Strength and Durability
Strengthanddurability
•Strengthanddurabilityrequirelowerw/cratio.Itisusuallyachieved
notbyincreasingthecementcontent,butbyloweringthewaterat
givencementcontent.Waterdemandcanbyloweredbythroughout
controloftheaggregategradingandbyusingwaterreducing
admixtures.
Strength and Durability
Grade of Concrete
•Theconcreteshallbeingradesdesignated
Group Grade designation Characteristics compressive strength
of 150 mm cube at28 days, N/mm2
OrdinaryConcrete M10
M15
M20
10
15
20
Standard Concrete M25
M30
M35
M40
M45
M50
M55
25
30
35
40
45
50
55
High Strength Concrete M60
M65
M70
M75
M80
60
65
70
75
80
What is M 20 ?
•MreferstoMix
•20referstocharacteristiccompressivestrengthof150mm
cubeat28daysinN/mm
2
•TheminimumGradeofPlainConcrete(PCC)shallbe15
N/mm
2
•TheminimumgradeofreinforcedConcrete(RCC)shallbe
20N/mm
2
Proportions of Ingredients in Nominal Mixes
•Theproportionsofmaterialsfornominalmixshallbeinaccordance
Grade Proportions
C: FA: CA
M
5 1: 5:10
M
7.5 1:4:8
M
10 1:3:6
M
15 1:2:4
M
20 1:1.5:3
IS Method of Mix Design
•TheBureauofIndianStandards,recommendedasetofprocedurefor
designofconcretemix.Theprocedureisbasedontheresearchwork
carriedoutatnationallaboratories.
•Dataformixdesign
•Thefollowingbasicdataarerequiredtobespecifiedfordesignaconcrete
mix
•CharacteristicCompressivestrengthonlyafewspecifiedproportionsof
testresultsareexpectedtofallofconcreteat28days(fck)
•Degreeofworkabilitydesired
•Limitationonwater/CementRatiowiththeminimumcementtoensure
adequatedurability
•Typeandmaximumsizeofaggregatetobeused.
•Standarddeviationsofcompressivestrengthofconcrete.
IS Method of Mix Design
•TargetStrengthforMixDesign
•Thetargetaveragecompressivestrength(fck)ofconcreteat28daysis
givenby
•F
ck=f
ck+t.s
Where,
•F
ck=targetaveragecompressivestrengthat28days
•F
ck=characteristicscompressivestrengthat28days
•s=Standarddeviation
•t=astasticalvalue,dependingupontheacceptedproportionoflowresults
andthenumberoftests.
IS Method of Mix Design
•AccordingtoIs456:2000andIS1343:1980te
characteristicstrengthisdefinedasthevaluebelowwhich
notmorethan5percentofresultsareexpectedtofall.In
suchcasestheaboveequationreducedto
•F
ck=f
ck+1.65s
•Thevalueofstandarddeviationisobtainedfromthetable
IS Method of Mix Design
IS Method of Mix Design
Step-II
SelectionofWater–CementRatio
•Sincedifferentcementsandaggregatesofdifferentmaximumsizes,
grading,surfacetextureshapeandothercharacteristicsmayproduce
concreteofdifferentcompressivestrengthforthesamefreewater
cementratio,therelationshipbetweenstrengthandfreewater
cementratioshouldpreferablebeestablishedforthematerial
actuallytobeused.Intheabsenceofsuchdata,thepreliminaryfree
water-cementratiocorrespondingtothetargetstrengthat28days
maybeselectedfromtherelationshipshownbelow
IS Method of Mix Design
IS Method of Mix Design
•Alternatively,thepreliminaryfreewatercementratioby
masscorrespondingtotheaveragestrengthmaybeselected
fromtherelationshipshownbelowusingthecurve
correspondingtothe28dayscementstrengthtobeusedfor
thepurpose.However,thiswillneed28daysfortestingof
cement.
IS Method of Mix Design
IS Method of Mix Design
•Thefreewater-cementratiothusselectedshouldbechecked
againstlimitingwater-cementratiofortherequirementsof
durabilityaspertable5.4andthelowerofthetwovalues
shouldbeadopted.
IS Method of Mix Design
IS Method of Mix Design
Step3EstimationofAirContent
•Approximateamountofentrappedairtobeexpectedinnormal
concreteisgivenintable9.6
Nominal Maximum Size of AggregatesEntrapped Air, as percentage of volume
of concrete
10 3 %
20 2 %
40 1 %
IS Method of Mix Design
SelectionofWaterContentandfinetototalaggregateratio
•Forthedesiredworkabilitythequantityofmixingwaterperunit
volumeofconcreteandtheratiooffineaggregate(sand)tototal
aggregatebyabsolutevolumearetobeestimatedfromtablebelowas
applicable.Dependinguponthenominalmaximumsizeandtypeof
aggregate.
IS Method of Mix Design
•ApproximateSandandwaterContentperCubicMetreofConcrete
forGradesuptoM
35W/C=0.6Workability=0.8C.F
Nominal Maximumsize
of aggregate (mm)
Water Content per
cubic metre of concrete
(kg)
Sand as percentage of
total aggregate by
absolutevolume
10 208 40
20 186 35
40 165 30
IS Method of Mix Design
•ApproximateSandandWaterContentpercubicmetreofconcrete
forgradesaboveM
35W/C=0.35Workability=0.8C.F.
Nominal Maximum size
of Aggregates
Water Content per cubic
metre of concrete (kg)
Sand as percentage total
aggregate by absolute
volume of (%)
10 200 28
20 180 25
IS Method of Mix Design
•Adjustmentofvaluesinwatercontentandsandpercentageforother
conditions
Change in ConditionAdjustment Required
Water Content Percentage sand in total aggregate
For sand confirming to
grading Zones I , III
and IV
0 + 1.5 percent for zone I
-1.5 percent for zone III
-3.0 for zone IV
Increase or decrease in
values of compacting
factor by 0.1
±3 % 0
Each 0.05 increase or
decrease in free water
cement ratio
0 ±1 %
-15 kg/m
3
-7 %
For rounded
aggregates
Example
Determination of fine and coarse Aggregates
•Consider volume of Concrete= 1 m
3
•But entrapped air in wet concrete = 2 %
•Therefore volume of fresh concrete= 1 –2
100
1-0.02
V= 0.98 m
3
Example
And
V=[W+C+1 xC
a]x1forcoarseaggregate………… ..2
S
c(1-p) S
ca1000
0.98=[191.6+383x1 x C
a]x1
3.15(1-0.315) 2.751000
980=313.187+0.5308C
a
C
a=1256.24kgmassofC.A
Example
Water Cement F.A C.A
191.6 li 383 kg 558.75 kg 1256.24 kg
0.5 1 1.46 3.28
Water Cement F.A C.A
383=0.264m
3
1450
558.75=0.328m
3
1700
1256.24=0.698m
3
1800
0.5 1.0 1.242 2.644
Example
Water Cement F.A C.A
25 li 50 kg 73 kg 164 kg
Example
•DesignaConcretemixforM25gradeasperIS10262forthe
followingdata:
•CharacteristicCompressiveStrengthinthefieldat28days25
N/mm
2
•MaximumSizeofAggregate=20mm
•DegreeofWorkability0.9CF
•DegreeofQualityControl=Good
•TypeofExposure=Moderate
Example
Step-2
•SelectionofWater-CementRatio
•Fromfig9.1thefreewatercementratiorequiredforthetargetmean
strengthof31.6N/mm
2
is0.44
•Now,fromtable5.4themaximumfreewatercementratioformoderate
exposureis0.5
•Hence,thefreewatercementratioistakenastheminimumofabovetwo
valuei.e
•W=0.44
C
Example
StepIIIEstimationofairContent
•FormaximumSizeofAggregateof20mm,theaircontentistakenas
2.0%
Example
Step-4
•SelectionofWaterandSandContent
•Fromtable9.7for20mmnominalmaximumsizeaggregatesand
sandconfirmingtogradingZone-II,watercontentpercubicmetre
ofconcrete=186kgandsandcontentaspercentageoftotal
aggregatebyabsolutevolume=35%i.e.
•Water=186kg/m
3
•Sand=35%oftotalaggregatebyabsoluteVolume.
Example
•ForChangeinvaluesinwater-Cementratio,compactionfactorand
sandbelongingtozoneIthefollowingadjustmentsarerequired.
Change in Condition Adjustment Required
Water Content Percentage Sand in total
Aggregate
(i)For Decrease in Water-Cement ratio (0.6
–0.44) thatis 0.16
Therefore 0.16 x 1 = 3.2
0.05
0 -3.2
(ii) For Increase in Compacting factor (0.9 -
0.8)= 0.1
Therefore 0.1 x 3 = 3.0
0.1
+3 0
(iii) For Sand Conforming to Zone-I of table
4 of IS 383-1970
0 +1.5
Example
•RequiredwaterContent=186+(186x3)
100
=191.6lit/m
3
RequiredSandContentasPercentageofTotalaggregatebyabsoluter
Volume
p=35–1.7
=
33.3%
Example
Step-VDeterminationofCementContent
•WaterCementRatio=0.44
•Water=191.6lit=191.6kg
•Therefore,
•W=0.44
C
191.6=0.44
C
C=435.45kg/m
3
>300kg/m
3
Thiscementcontentisadequatefor‘ModerateExposure’condition,
accordingtotable5IS456-2000)
Example
•V=[W+C+1xf
a]x1forfineaggregate…1
S
cp S
fa1000
And
0.98=[191.6+436+1+fa]x1
3.150.33 2.6 1000
980=191.6+138.41+1.15fa
fa=562.76kg
=563kgmassofF.A.
Example
Similarly,
V=[W+C+1 xC
a]x1forcoarseaggregate……..2
S
c(1-p) S
ca1000
•0.98=[191.6+436x1xCa]x1
3.15(1-0.333) 2.65 1000
980=191.6+138.41+0.5657Ca
Ca=1149kg/m
3
massofC.A.
Example
•Mix Proportions (By Mass)
Water Cement F.A. C.A
191.6 li 436 kg 563 kg 1149 kg
0.44 1 1.29 2.64
Example
Water Cement F.A. C.A
22 li 50 kg 64.5 kg 132 kg
Example
•Actualquantityofsand(FA)requiredafterallowingformassoffree
water
•=64.5+1.29=65.79kg
•ActualquantityofC.Arequired
•=132-0.792
•=131.21kg
Water Cement F.A. C.A
21.50li 50 kg 65.79 kg 131.21kg
Example
Similarly,
V=[W+C+1 xC
a]x1forcoarseaggregate……..2
S
c(1-p) S
ca1000
•0.98=[190+442x1 xCa]x1
• 3.14(1-0.35) 2.71000
•980=190+140.32+0.569Ca
•Ca=1142kg/m
3
MassofCA
Example
•Mix Proportion (by mass)
•Quantity for 1 bag of Cement
Water Cement F.A C.A
190 442 592 1142
0.43 1 1.34 2.58
Water Cement F.A C.A
21.5 50 67 129
The ACI Method of Mix Design
•IntheUSAthemethodsuggestedbyACIiswidelyused.It
hastheadvantagesofsimplicityinthatitappliesequally
well,andwithmoreorlessidenticalproceduretorounded
orangularaggregate,tonormalorlightweightaggregate
andtoair-entrainedornon-air-entrainedconcretes.
•TheACImethodisbasedonthefactthatforagivensizeof
wellgradedaggregateswatercontentislargelyindependent
ofmixproportions,i.e.Watercontentregardlessof
variationinwater/cementratioandcementcontent.
The ACI Method of Mix Design
•Thismethodassumesthattheoptimumratioofthebulk
volumeofcoarseaggregatesandonthegradingoffineness
aggregatesregardlessofshapeofparticles.Thismethodalso
assumesthatevenaftercompletecompactionisdone,a
definitepercentageofairremainswhichisinversely
proportionaltothemaximumsizeofaggregate.
The ACI Method of Mix Design
•ThestepsbystepsoperationintheACImethodare
Step-1Datatobecollected
•FinenessmodulusofFA
•UnitweightofdryCA
•SpecificgravityofFAandCAsaturatedsurfacedrycondition.
•SpecificgravityofCement
•AbsorptionscharacteristicsofbothCAandFA
The ACI Method of Mix Design
Step-2
•CalculationmeandesignStrength,fromtheminimumstrength
specified,usingstandarddeviation:
•f
m=f
min+K.S
•Where,
•F
m=Specifiedminimumstrength(CharacteristicStrength)
•K=Constantdependencyupontheprobabilityofcertainnoofresults
likelytofallf
ck=takenfromtable9.4
•S=StandardDeviationfromtable9.5
IS Method of Mix Design
The ACI Method of Mix Design
Step-3EstimationofWater-CementRatio
•WaterCementratioisestimatedfromtable9.10forthemeandesign
Strength.
The ACI Method of Mix Design
Average Compressive Strength at
28 days
Effective Water-Cement Ratio (By Mass)
Non-Air Entrained Concrete Air-entrained Concrete
45 0.38 -
40 0.43 -
35 0.48 0.4
30 0.55 0.46
25 0.62 0.53
20 0.7 0.61
15 0.8 0.71
The ACI Method of Mix Design
•ThewaterCementratioobtainedfromStrengthpointof
viewistobecheckedagainstmaximumW/CRatiogivenfor
specialexposureconditiongivenintable9.11andminimum
ofthetwoistobeadopted.
The ACI Method of Mix Design
•RequirementofACIforW/CRatioandStrengthforSpecialExposure
Condition
The ACI Method of Mix Design
•DecidemaximumsizeofaggregatetobeUsed.GenerallyRCCwork
20mmandPre-stressedConcrete10mmSizeareUsed
•DecideWorkabilityintermsofslumpforthetypeofjobinhand.
Generalguidancecanbetakenfromtable9.12.
The ACI Method of Mix Design
Type of Construction Range of slump mm
Reinforced foundation walls and footings 20-80
Plain footing, cassionsand substructure wall 20-80
Beams and Reinforced Wall 20-100
BuildingColumn 20-100
Pavement andSlabs 20-80
MassConcrete 20-80
The ACI Method of Mix Design
Step-4MinimumWaterContentandentrappedaircontent:
•Decidemaximumsizeofaggregatetobeused.GenerallyforRCC
work20mmandforpre-stressedconcrete10mmsizeareused.
•Decideworkabilityintermsofslumpforthetypeofjobinhand.
Recommendedvalueofslumpforvarioustypesofconstructionas
givenintable9.12
The ACI Method of Mix Design
Step-5CementContent
•CementContentiscomputedbydividingthewatercontentbythe
water/CementRatio
Step-6
•BulkVolumeofDryRoddedCoarseAggregateperUnitVolumeof
Concrete
•Table9.13foradecidedvalueofslumpandmaximumsizeof
aggregate,decidethemixingwatercontentandentrappedair
content.
Table 9.13
WorkabilityWater Content, kg/m
3
of Concrete for indicated maximum aggregate Size
Non-air entrained Concrete
Workability10
mm
12.5 mm20mm 25 mm 40 mm 50 m 70 mm 150 mm
Slump30-50
mm
205 200 185 180 160 155 145 125
80-100 mm225 215 200 195 175 170 160 140
150-180 mm240 230 210 205 185 180 170 -
Approx
entrapped air
content
3 2.5 2 1.5 1 0.5 0.3 0,2
The ACI Method of Mix Design
•Knowingthevaluesofmaximumsizeofcoarseaggregatesand
finenessmodulus(FM)offineaggregate,bulkvolumeofdryrodded
aggregateperunitvolumeofconcreteisselectedfromtable9.14
•DryBulkofCoarseAggregateperunitVolumeofConcreteasGiven
byACI
Maximum Size of
Aggregate
Bulk Volume of Dry RoddedCoarse Aggregate per unit volume of concrete for fineness
modulus of sand
FM 2.4 2.6 2.8 3.0
10 0.5 0.48 0.46 0.44
12.5 0.59 0.57 0.55 0.53
20 0.66 0.64 0.62 0.6
25 0.71 0.69 0.67 0.65
40 0.75 0.73 0.71 0.69
50 0.78 0.76 0.74 0.72
70 0.82 0.8 0.78 0.76
150 0.87 0.85 0.83 0.81
(a)The value given will produce a mix that issuitable for reinforced concrete construction. For less workable
concrete the value may be increased by 10 percent for workable concrete such as pumpableconcrete the
value may be reduced by upto10 percent
(b)From the minimum strength specified estimate the average design strength either by using coefficient of
variation
(c)Find the water/cement ratio from the table 9.14
The ACI Method of Mix Design
Step-7
•TheweightofCApercubicmetreofConcreteisCalculatedby
multiplyingthebulkVolumewithbulkdensityofCA
Step-8EstimateofDensityoffreshConcrete
•KnowingthemaximumSizeofCoarseAggregates,thedensityof
freshConcreteisestimatedas
The ACI Method of Mix Design
•FirstEstimateofDensityofFreshConcreteasGivenbyACI
Maximum Size of
Aggregates
Non air-entrained air
kg/m
3
Airentrainedkg/m
3
10 2285 2190
12.5 2315 2235
20 2355 2280
25 2375 2315
40 2420 2355
50 2445 2375
70 2465 2400
The ACI Method of Mix Design
Step-9
•Absolutevolumesofingredientspercubicmetreofconcreteareobtained
byknowingthespecificgravityofcement,waterCAandFA
Step-10
•Trialmixproportionsarecalculatedandadjustmentsforfieldconditions
likefreemoistureandwaterabsorptionbyaggregatesaremade.
Step-11
•Atrialmixisthenmadetostudythepropertiesofconcreteinrespectof
workability,cohesiveness,finishingqualityand28dayscompressive
strength.TheproportionofCAandFAmaybechangedtogetdesired
properties.
Maximum Size of
Aggregate
Bulk Volume of Dry RoddedCoarse Aggregate per unit volume of concrete for fineness
modulus of sand
FM 2.4 2.6 2.8 3.0
10 0.5 0.48 0.46 0.44
12.5 0.59 0.57 0.55 0.53
20 0.66 0.64 0.62 0.6
25 0.71 0.69 0.67 0.65
40 0.75 0.73 0.71 0.69
50 0.78 0.76 0.74 0.72
70 0.82 0.8 0.78 0.76
150 0.87 0.85 0.83 0.81
(a)The value given will produce a mix that issuitable for reinforced concrete construction. For less workable
concrete the value may be increased by 10 percent for workable concrete such as pumpableconcrete the
value may be reduced by upto10 percent
(b)From the minimum strength specified estimate the average design strength either by using coefficient of
variation
(c)Find the water/cement ratio from the table 9.14
Example-I
•Density of fresh Concrete is 2358 kg/m
3
as against 2355
Water Cement F.A C.A
200 445 kg 721 kg 992 kg
0.45 1 1.62 2.23
Water Cement F.A C.A
22.5 kg 50 kg 81 kg 111.5
Example-I
•NetQuantityofMixWater=200-10.82+9.92
=199.10kg
•Finalmixproportions(for1m
3
ofconcrete)
Water Cement F.A. C.A.
199.10 kg 445 kg 732 kg 982 kg
The British Method
•ThetraditionalBritishmethodhasbeenreplacedbythedepartmentofthe
environmentfornormalmixes,knownasDOE(British)mixdesignmethod.
•ThefollowingstepsareInvolvedinDOEMethod
Step-I
•FindthetargetmeanstrengthfromthespecifiedCharacteristicStrength
•f
t=f
ck+k.S
•Where,
•ft=targetmeanstrength
•fck=characteristicStrength
•S=StandardDeviation
•K=riskfactororprobabilityfactor
CONCRETE MIX DESIGN
Step-II
Determinationoffreewatercementratio
•Fromthegiventypeofcementandaggregate,obtainthecompressive
strengthofconcretecorrespondingtofreew/cratioof0.5
Type of
Cement
Type of Coarse
Aggregate
3 7 28 91
Ordinary or
Sulphate
Resisting
Cement
Uncrushed
Crushed
22
27
30
36
42
49
49
56
Rapid
Hardening
Portland
Cement
Uncrushed
Crushed
29
34
37
43
48
55
54
61
CONCRETE MIX DESIGN
CONCRETE MIX DESIGN 161
The Relative Proportion Are Worked Out
Atrialproportionistakenandcombinedgradationisworkedoutfor
e.g.
35%fineaggregate20%10mmdownaggregate,45%20mmdown
aggregate.
CONCRETE MIX DESIGN 163
Calculation Of Cement Content
Plastic Density =
(1xSc+1.45xSfa+0.75xSca10+1.6xSca20+w/c)x1000x(1−Ea)
5.26
Sc= Specific gravity of cement
Sfa=Specific gravity of fine aggregate
Sca10=Specific gravity of 10mm coarse aggregate
Sca20=Specific gravity of 20mm coarse aggregate
W/c = water to cement ratio
Ea= Entrapped air %
CementContent(Kg/m3)=Plasticdensity/(1+a/cratio+w/cratio)
Ifweightofcementis“C”thetotalweightperm3willbe
C+1.45C+0.75C+1.6C+0.46C=5.26C