Comprehensive Guide to Digital Image Processing Concepts and Applications

ashritha03102004 72 views 33 slides Aug 31, 2025
Slide 1
Slide 1 of 33
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33

About This Presentation

"This presentation covers the fundamentals of Digital Image Processing, including image basics, acquisition, preprocessing, transformations, classification, and real-world applications such as medical imaging, remote sensing, surveillance, and entertainment."


Slide Content

Digital image processing Ashritha reddy . A

agenda IMAGE ENHANCEMENT TECHNIQUES IMAGE TRANSFORMATION IMAGE CLASSIFICATION APPLICATIONS OF DIGITAL IMAGE PROCESSING CONCLUSION INTRODUCTION HISTORY BASICS IMAGE ACQUISITION IMAGE PRE-PROCESSING

INTRODUCTION

What is digital image processing Digital image processing involves the manipulation and analysis of digital images using computer algorithms. It allows enhancement, modification, and extraction of useful information from images Importance of digital image processing: Enhancement: improves the quality of images, making them more visual appealing. Analysis: facilitates the extraction of meaningful information from images for various applications. Automation: Enable automated processing tasks, saving time and reducing human errors. 4

Over view of digital image processing Input: Digital image process through camaras, scanners, or other imaging devices. Processing: Application of various algorithms to manipulate and analyze images. Output: Enhanced images, extracted information, or analytical data. 5

History

History of Digital image processing Early developments 1920’s: Bartlane cable picture transmission system: One of the earliest forms of digital image transmission. 1960’s: NASA’s Ranger 7 probe : Early digital image processing takes for lunar exploration. 1970’s: Advancements in computing technology: Enabled more sophisticated image processing for space missions and other applications. 7

Significant milestones: 1972: Skylab’s Earth Resources Experiment Package (EREP): Used digital image processing for environmental monitoring. 1980’s: Introduction of personal computers: Made digital image processing accessible to broader audience. 1990’s and Beyond: Rapid Technological Advancements: Improved algorithms and more powerful hardware for high-quality image processing. Present Day Widespread Applications: Medical imaging: Advanced techniques for X-rays, MRIs, and CT scans. Remote sensing: Satellite imagery for environmental and geographical analysis. Consumer Electronics: Smartphones with powerful image processing capabilities. 8

Digital image Basic

What is Digital image ? Definition: A digital image is a representation of a two-dimensional image using binary data. Pixel: the smallest unit of a digital image, short for “picture element.” Example: image with 800*600 resolution contains 480,000 pixels. 10

Image formats Binary and Grayscale images: Binary image : contains only two colors, typically black and white. Grayscale images : Ranges from black two white with various shades of gray. 11

2.Color images: RGB ( Red, Green, Blue): Each pixel is representing by a combination of red, green, and blue color values. 3.CMYK (Cyan, magenta ,yellow, key/black):used in color printing. 12

Image Acquisition 13

How images are captured Sensors : CCD(charge-couple devices) : used in digital camaras and scanners for high-quality images. CMOS(complementary metal-oxide-semiconductors) sensors:: Common in modern digital camaras and smartphones. Scanners : Flatbed scanners: capture images from physical documents placed on a glass surface. Drum scanners: Used for high resolution scans of film and photographs . cameras Digital camaras: capture images with CCD or CMOS sensors Smartphones: Equipped with advanced camaras sensors for high-quality image capture. 14

Image Acquisition process Image Capture: Light is captured by sensors. The sensors convert light into electrical signals. Analog-to-digital Conversion: Electrical signals are converted into digital data. This data represents the image as grid of pixels. Image storage: Digital image are stored in memory cards or device storage Various file formats (JPEG, PNG, TIFF) are used for different purposes 15

Practical Images Medical Images: X-rays, MRIs, CT scans capture detailed images of the human body. Remote Sensing: Satellites capture image of the earth for environmental monitoring and mapping. 16

Image pre-processing

Image Pre-processing Noise Reduction Definition: Removing Unwanted noise from digital image to improve quality. Techniques: Median filtering, Gaussian filtering, and mean Filtering. Image Enhancement Definition: improving the visual appearance of images. Techniques: Contrast adjustment, Histogram equalization, sharpening. Image Restoration Definition: Correcting degrade or damage images. Techniques: Deblurring, denoising, inpainting. 18

Practical Examples Medical imaging: Enhancing X-ray images to highlight bone structure Astronomy: Reducing noise in images of distant stars and galaxies. Noise Reduction: Use of filters to smooth out unwanted random variations. Image Enhancement: Techniques to bring out important features. Image Restoration: Recovering original details from degraded images 19 Visualizing image pre-processing:

Image Enhancement Techniques

Image Enhancement Techniques Histogram Equalization: Definition: A technique to improve contrast in images by spreading out the most frequent intensity values. Filtering: Definition: Applying filters to images to enhance or smooth details. Type of filters: Median Filter Reduces noises while preserving edges. Gaussian Filter: Smooth images by averaging pixel values. Sharpening Filter: Enhances edges by increasing contrast. Sharpening: Definition: Enhancing the details and edges of an images to make it clearer Techniques: Unsharp mask, edge detection. 21

Image Transformation

Image Transformation Geometric Transformation: Scaling: Resizing the image. Rotation: Rotating the image. Translation: Moving the image Intensity Transformations: Logarithmic Transformation: Enhances the detail in the darker area of the image. Exponential Transformation: Enhances the details in brighter areas of an image. 23

Practical Examples Geometric Transformations : Useful in image alignment, registration, and creating composite images. Intensity Transformations : Used to improve image quality and highlight important features. Visualizing Image Transformation Scaling : Changes the size of the image. Rotation : Rotates the image to a specified angle. Translation : Moves the image to a new position. Logarithmic Transformation : Enhances the visibility of details in darker regions. Exponential Transformation : Enhances the visibility of details in brighter regions 24

Image Classification

Image Classification Image classification is a process in computer vision that involves categorizing and labeling groups of pixels or vectors within an image based on specific rules. Essentially, it’s about identifying objects or patterns within an image and assigning them to predefined categories. How it Works: Data Collection : Gather a large set of labeled images to train the model. Preprocessing : Normalize and clean the images to ensure consistent quality. Feature Extraction : Identify and extract key features from the images that will help in classification. Training : Use algorithms (like Convolutional Neural Networks) to train the model on the labeled data. Prediction : Apply the trained model to new, unseen images to classify them. 26

Methods of Image Classification Supervised Classification Definition : Uses labelled training data to classify pixels or segments. Techniques : Nearest Neighbour Classification : Assigns labels based on the closest training samples. Support Vector Machines (SVM) : Uses hyperplanes to separate different classes. Unsupervised Classification Definition : Groups pixels or segments into clusters without using labeled training data. Techniques : K-Means Clustering : Partitions data into K clusters. Hierarchical Clustering : Builds a tree of clusters. 27

3. Object-Based Classification Definition : Classifies objects within an image rather than individual pixels. Techniques : Object-Based Image Analysis (OBIA) : Uses image segmentation and classification. Applications: Remote Sensing : Land cover classification using satellite imagery. Medical Imaging : Detecting and classifying tumors or other abnormalities. Facial Recognition : Identifying and categorizing faces in images. Autonomous Vehicles : Classifying obstacles and road signs for navigation. 28

Applications of Digital Image Processing

Applications of Digital Image Processing Domains of Application Medical Imaging : X-rays, MRIs, and CT Scans : Enhancing images to detect and diagnose medical conditions for  better diagnosis. Example : Using image processing to improve the visibility of tumors in X-ray images. Remote Sensing : Satellite Imagery : Monitoring environmental changes, urban planning, and resource management  using satellite imagery. Example : Analyzing satellite images to track deforestation and land use changes. 3. Surveillance : Security Cameras : Enhancing video quality for better monitoring and facial recognition. Example : Using image processing to improve the clarity of footage from security cameras. 4. Entertainment : Special Effects and Animation : Creating visually stunning effects in movies and video games. Example : Applying image processing techniques to generate realistic special effects in films. 5. Forensics : Image Analysis : Enhancing and analyzing images for evidence in criminal investigations. Example : Using image processing to clarify details in surveillance footage. 6. Document Processing : Optical Character Recognition (OCR) : Converting printed text into digital text for editing and searching. Example : Digitizing printed documents to create searchable PDF files. 30

Conclusion Summary Digital Image Processing : Involves manipulation and analysis of digital images using algorithms. Key Topics Covered : Basics : Understanding pixels and image formats. Pre-processing : Noise reduction, image enhancement, and restoration. Enhancement Techniques : Histogram equalization, filtering, and sharpening. Transformations : Geometric and intensity transformations. Classification : Methods like supervised, unsupervised, and object-based classification. Applications : Medical imaging, remote sensing, surveillance, entertainment, forensics, and document processing. Future Trends AI and Machine Learning : Integration of advanced algorithms for better image analysis. Enhanced Imaging Technology : Improvements in sensor and camera technology. Real-time Processing : Faster and more efficient image processing techniques. Final Thoughts Digital image processing is a rapidly evolving field with numerous applications across various industries. Staying updated with the latest trends and technologies is crucial for leveraging its full potential. 31

Any Questions

Thank you