Cu06997 lecture 10_froude

henkmassink9 2,064 views 16 slides Apr 26, 2013
Slide 1
Slide 1 of 16
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16

About This Presentation

No description available for this slideshow.


Slide Content

CU06997 Fluid dynamics
Froude number (page 148)

5.9 Critical depth meters (page 155 – 158)
1

Specific Energy
V
Channel bed as datum [m]
Surface level [m]
Total head H or Specific energy E
s [m]
y
V
2
/2g Velocity head [m]
y = Pressure head [m]
= water depth [m]
�
??????=??????+
??????
2
2??????

??????= Mean Fluid Velocity [m/s]
y=
p
ρ∙g
= Pressure Head / water depth [m]
1

Critical Depth
V
Reference /datum [m]
Water depth y [m]
y
V
2
/2g
Velocity head [m]
y
B g
V
yH
2
2
 yBVQ
v
 22
2
2 yBg
Q
yH
v


H
Suppose Q and B are given, what could by the value of H and y
Total head H or Specific energy E
s [m]
2
P1 P1

22
2
2 yBg
Q
yH
v

 ??????=y+
�
2
2??????∙�
2

1
??????
2

Example
B= 2 m, Q = 6 m3/s
y
B
H
??????=y+0.45∙
1
??????
2

2

0.00
1.00
2.00
3.00
4.00
5.00
6.00
0.300 0.590 0.880 1.170 1.460 1.750 2.040 2.330 2.620 2.910 3.200 3.490 3.780 4.070
H (total head) (m)

y (water depth) (m)
Sub-critical or Supercritical flow
Stromend of schietend water
Total head
H=3/2*h
Supercritical flow
Schietend water
Sub-critical flow
Stromend water
Example
B= 2 m, Q = 6 m3/s
2 cyH
2
3
min

22
2
2 yBg
Q
yH
v

 ??????=y+
�
2
2??????∙�
2

1
??????
2

Differentiation [Differentiëren]
dH/dy = 0 gives
y
B
H
2
??????
??????=
�
2
??????∙�
2
3

Represents lowest point graph.
Means point with the lowest
H for a given Q and B

Critical Depth and Critical Velocity c
yH
2
3
min

Sub-critical flow Supercritical flow
??????
??????=
�
2
??????∙�
2
3

??????
??????=??????∙??????
??????
2

3
h = y in this graph

Froude number
??????
??????=
�
2
??????∙�
2
3

??????
??????=??????∙??????
??????
2

�??????=
??????
????????????
??????
2
=
??????
??????
??????

y
c = critical depth [m]
Q = discharge [m
3
/s]
B = width [m]
V
c = critical velocity [m/s]
V = actual velocity [m/s]
Fr = Froude number [-]

Subcritical flow [stromend] Fr < 1 V < V
c
Supercritical flow [schietend] Fr > 1 V > V
c
3

Froude number
Fr>1
•Supercritical flow [schietend water]
•Water velocity > wave velocity
•Disturbances travel downstream
•Upstream water levels are unaffected by
downstream control
Fr<1
•Subcritical flow [stromend water]
•Water velocity < wave velocity
•Disturbances travel upstream and downstream
•Upstream water levels are affected by
downstream control
3

Froude number<1 Subcritical
[stromend]
Consequences for strategy to calculate water levels

What happens downstream affect the upstream water level

So most of the time you start downstream and go upstream
3

Question 3de
50 m
Ø300 PVC
Ø500 beton
Ø250 PVC
Pump=20 l/s
P4 P3
P2
GL +6.00 m
Rain=66 l/s
Waste=10 l/s
Rain=225 l/s
Waste=10 l/s
+5,5 m
Q=66 l/s
v=0,93 m/s
I=1:244
Q=291 l/s
v=1,48 m/s
I=1:166
Q=0 l/s
v=0 m/s
I=0
P1
In example m = 1,8 3

Froude number>1 Supercritical
[schietend]
Consequences for strategy to calculate water levels

What happens downstream does not affect the upstream
water level

So most of the time you start upstream and go downstream

3

Critical bed slope channel /river
Q and B (width channel) are given
Step 1 Calculate y
c
Step 2 Calculate R and V
c
Step 3 Calculate S
c using Chezy or Manning
??????
??????=
&#3627408452;
2
??????∙&#3627408437;
2
3

??????
??????=&#3627408438;∙&#3627408453;∙&#3627408454;
??????
??????
??????=
&#3627408453;
2
3∙&#3627408454;
??????
1
2
??????

4

Critical bed slope channel /river
4

Hydraulic jump [watersprong]
When supercritical flow [schietend] changes to subcritical
flow [stromend] a hydraulic jump will occur
5

 
 
21
2
2
3
21
vvv
vv
wa


 Hydraulic jump, energy loss
5