DC Circuits and Networks for BTech First Year in Electrical Engineering

biswajitsahoo141 1 views 117 slides Oct 25, 2025
Slide 1
Slide 1 of 117
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117

About This Presentation

Basics of DC Circuits and Networks


Slide Content

BASICS OF CIRCUIT

Electrical Safety
“Danger—High Voltage.”

Introduction to Electric Circuits
An electric circuit is an interconnection of electrical elements.
Functions:
To transfer energy from one point to another.
Basic concepts:
Charge
Current
Voltage
Power
Energy
Circuit elements

Charge
Chargeisanelectricalpropertyoftheatomicparticleswhichmatterconsistsof.
Theunitofchargeisthecoulomb(C).
ThesymbolforthechargeisQ(or)q.
��������=
�
�.??????����
−��
=??????.�??????��
��
??????�??????������
Typesofcharge
1.Positive charge
2.Negative charge
A single electron has a charge of -1.602x10-19 c.
A single proton has a charge of +1.602x10-19 c.

Current
•The flow of free electrons in a conductor is called electric
current.
•The electric current is defined as the time rate of charge.
•The unit of current is the ampere (A).
•The symbol for the current is I (or) i.
•1ampere=1coulomb/second

Voltage
•Thepotentialdifferencebetweentwopointsinanelectriccircuit
calledvoltage.
•Definedtobethechargerateofdoingwork.
•Energyrequiredtomoveaunitchargethroughanelement.
•VoltageisrepresentedbyV(or)v.
•Voltagemaybeconstant/varying.
•Theunitofvoltageisvolt.
•1volt=1joule/coulomb=1newtonmeter/coulomb
•Voltage,

PrincipleofoperationofelectricCells
If two electrode plates of
different conducting
material (e.g. copper and
zinc) are placed in a
solution (the electrolyte) of
salts, acids or alkaline, a
voltage will appear
between them.

ANALOGY
V1
V2
V1>V2
V1–V2=Potential
difference

Power
Therateatwhichworkdonebyelectricalenergy(or)energysuppliedperunit
timeiscalledthepower.
Poweristherateatwhichenergyisexpandedortheabsorbing.
ThepowerdenotedbyeitherPorp.P=VxI
Measuredinwatts(W).
Powercanbeabsorbedorsuppliedbycircuitelements.
Positivepower→elementabsorbspower.
Negativepower→elementsuppliespower.
‘Sign’determinedbyvoltageandcurrent.
Anidealcircuit:
∑P
supplied+∑P
absorbed=0.

DCCircuits and Networks

Network
Interconnection of two or more
simple circuit elements is called
an electric network.
Circuit
A network contains at least one
closed path, it is called electrical
circuit.

“An Electric Circuit is an interconnection of
electrical elements.”
There are many elements used in a circuit:
1.Sources
2.Branch & Node
3.Loop & Mesh
4.Resistor
5.Inductor
6.Capacitor
7.Switch
8.Wire
Electric Circuit

Circuit Elements
•An element is the basic building block of a circuit.
•Electric circuit is interconnecting of the elements.
•Types of elements:
✓Active elements →Capable of generating energy (i.e.
batteries, generators).
✓Passive elements →Absorbs energy (i.e. resistors,
capacitors and inductors).
✓Voltage and current sources →the most important active
elements.

ActiveElements
Thesourcesofenergyarecalledactiveelement.Theymaybe
voltagesourceorcurrentsource.
Example:
Generators,Transistors,etc.
Dividedinto:
Independentsource:Doesnotdependtootherelementstosupply
voltageorcurrent.
Dependentsource:Reverseofindependent.
Constantvoltagesource:Voltagesameforallelements.
Constantcurrentsource:Currentsamethroughoutthecircuits.

1)IdealVoltageSources
Anidealvoltagesourceisatwo-terminalelementthat
maintainsthesamevoltageacrossitsterminalsregardless
ofthecurrentflowingthroughit.
V
t=constant,nomatterwhattheloadcurrentis.
V
t
I
L
V
o
L
t
+
-
V
o

2)IdealCurrentSources
Anidealcurrentsourceisatwo-terminalelementthat
maintainsthesamecurrentregardlessofthevoltageacross
itsterminals.
I
S=constant,nomatterwhattheloadvoltageis.
I
O
V
O
I
S

DEPENDENT(CONTROLLED)SOURCES
Dependentsourcesarewhoseoutput
(currentorvoltage)isafunctionofsome
othervoltageorcurrentinacircuit.
Thesymbolstypicallyusedtorepresent
dependentsourcesareintheshapeofa
diamond.

PassiveElements
Theseelementsstores(intheformofelectrostatic,
electromagneticenergy)ordissipatesenergy(intheformof
heat).
Example:
Resistance(R),Inductor(L),Capacitor(C).

Resistance
It is the property of a substance which opposes the flow of current
through it.
The resistance of element is denoted by the symbol “R”.
It is measured in Ohms Ω.

Inductor
It is the property of a substance which stores energy
in the form of electromagnetic field.
The inductance of element is denoted by the symbol
“L”.
It is measured in Henry Η.

Capacitor
It is the property of a substance which
stores energy in the form of electrostatic
field.
The capacitance of element is denoted by
the symbol “C”
It is measured in Farads Ϝ.
21

BilateralAndUnilateral Element
▪The bilateral elements have sameV-I
relationship for current flowin either direction.
Eg : Any conducting wire, Resistors.
▪Unilateral Elements = don’t have same V-I
relationship for current flow in either direction
Eg: Vaccum diodes, Silicon
diodes, rectifiersetc.,

LinearandNon-linear Element
▪LinearelementshavelinearV-Irelationship(i.e.Straightline)passing
throughorigin.
▪Linearelementsobeyssuperpositiontheorem. Eg:Resistors
▪Non-LinearElementshavenon-linearV-Irelationship
▪Eg:SCR,Triac

LUMPEDANDDISTRIBUTED
▪Small in size and simultaneous action
takes place for any given cause at
same time of instant.
▪size is very small compared to
wavelength of signal applied)
▪Eg: R,L,C
▪Distributed Elements are not electrically
separable for any analytical purpose.
▪Eg: Transmission line has its distributedR,L,C
throughout its entire length.

Fundamental laws
•Fundament laws that govern electric circuits:
•Ohm’s Law.
•Kirchoff’s Law.
•These laws form the foundation upon which electric circuit analysis is
built.
•Common techniques in circuit analysis and design:
•Combining resistors in series and parallel.
•Voltage and current divisions.
•Wye to delta and delta to wye transformations.
•These techniques are restricted to resistive circuits.

Ohm’s Law
Relationship between current and voltage within a
circuit element.
The voltage across an element is directly
proportional to the current flowing through it →v α i
Thus::v=iRand R=v/i
Where:
R is called resistor.
Has the ability to resist the flow of
electric current.
Measured in Ohms (Ω)
v=iR

Value of R :: varies from 0 to infinity
Extreme values == 0 & infinity.
Only linear resistors obey Ohm’s Law.
Short circuit Open Circuit
Ohm’s Law

Conductance (G):
Unit mhoor Siemens(S).
Reciprocal of resistance R
G = 1 / R
Has the ability to conduct electric
current
Ohm’s Law
Power:
P = iv →i( iR ) = i
2
R watts
→(v/R) v = v
2
/R watts
R and G are positive quantities, thus
power is always positive.
R absorbs power from the circuit →
Passive element.

Example 1:
Determine voltage (v), conductance (G) and power (p) from the
figure below.
Ohm’s Law

Example 2:
Calculate current iin figure below when the switch is in position 1.
Find the current when the switch is in position 2.
Ohm’s Law

Nodes, Branches & Loops
Elements of electric circuits can be interconnected in several way.
Need to understand some basic concepts of network topology.
Branch: Represents a single element
(i.e. voltage, resistor etc.)
Node: The meeting point between two or more branches.
Loop: Any closed path in a circuit.

BRANCH, NODE, LOOP, MESH
Branch : any portion of a circuit with two terminals
connected to it.
A branch may consist of one or more circuit elements.

Node : the point of connection between two or more branches.
A node usually indicated by a dot in a circuit.

Loop : any closed path through the circuit in which no node
is encountered more than once.
Mesh : a loop that does not contain other loops.

Example 3:
Determine how many branches and nodes for the following circuit.
Nodes, Branches & Loops

5 Branches
1 Voltage Source
1 Current Source
3 Resistors
3 Nodes
a
b
c
Nodes, Branches & Loops

Example 4:
Determine how many branches and nodes for the following circuit.
Nodes, Branches & Loops

Kirchoff’s Laws

Kirchhoff'sLaws
Kirchhoff'scircuitlawsaretwoequalitiesthatdealwiththe
conservationofchargeandenergyinelectricalcircuits.
TwoLawsofKirchhoff'sareasfollows:
1.Kirchhoff'sCurrentLaw.
2.Kirchhoff'sVoltageLaw.

Kirchoff’sCurrentLaw(KCL)
ThislawisalsocalledKirchhoff'sfirstlaw,Kirchhoff'spoint
rule,Kirchhoff'sjunctionrule(ornodalrule).
Theprincipleofconservationofelectricchargeimpliesthat:
“Atanynode(junction)inanelectricalcircuit,thesum
ofcurrentsflowingintothatnodeisequaltothesumof
currentsflowingoutofthatnode,
orThealgebraicsumofcurrentsinaofconductors
meetingatapointiszero.”

•Thecurrententeringany
junctionisequaltothecurrent
leavingthatjunction.
•i
1+i
4=i
2+i
3
I=0
•Thealgebraicsumofcurrent
entering/leavinganode(or
closedboundary)iszero.
Current enters = +ve
Current leaves = -ve
∑ current entering = ∑ current leaving
Kirchoff’sCurrentLaw(KCL)

Kirchoff’s Laws
Example 5:
Given the following circuit, write the equation for currents.

Example 6:
Current in a closed boundary
Kirchoff’s Laws

Example 7:
Use KCL to obtain currents i
1, i
2, and i
3in the circuit.
Kirchoff’s Laws

Kirchhoff'svoltagelaw(KVL)
•ThislawisalsocalledKirchhoff'ssecondlaw,Kirchhoff'sloop
(ormesh)rule.
•Theprincipleofconservationofenergyimpliesthat
“Thedirectedsumoftheelectricalpotentialdifferences
(voltage)aroundanyclosedcircuitiszero,
ortheemfsinanyclosedloopisequivalenttothesumofthe
potentialdropsinthatloop”

Thesumofallthevoltagesaroundthe
loopisequaltozero.
v
1+v
2+v
3-v
4=0
=IRV
emf
Kirchhoff'svoltagelaw(KVL)
The algebraic sum of the products of the resistances of the
conductors and the currents in them in a closed loop is equal to
the total emf available in that loop.
Similarly to KCL, it can be stated as:

Example 8:
Use KVL to obtain v
1, v
2and v
3.
Kirchhoff'svoltagelaw(KVL)

Example 9:
Use KVL to obtain v
1, and v
2.
Kirchhoff'svoltagelaw(KVL)

Example 10:
Calculate power dissipated in 5Ωresistor.
10
Kirchhoff'svoltagelaw(KVL)

Two or more circuit elements are said to be in series if the current
from one element exclusively flows into the next elements.
All series elements have the same current.
Series Resistors
Equivalent series resistance:
�
??????�=෍
�=�
??????
�
�=�
�+�
�+⋯+�
??????
Series Circuit

Example 11:
For the circuit shown,
a) Find the equivalent resistance seen by the source.
b) Find the current I .
c) Calculate the voltage drop in each resistor.
d) Calculate the power dissipated by each resistor.
e) Find the power output of the source.
Given: V= 24 V, R
1 = 1 , R
2 = 3 , and R
3= 4 .
EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
Series Circuit

EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
b) ??????=
??????
�
??????�
=
24??????

=3??????
c) �
1=????????????
1=3??????1Ω=3�
�
2=????????????
2=3??????3Ω=9�
�
3=????????????
3=3??????4Ω=12�
Solution:
a)??????
??????�=??????
1+??????
2+??????
3
=1+3+4
=8
R
EQ
Note: �
1+�
2+�
3=3+9+12=24�
The total voltage drop is equal to the voltage output of the source.

EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
Note: ??????
1+??????
2+??????
3=9+27+36=72�
The total power dissipated by the resistors is the same as the power
output by the source.
e)??????=??????�=3??????24�=72�
d)??????
1=??????
2
??????
1
=3??????
2

=9�
??????
2=??????
2
??????
2
=3??????
2

=27�
??????
3=??????
2
??????
3
=3??????
2

=36�

Two or more circuit elements are said to be in parallel if the
elements share the same terminals.
All parallel elements have the same voltage.
Parallel Resistors
Equivalent parallel resistance:
or
where
EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
�
�
??????�
=
�
�
�
+
�
�
�
+⋯+
�
�
??????
�
??????�=
�

�
�
�
+ൗ
�
�
�
+⋯+ൗ
�
�
??????
�
1=�
2=�
3=�
4
Parallel Circuit

Various Parallel Resistors Networks
EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
Parallel Circuit

EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
•Example 12:
For the circuit shown,
a) Find the equivalent resistance seen by the source.
b) Find the total current I .
c) Calculate the currents in each resistor.
d) Calculate the power dissipated by each resistor.
e) Find the power output of the source.
Given: V= 24 V, R
1 = 1 , R
2 = 3 , and R
3= 4 .

EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
Solution:
a)
1
�
??????�
=
1
�
1
+
1
�
2
+
1
�
3
=
1
1
+
1
3
+
1
4
=1.583Ω
∴??????
??????�=
1
1.583
=0.632Ω
b) ??????=
??????
�
??????�
=
24??????
0.632Ω
=37.975??????≈38??????
R
EQ
I

EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
c) ??????
1=
??????
�
1
=
24??????

=24??????
R
EQ
I
??????
2=
??????
�
2
=
24??????

=8??????
??????
3=
??????
�
3
=
24??????

=6??????
Note: ??????
1+??????
2+??????
3=24+8+6=38??????
The sum of the individual current is equal to the current output of the
source.

EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
Note: ??????
1+??????
2+??????
3=576+192+144=912�
The total power dissipated by the resistors is the same as the power
output by the source.
e)??????=??????�=38??????24�=912�
d)??????
1=??????
1
2
??????
1
=24??????
2

=576�
??????
2=??????
2
2
??????
2
=8??????
2

=192�
??????
3=??????
3
2
??????
3
=6??????
2

=144�

Example 13:
TheWheatstone Bridge consists of two series circuits that are connected in
parallel with each other.
1) Find the value of the voltage
V
ab= V
ad-V
bdin terms of the four
resistances and the source voltage V
s.
2) If R
1= R
2= R
3= 1 k, V
s= 12 V,
and V
ab= 12 mV, what is the value
of R
x.
EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
Series and Parallel Resistor Combinations

EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
Solution:
1) �
�??????=
�
2
�1+�2
�
??????and �
�??????=
�
??????
�3+�??????
�
??????
Thus,
�
��=�
�??????−�
�??????=ቆ
�
2
�1+�2
− ൰
�
??????
�3+�??????
�
??????
2) 0.012=
1000
1000+1000

�
??????
1000+�
??????
12
??????
??????=996Ω
R
1
R
2
R
3
R
X
V
s
a V
ab b
c
d
R
1
R
2
R
3
R
X

Conductance (G)
Series conductance:
1/G
eq= 1/G
1+1/G
2+…
Parallel conductance:
G
eq= G
1+G
2+…

VDR is useful in determining the voltage drop across a resistance within a
series circuit.
where V
X= the voltage drop across the measured resistor,
R
X= the resistance value of the measured resistor,
R
EQ= the circuit total resistance,
V
S= the circuit applied voltage
EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
??????
??????=
�
??????
�
??????�
??????
�
+ V
1-
+ V
3-
+
V
2
-
S
Voltage Divider Rule (VDR)

Series Resistors & Voltage Division
Voltage Division:
v
1= iR1 & v2= iR2
i= v/(R1+R2 )
Thus:
v1=vR1/(R1+R2)
v2=vR2/(R1+R2)

Example 14:
Determine the voltage across the R
2and the R
3.
Solution:
EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
�
2=
??????
2
??????
??????�
�
�=
20
10+20+30
60=20V
�
3=
??????
3
??????
??????�
�
�=
30
10+20+30
60=30V

EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
CDR is useful in determining the current flow through one branch of
a parallel circuit.
where I
X= the current flow through any parallel branches,
R
X= the resistance of the branch through which the
current is to be determined,
R
EQ= the total resistance of the parallel branch,
I
S= the circuit applied current
??????
??????=
�
??????�
�
??????
??????
�
Current Divider Rule (CDR)

Example 15:
Find each of the branch currents in the figure shown below.
EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
Solution:
??????
1??????
2??????
3
1
�??????�
=
1
�1
+
1
�2
+
1
�3
=
1
3??????Ω
+
1
8??????Ω
+
1
24??????Ω
=
1
2??????Ω
??????
??????�=2??????Ω

Thus,
??????
�1=
??????
??????�
??????1
∙??????=
2??????Ω
3??????Ω
12????????????=8????????????
??????
�2=
??????
??????�
??????2
∙??????=
2??????Ω
8??????Ω
12????????????=3????????????
??????
�3=
??????
??????�
??????3
∙??????=
2??????Ω
24??????Ω
12????????????=1????????????
??????
�1+??????
�2+??????
�3=8+3+1=12???????????? ( KCL )
EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING

For the particular case of two parallelresistors,
and, the current passing through
R
1and R
2are
??????
1=
�
??????�
�
1
∙??????=
�1�2
�1+�2
�
1
∙??????
??????
2=
�
??????�
�2
∙??????=
�1�2
�1+�2
�2
∙??????
EEE 1012 INTRODUCTION TO ELECTRICAL ENGINEERING
�
??????�=�
�ฮ�
�=
�
��
�
�
�+�
�
I
I
1 I
2
??????
�=
�
�
�
�+�
�
∙??????
??????
�=
�
�
�
�+�
�
∙??????
Note: It onlyworks for two parallel resistors.

Voltage and Current Division
Example 16:
Calculate v
1, i
1, v
2and i
2.

Voltage and Current Division
Example 17:
Determine i
1through i
4.

Voltage and Current Division
Example 18:
Determine vand i.
Answer v = 3v, I = 6 A.

Voltage and Current Division
Example 19:
Determine Iand V
s if the current through 3Ωresistor = 2A.

Voltage and Current Division
Example 20:
Determine R
ab.

Voltage and Current Division
Example 21:
Determine v
xand power absorbed by the 12Ωresistor.
Answer v = 2v, p = 1.92w.

Nodal Analysis
Inelectriccircuitsanalysis,nodalanalysis,node-
voltageanalysis,orthebranchcurrentmethodisa
methodofdeterminingthevoltage(potential
difference)between"nodes“)inanelectricalcircuitin
termsofthebranchcurrents.

Steps to Solve Nodal Analysis :
➢Noteallconnectedwiresegmentsinthecircuit.Thesearethenodesof
nodalanalysis.
➢Selectonenodeasthegroundreference.Thechoicedoesnotaffectthe
resultandisjustamatterofconvention.Choosingthenodewithmost
connectionscansimplifytheanalysis.
➢Assignavariableforeachnodewhosevoltageisunknown.Ifthevoltageis
alreadyknown,itisnotnecessarytoassignavariable.
➢Foreachunknownvoltage,formanequationbasedonKirchhoff's
currentlaw.Basically,addtogetherallcurrentsleavingfromthenode
andmarkthesumequaltozero.

•Iftherearevoltagesourcesbetweentwounknownvoltages,jointhetwo
nodesasasupernode.Thecurrentsofthetwonodesarecombinedina
singleequation,andanewequationforthevoltagesisformed.
•Solvethesystemofsimultaneousequationsforeachunknown
voltage.

StepsofNodalAnalysis
+

V 500W
500W
1kW
500W
500W
I
2
1.Chooseareference(ground)node.
2.Assignnodevoltagestotheothernodes.
3.ApplyKCLtoeachnodeotherthanthereferencenode;
expresscurrentsintermsofnodevoltages.

Currents and Node Voltages
R2
V
1 V
2
V
1−V
2
R2
R1
V
1
V
1
R1

KCLatNode1
R2
R1
I
1
V
1 V
2
1
V
1−V
2
+
V
1
R2R1
I=
KCLatNode2
R3
V
2 V
3V
1
=0
R2R3R4
V
2−V
1
+
V
2
+
V
2−V
3

KCLatNode3
2
V
3−V
2
+
V
3
R4R5
=IR5
R4
I
2
V
2 V
3

Network Theorems
•SuperpostionTheorem
•TheveninTheorem
•NortonTheorem
•MaximumTransferTheorem

•ItisusedtofindthesolutiontonetworksContainingtwoormoreVoltagesources.
•Thecurrentthrough,orvoltageacross,anelementinalinearbilateralnetworkisequalto
thealgebraicsumofthecurrentsorvoltagesproducedindependentlybyeachsource.
•Foratwo-sourcenetwork,ifthecurrentproducedbyonesourceisinonedirection,while
thatproducedbytheotherisintheoppositedirectionthroughthesameresistor,the
resultingcurrentisthedifferenceofthetwoandhasthedirectionofthelarger.
•Iftheindividualcurrentsareinthesamedirection,theresultingcurrentisthesumof
twointhedirectionofeithercurrent.
•Thetotalpowerdeliveredtoaresistiveelementmustbedeterminedusingthetotal
currentthroughorthetotalvoltageacrosstheelementandcannotbedeterminedbya
simplesumofthepowerlevelsestablishedbyeachsource
Superposition Theorem

How to Apply Superposition Theorem
ForapplyingSuperpositiontheorem:
•Replaceallotherindependentvoltagesourceswithashortcircuit
(therebyeliminatingdifferenceofpotential.i.e.V=0,internal
impedanceofidealvoltagesourceisZERO(shortcircuit).
•Replaceallotherindependentcurrentsourceswithanopen circuit
(therebyeliminatingcurrent.i.e.I=0,internalimpedanceofidealcurrent
sourceisinfinite(opencircuit).

ForExample:
Solution:
•Theapplicationofthesuperpositiontheoremis,whereitisusedtocalculate
thebranchcurrent.
•Webeginbycalculatingthebranchcurrentcausedbythevoltagesourceof
120V.
120V
3
6
12A4
2
i
1
i
2
i
3
i
4

•Tocalculatethebranchcurrent,thenodevoltageacrossthe3Ωresistormustbe
known.Therefore
120V
3
6
4
2
i
'
1i
'
2
i
'
3
i
'
4
v
1
6 32+4
+
v
1−120
+
v
1v
1
=0
wherev
1=30V
Theequationsforthecurrentineachbranch,
Bysubstitutingtheidealcurrentwithopencircuit,
wedeactivatethecurrentsource.

120−30
=15A
i'
2=
6
30
=10A
i
'
3=i
'
4=
3
30 =5A
6
Inordertocalculatethecurrentcausebythecurrentsource,we
deactivatetheidealvoltagesourcewithashortcircuit,asshown
3
6
12A4
2
1
i
"
2
i
"
i
3
"
4
i
"
i'
1=

Todeterminethebranchcurrent,solvethenode voltagesacrossthe3Ωand
4Ωresistorsasshownin Figure4
Thetwonodevoltagesare
3
6
12A4
2
v
4
+
v
3
-
+
-
2
+
v
3
+
v
3v
3−v
4
36
42
++12
v
4−v
3v
4
=0
=0

•Bysolvingtheseequations,weobtain
v
3=-12V
v
4=-24V
Nowwecanfindthebranchescurrent,

Tofindtheactualcurrentofthecircuit,addthecurrentsdueto
boththecurrentandvoltagesource,

ApplicationofNetworkTheorems
•Networktheoremsareusefulinsimplifyinganalysisofsomecircuits.
•Butthemoreusefulaspectofnetworktheoremsistheinsightitprovides
intothepropertiesandbehaviourofcircuits
•Networktheoremalsohelpinvisualizingtheresponseofcomplex
network.
•TheSuperpositionTheoremfindsuseinthestudyofalternatingcurrent
(AC)circuits,andsemiconductor(amplifier)circuits,wheresometimes
ACisoftenmixed(superimposed)withDC

Real-Life Applications of Superposition Theorem
1.PowerDistributionNetworks
•Incitypowergrids,electricitycomesfrommultiplegeneratingstations.
•Superpositionhelpsanalyzehowmucheachstationcontributestothe
current/voltageatdifferentpointsinthenetwork.
•Usedinloadsharingandfaultanalysis.
2.CommunicationSystems
•Inradio,TV,andmobilecommunicationcircuits,signalsfrommultiple
sourcesoverlap.
•Superpositionprincipleisusedinmodulation,demodulation,andsignal
filtering.
•Forexample:analyzinghowAM/FMsignalscombineinareceiver.

Real-Life Applications of Superposition Theorem
3.ElectricalMachines(Motors&Generators)
•Motorsoftenhavemultipleinputs(e.g.,excitation+armature).
•Superpositionhelpscalculateresultingfluxes,voltages,orcurrentsby
consideringeachsourceseparately.
4.ElectronicCircuits(Amplifiers,Filters)
•CircuitsmayhavemultipleAC+DCsources(likeabiasingsource+input
signal).
•SuperpositiontheoremseparatestheDCresponseandtheACresponseto
designamplifiersproperly.
•Verycommoninop-ampcircuitsandsignalprocessinghardware.

Real-Life Applications of Superposition Theorem
5.HouseholdPowerSystems
•Whenmultipleappliancesareconnectedtothesamepowerline,thetotalcurrent
distributioncanbecalculatedbyconsideringeachappliance’scontributionusing
superposition.
6.RenewableEnergySystems
•Inhybridsystems(solar+wind+battery+grid),multiplevoltage/currentsources
feedintothesamebus.
•Superpositionhelpspredicthoweachsourcecontributestosupplyandensures
balancedoperation.
7.AudioEngineering
•Insoundsystems,multipleinputsignals(mic,instruments,tracks)overlap.
•Superpositionisappliedtounderstandhowdifferentsignalscombineinacircuit
(mixers,equalizers,speakers).

Thevenin'stheorem
Thevenin'stheoremforlinearelectricalnetworksstatesthat
“Anycombinationofvoltagesources,currentsources,andresistorswithtwo
terminalsiselectricallyequivalenttoasinglevoltagesourceVandasingle
seriesresistorR.”
Anytwo-terminal,linearbilateraldcnetworkcanbereplacedbyanequivalent
circuitconsistingofavoltagesourceandaseriesresistor.

Thevenin’sTheorem
TheTheveninequivalentcircuitprovidesanequivalenceat theterminalsonly.
Thistheoremachievestwoimportant objectives:
•Providesawaytofindanyparticularvoltageorcurrentinalinear
networkwithone,two,oranyothernumberofsources
•Wecanconcentrateonaspecificportionofanetwork byreplacingthe
remainingnetworkwithanequivalent circuit

CalculatingtheTheveninequivalent
•SequencetopropervalueofRThandETh
•Preliminary
1.Removethatportionofthenetworkacrosswhich theThévenin
equationcircuitistobefound.
Inthe figurebelow,thisrequiresthattheloadresistorRLbe temporarily
removedfromthenetwork.

•Marktheterminalsoftheremainingtwo-terminalnetwork.(Theimportance
ofthisstepwillbecomeobviousasweprogressthroughsomecomplex
networks)
TofindRTh:
•CalculateRThbyfirstsettingallsourcestozero
•Voltagesourcesarereplacedbyshortcircuits,andcurrentsourcesbyopen
circuits)
•Thenfindingtheresultantresistancebetweenthetwomarkedterminals.
•Iftheinternalresistanceofthevoltageand/orcurrentsourcesisincludedinthe
originalnetwork,itmustremainwhenthesourcesaresettozero.
CalculatingtheTheveninequivalent

TocalculateETh:
•CalculateEThbyfirstreturningallsourcestotheiroriginalpositionandfindingthe
open-circuitvoltagebetweenthemarkedterminals.
•Thisstepisinvariablytheonethatwillleadtothemostconfusionanderrors.
•Inallcases,keepinmindthatitistheopen-circuitpotentialbetweenthetwo
terminalsmarkedinstep2.
CalculatingtheTheveninequivalent

•Conclusion:
•DrawtheThéveninequivalentcircuit
withtheportionofthecircuit
previouslyremoved replaced
betweentheterminalsofthe
equivalentcircuit.
•Thisstepisindicatedbythe
placementoftheresistorR
Lbetween
theterminalsoftheThévenin
equivalentcircuit
InsertFigure9.26(b)
CalculatingtheTheveninequivalent

AnotherwayofCalculatingtheThéveninequivalent
•MeasuringVOCandISC
•TheThéveninvoltageisagaindeterminedbymeasuringtheopen-circuit
voltageacrosstheterminalsofinterest,thatis,ETh=VOC.
•TodetermineR
Th,ashort-circuitconditionisestablishedacrosstheterminals
ofinterestandthecurrentthroughtheshortcircuitI
scismeasuredwithan
ammeter
•UsingOhm’slaw:
R
Th=V
oc/I
sc

Example:
Solution:
•InordertofindtheTheveninequivalentcircuitforthecircuitshowninFigure
1,calculatetheopencircuitvoltage,V
ab.
•Notethatwhenthea,bterminalsareopen,thereisnocurrentflowto4Ω
resistor.
•Therefore,thevoltagev
abisthesameasthevoltageacrossthe3Acurrent
source,labeledv
1.
•Tofindthevoltagev
1,solvetheequationsforthesingularnodevoltage.By
choosingthebottomrightnodeasthereferencenode,
25V
20
+
-
v
13A
5 4
+
a
v
ab
-
b

•Bysolvingtheequation,v
1=32V.
•Therefore,theTheveninvoltageV
thforthecircuitis32V.
•Thenextstepistoshortcircuittheterminalsandfindthe shortcircuitcurrentfor
thecircuitshowninFigure2.
•Note thatthecurrentisinthesamedirectionasthefallingvoltage attheterminal.
−3=0
v
1−25
+
v
1
5 20
25V
20
+
-
v
23A
5
-
+
v
ab
4a
i
sc
b
Figure2

4
−3+
v
2
=0
v
2−25
+
v
2
5 20
Currentisccanbefoundifv2isknown.Byusingthebottom
rightnodeasthereferencenode,theequationforv2becomes
Bysolvingtheaboveequation,v
2=16V.Therefore,theshort
circuitcurrenti
scis
TheTheveninresistanceR
This
Figure3showstheTheveninequivalentcircuitfortheFigure1.

Real-Life Applications of Thevenin’s Theorem
1.PowerSystemAnalysis(Grids&Distribution)
•Usedtomodelacomplexpowernetwork(generators+transmissionlines+
transformers)intoasingleTheveninequivalentsourceforanalyzingthe
effectononeload.
•Makesfaultcurrentanalysisandstabilitystudieseasier.
2.DesignofElectricalMachines(Motors&Generators)
•Theveninequivalentsareusedtorepresentcomplicatedinternalcircuitsof
synchronousmachines,inductionmotors,andtransformers.
•Simplifiesperformancecalculation(startingtorque,faultbehavior,
efficiency).

Real-Life Applications of Thevenin’s Theorem
3.Short-Circuit&FaultAnalysis
•Inindustriesandpowergrids,Thevenin’stheoremhelpscalculatefault
currentsataparticularbusornode.
•Veryimportantfordesigningcircuitbreakers,relays,andprotectivesystems.
4.Battery&PowerSupplySystems
•AbatterypackwithinternalresistancecanbereplacedbyitsThevenin
equivalenttostudyitseffectondifferentloads.
•Usedinbatterymanagementsystems(BMS)forEVsandsolarstorage.

Real-Life Applications of Thevenin’s Theorem
5.Electronics(Amplifiers,Transistors,Op-Amps)
•UsedtoreplacecomplicatedtransistorbiasingcircuitswithasimpleThevenin
source+resistance.
•HelpsinAC&DCanalysisofamplifierstages.
6.Communication&SignalProcessing
•TransmissionlinesandantennacircuitsaremodeledusingTheveninequivalents.
•Usedinimpedancematchingformaximumpowertransfer(importantinRF
circuits).
7.TestingandMeasurement
•Whenanalyzingtheeffectofameasuringdevice(likeavoltmeterorsensor)ona
circuit,Thevenin’stheoremhelpssimplifythesourcesideintoonevoltage+
resistance.

Nortontheorem
Norton'stheoremforlinearelectricalnetworksstatesthatanycollectionof
voltagesources,currentsources,andresistorswithtwoterminalsis
electricallyequivalenttoanidealcurrentsource,I,inparallelwithasingle
resistor.
Anytwolinearbilateraldcnetworkcanbereplacedbyanequivalent
circuitconsistingofacurrentandaparallelresistor.

CalculatingtheNortonequivalent
ThestepsleadingtothepropervaluesofI
NandR
N
Preliminary
•RemovethatportionofthenetworkacrosswhichtheNortonequivalentcircuitis
found
•Marktheterminalsoftheremainingtwo-terminalnetwork
TofindR
N:
•CalculateR
Nbyfirstsettingallsourcestozero(voltagesourcesarereplacedwith
shortcircuits,andcurrentsourceswithopencircuits)andthenfindingthe
resultantresistancebetweenthetwomarkedterminals.
•(Iftheinternalresistanceofthevoltageand/orcurrentsourcesisincludedinthe
originalnetwork,itmustremainwhenthesourcesaresettozero.)
•SinceR
N=R
Ththeprocedureandvalueobtainedusingtheapproachdescribedfor
Thévenin’stheoremwilldeterminethepropervalueofR
N

Norton’sTheorem
TodetermineIN:
•CalculateINbyfirstreturningallthesourcestotheiroriginalpositionand
thenfindingtheshort-circuitcurrentbetweenthemarkedterminals.
•Itisthesamecurrentthatwouldbemeasuredbyanammeterplaced
betweenthemarkedterminals.
Conclusion:
•DrawtheNortonequivalentcircuitwiththeportionofthecircuitpreviously
removedreplacedbetweentheterminalsoftheequivalentcircuit

Example:
Step1:Sourcetransformation(The25Vvoltagesourceisconvertedtoa
5Acurrentsource.)
25V
20
3A
5 4
a
b
20
3A5
4
a
b
5A

4
8A
4
a
b
Step3:Sourcetransformation(combinedserialresistanceto
producetheTheveninequivalentcircuit.)
8
32V
a
b
Step2:Combinationofparallelsourceandparallelresistance


Step4:Sourcetransformation(ToproducetheNorton
equivalentcircuit.Thecurrentsourceis4A(I=V/R)
32V/8
a
b
Nortonequivalentcircuit.
4A

Maximumpowertransfertheorem
Themaximumpowertransfertheoremstatesthat,to
obtainmaximumexternalpowerfromasourcewithafinite
internalresistance,theresistanceoftheloadmustbeequal
totheresistanceofthesourceasviewedfromtheoutput
terminals.
Aloadwillreceivemaximumpowerfromalinearbilateraldcnetwork
whenitstotalresistivevalueisexactlyequaltotheThévenin
resistanceofthenetworkas“seen”bytheload
RL=RTh
So,R
eq=R
th+R
L
R
eq=2R
L

Resistancenetwork
whichcontains
dependentand
independentsources
2
4R
L
V
Th
2
V
ThR
L
P
max= =
•Maximumpowertransferhappenswhentheload resistanceR
Lisequaltothe
Theveninequivalent resistance,R
Th.TofindthemaximumpowerdeliveredtoR
L
(2R
L)
2

Thankyou