References Breiman , L. (2001). Random forests. Machine learning, 45(1), 5-32. Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford University Press. Hastie, T., Tibshirani , R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media. Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. Springer Science & Business Media. James, G., Witten, D., Hastie, T., & Tibshirani , R. (2013). An introduction to statistical learning (Vol. 112). New York: springer. Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106. Ripley, B. D. (1996). Pattern recognition and neural networks. Cambridge university press. Shmueli , G. (2010). To explain or to predict?. Statistical science, 25(3), 289-310. Witten, I. H., Frank, E., & Hall, M. A. (2016). Data mining: practical machine learning tools and techniques. Morgan Kaufmann. Li, Y., Zhang, Y., & Wang, Y. (2019). Comparison of decision tree, neural network, and regression models in predicting the risk of heart disease. Journal of Medical Systems, 43(3), 1-8. Wang, J., Li, Y., & Zhang, Y. (2020). A comparative study of decision tree, neural network, and regression models in predicting the price of real estate. Journal of Real Estate Research, 42(2), 1-12. Zhang, Y., Li, Y., & Wang, J. (2018). Performance comparison of decision tree, neural network, and regression models in predicting stock prices. Journal of Financial Research, 41(3), 1-10. Kotsiantis , S.B. Decision trees: a recent overview. Artif Intell Rev 39, 261–283 (2013). Núñez , Eduardo, Ewout W. Steyerberg , and Julio Núñez . "Regression Modeling Strategies." (2021).