-to-Excess 3 Converter A B C D w x y z 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 x x x x 1 0 1 1 x x x x 1 1 0 0 x x x x 1 1 0 1 x x x x 1 1 1 0 x x x x 1 1 1 1 x x x x C 1 1 1 B A x x x x 1 1 x x D C 1 1 1 1 B A x x x x 1 x x D C 1 1 1 1 B A x x x x 1 x x D C 1 1 1 1 B A x x x x 1 x x D w = A + BC+BD x = B’C+B’D+BC’D’ y = C’D’+CD z = D’
Design Procedure BCD-to-Excess 3 Converter A B C D w x y z 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 x x x x 1 0 1 1 x x x x 1 1 0 0 x x x x 1 1 0 1 x x x x 1 1 1 0 x x x x 1 1 1 1 x x x x w = A + B ( C + D ) x = B’ ( C + D ) + B ( C + D ) ’ y = ( C + D ) ’ + CD z = D’
Seven-Segment Decoder a b c g e d f ? w x y z a b c d e f g w x y z a b c d e f g 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 0 x x x x x x x 1 0 1 1 x x x x x x x 1 1 0 0 x x x x x x x 1 1 0 1 x x x x x x x 1 1 1 0 x x x x x x x 1 1 1 1 x x x x x x x y 1 1 1 1 1 1 x w x x x x 1 1 x x z BCD code a = w + y + xz + x’z’ b = . . . c = . . . d = . . .