6-1 INTRODUCTION
TheDataEncryptionStandard(DES)isasymmetric-
keyblockcipherpublishedbytheNationalInstituteof
StandardsandTechnology(NIST).
6.1.1History
6.1.2Overview
Topics discussed in this section:
In1973,NISTpublishedarequestforproposalsfora
nationalsymmetric-keycryptosystem.Aproposalfrom
IBM,amodificationofaprojectcalledLucifer,was
acceptedasDES.DESwaspublishedintheFederal
RegisterinMarch1975asadraftoftheFederal
InformationProcessingStandard(FIPS).
6.1.1 History
DESisablockcipher,asshowninFigure6.1.
6.1.2 Overview
Figure 6.1 Encryption and decryption with DES
6-2 DES STRUCTURE
Theencryptionprocessismadeoftwopermutations
(P-boxes),whichwecallinitialandfinal
permutations,andsixteenFeistelrounds.
6.2.1Initial and Final Permutations
6.2.2Rounds
6.2.3Cipher and Reverse Cipher
6.2.4Examples
Topics discussed in this section:
6-2 Continue
Figure 6.2 General structure of DES
6.2.1 Initial and Final Permutations
Figure 6.3 Initial and final permutation steps in DES
6.2.1Continue
Table 6.1 Initial and final permutation tables
Example 6.1
6.2.1Continued
Findtheoutputofthefinalpermutationboxwhentheinput
isgiveninhexadecimalas:
Onlybit25andbit63are1s;theotherbitsare0s.Inthefinal
permutation,bit25becomesbit64andbit63becomesbit15.
Theresultis
Solution
6.2.1Continued
The initial and final permutations are
straight P-boxes that are inverses
of each other.
They have no cryptography significance in
DES.
Note
DESuses16rounds.EachroundofDESisaFeistel
cipher.
6.2.2 Rounds
Figure 6.4
A round in DES
(encryption site)
TheheartofDESistheDESfunction.TheDESfunction
appliesa48-bitkeytotherightmost32bitstoproducea
32-bitoutput.
6.2.2Continued
DES Function
Figure 6.5
DES function
Usingmixersandswappers,wecancreatethecipherand
reversecipher,eachhaving16rounds.
6.2.3 Cipher and Reverse Cipher
FirstApproach
Toachievethisgoal,oneapproachistomakethelast
round(round16)differentfromtheothers;ithasonlya
mixerandnoswapper.
In the first approach, there is no swapper in
the last round.
Note
6.2.3Continued
Figure 6.9 DES cipher and reverse cipher for the first approach
6.2.3Continued
Table 6.12 Parity-bit drop table
Table 6.13 Number of bits shifts
6.2.3Continued
Table 6.14 Key-compression table
Example 6.5
6.2.4 Examples
Wechoosearandomplaintextblockandarandomkey,and
determinewhattheciphertextblockwouldbe(allin
hexadecimal):
Table 6.15 Trace of data for Example 6.5
Example 6.5
Table 6.15 Trace of data for Example 6.5 (Conintued
6.2.4Continued
Continued
Example 6.6
6.2.4Continued
LetusseehowBob,atthedestination,candecipherthe
ciphertextreceivedfromAliceusingthesamekey.Table6.16
showssomeinterestingpoints.
6-3 DES ANALYSIS
CriticshaveusedastrongmagnifiertoanalyzeDES.
Testshavebeendonetomeasurethestrengthofsome
desiredpropertiesinablockcipher.
6.3.1Properties
6.3.2Design Criteria
6.3.3DES Weaknesses
Topics discussed in this section:
Twodesiredpropertiesofablockcipherarethe
avalancheeffectandthecompleteness.
6.3.1 Properties
Example 6.7
TochecktheavalancheeffectinDES,letusencrypttwo
plaintextblocks(withthesamekey)thatdifferonlyinonebit
andobservethedifferencesinthenumberofbitsineach
round.
Example 6.7
6.3.1Continued
Althoughthetwoplaintextblocksdifferonlyintherightmost
bit,theciphertextblocksdifferin29bits.Thismeansthat
changingapproximately1.5percentoftheplaintextcreatesa
changeofapproximately45percentintheciphertext.
Table 6.17 Number of bit differences for Example 6.7
Continued
Example 6.10
6.3.3Continued
Letustesttheclaimaboutthecomplementkeys.Wehave
usedanarbitrarykeyandplaintexttofindthecorresponding
ciphertext.Ifwehavethekeycomplementandtheplaintext,
wecanobtainthecomplementofthepreviousciphertext
(Table6.20).
6-4 Security of DES
DES,asthefirstimportantblockcipher,hasgone
throughmuchscrutiny.Amongtheattemptedattacks,
threeareofinterest:brute-force,differential
cryptanalysis,andlinearcryptanalysis.
6.4.1Brute-Force Attack
6.4.2Differential Cryptanalysis
6.4.3Linear Cryptanalysis
Topics discussed in this section: