Dr. Mohamed Gamal Faculty of Computers and Informatics
1.4L
∗
1(Kleene Closure of L1 - Zero or more)
The Kleene closure ofL1includes all possible stringsincluding the empty string.
L
∗
1=
ϵ,
a, b, c, d,
aa, ab, ac, ad,
ba, bb, bc, bd,
ca, cb, cc, cd,
da, db, dc, dd,
aaa, aab, aac, aad, aba, abb, abc, abd, aca, acb, acc, acd, ada, adb, adc, add,
bba, bbb, bbc, bbd, bca, bcb, bcc, bcd, bda, bdb, bdc, bdd,
caa, cab, cac, cad, cba, cbb, cbc, cbd, cca, ccb, ccc, ccd, cda, cdb, cdc, cdd,
daa, dab, dac, dad, dba, dbb, dbc, dbd, dca, dcb, dcc, dcd, dda, ddb, ddc, ddd,
. . .
1.5L
+
1(Positive Closure of L1 - One or more)
The positive closure ofL1includes all possible non-empty strings formed by concatenating elements ofL1one
or more times.
L
+
1
=
a, b, c, d,
aa, ab, ac, ad,
ba, bb, bc, bd,
ca, cb, cc, cd,
da, db, dc, dd,
aaa, aab, aac, aad, aba, abb, abc, abd, aca, acb, acc, acd, ada, adb, adc, add,
. . .
Page 3