Computational Astrophysics
Solving for Gravity
!numerically integrate Poisson’s equation relaxation technique
€
ΔΦ
k,l,m
=ρ
k,l,m
Particle-Mesh Method
€
ΔΦ
k,l,m
=∇⋅∇Φ
k,l,m
=
∂
∂x
∂
∂y
∂
∂z
'
(
)
)
)
)
)
)
*
+
,
,
,
,
,
,
⋅
∂Φ
k,l,m
∂x
∂Φ
k,l,m
∂y
∂Φ
k,l,m
∂z
'
(
)
)
)
)
)
)
*
+
,
,
,
,
,
,
=
1
H
∂
∂x
∂
∂y
∂
∂z
'
(
)
)
)
)
)
)
*
+
,
,
,
,
,
,
⋅
Φ
k+
1
2
,l,m
−Φ
k−
1
2
,l,m
Φ
k,l+
1
2
,m
−Φ
k,l−
1
2
,m
Φ
k,l,m+
1
2
−Φ
k,l,m−
1
2
'
(
)
)
)
)
*
+
,
,
,
,
=
1
H
∂Φ
k+
1
2
,l,m
∂x
−
∂Φ
k−
1
2
,l,m
∂x
+
∂Φ
k,l+
1
2
,m
∂y
−
∂Φ
k,l−
1
2
,m
∂y
+
∂Φ
k,l,m+
1
2
∂z
−
∂Φ
k,l,m−
1
2
∂z
'
(
)
)
*
+
,
,
=
1
H
2
Φ
k+1,l,m
−2Φ
k,l,m
+Φ
k−1,l,m
+Φ
k,l+1,m
−2Φ
k,l,m
+Φ
k,l−1,m
+Φ
k,l,m+1
−2Φ
k,l,m
+Φ
k,l,m−1
( )
obtain iterative solver by discretizing differential equation