Combined supervised and unsupervised neural networks for pulse shape discrimination and pile-up recovery
SamuelJackson100
12 views
0 slides
Jul 17, 2024
Slide 1 of 0
About This Presentation
Our methodology for pulse shape discrimination is split into two steps. Firstly, we learn a model to discriminate between pulses using "clean" low-rate examples by removing pile-up & saturated events. In addition to traditional tail sum discrimination, we investigate three different ch...
Our methodology for pulse shape discrimination is split into two steps. Firstly, we learn a model to discriminate between pulses using "clean" low-rate examples by removing pile-up & saturated events. In addition to traditional tail sum discrimination, we investigate three different choices for discrimination between γ-pulses, fast, thermal neutrons. We consider clustering the pulses directly using Gaussian Mixture Modelling (GMM), using variational autoencoders to learn a representation of the pulses and then clustering the learned representation (VAE+GMM) and using density ratio estimation to discriminate between a mixed (γ + neutron) and pure (γ only) sources using a multi-layer perceptron (MLP) as a supervised learning problem.
Secondly, we aim to classify and recover pile-up events in the < 150 ns regime by training a single unified multi-label MLP. To frame the problem as a multi-label supervised learning method, we first simulate pile-up events with known components. Then, using the simulated data and combining it with single event data, we train a final multi-label MLP to output a binary code indicating both how many and which type of events are present within an event window.