REFERENCES Dinesh, A., Mutalik , S., Feldman, J. and Tadinada , A., 2020. Value-addition of lateral cephalometric radiographs in orthodontic diagnosis and treatment planning. The Angle Orthodontist , 90 (5), pp.665-671. Song, Y., Ren, S., Lu, Y., Fu, X. and Wong, K.K., 2022. Deep learning-based automatic segmentation of images in cardiac radiography: a promising challenge. Computer Methods and Programs in Biomedicine , 220 , p.106821 Payer, C., Štern , D., Bischof, H. and Urschler , M., 2019. Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Medical image analysis , 54 , pp.207-219. Arık , S.Ö., Ibragimov , B. and Xing, L., 2017. Fully automated quantitative cephalometry using convolutional neural networks. Journal of Medical Imaging , 4 (1), pp.014501-014501 Urschler , M., Ebner, T. and Štern , D., 2018. Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization. Medical image analysis , 43 , pp.23-36. Lindner, C. and Cootes , T.F., 2015, April. Fully automatic cephalometric evaluation using random forest regression-voting. In IEEE International Symposium on Biomedical Imaging (Vol. 13). Citeseer . Ibragimov , B., Likar , B., Pernus , F. and Vrtovec , T., 2014, April. Automatic cephalometric X-ray landmark detection by applying game theory and random forests. In Proc. ISBI Int. Symp . on Biomedical Imaging (pp. 1-8). © Springer‐Verlag Berlin Heidelberg 2014. Oh, K., Oh, I.S. and Lee, D.W., 2020. Deep anatomical context feature learning for cephalometric landmark detection. IEEE Journal of Biomedical and Health Informatics , 25 (3), pp.806-817. Zeng, M., Yan, Z., Liu, S., Zhou, Y. and Qiu, L., 2021. Cascaded convolutional networks for automatic cephalometric landmark detection. Medical image analysis , 68 , p.101904. Mahto, Ravi Kumar, Dashrath Kafle , Abhishek Giri, Sanjeev Luintel , and Arjun Karki. "Evaluation of fully automated cephalometric measurements obtained from web-based artificial intelligence driven platform." BMC Oral Health 22, no. 1 (2022): 1-8. Zeng, Minmin , Zhenlei Yan, Shuai Liu, Yanheng Zhou, and Lixin Qiu. "Cascaded convolutional networks for automatic cephalometric landmark detection." Medical Image Analysis 68 (2021): 101904. Yu, H. J., S. R. Cho, M. J. Kim, W. H. Kim, J. W. Kim, and J. Choi. "Automated skeletal classification with lateral cephalometry based on artificial intelligence." Journal of dental research 99, no. 3 (2020): 249-256. Wang, Ching-Wei, Cheng-Ta Huang, Jia-Hong Lee, Chung- Hsing Li, Sheng-Wei Chang, Ming- Jhih Siao , Tat-Ming Lai et al. "A benchmark for comparison of dental radiography analysis algorithms." Medical image analysis 31 (2016): 63-76. Lindner, Claudia, and Tim F. Cootes . "Fully automatic cephalometric evaluation using random forest regression-voting." In IEEE International Symposium on Biomedical Imaging (ISBI) 2015–Grand Challenges in Dental X-ray Image Analysis–Automated Detection and Analysis for Diagnosis in Cephalometric X-ray Image. 2015. 37