LENET-5 – Parameter Estimation Layer Input Shape (n x m x l) Output Shape = ( (n – f + 2p) / s ) + 1 # of parameters FS = Filter Size #F = Number of Filters applied l = # of channels at input n , m = size of filter p = padding s = strides k = output feature maps First Layer: Conv3D fs=(5x5), p=0, s=1, #f=6 (32,32,1) = ( (32-5+2(0)) / 1 ) + 1 = 27 + 1 = 28 (28 x 28 , 6) = ( n x m x l ) * k = ( 5 x 5 x 1 + 1 ) * 6 = 156 Fs2 * INPUTCHANNEL * OUTPUT CHANNEL + BIAS (=# OUTPUT CHANNELS) (5*5*1*6+6) First Layer: Max-Pool fs=(2,2), p=0, s=2, #f=6 (28x28x6) = ( (28-2+2(0)) / 2 ) + 1 = 13 + 1 = 14 (14 x 14 x 6 ) Second layer: Conv3D fs=(5,5), p=0, s=1, #f=16 (14 x 14 x 6) = ( (14-5+2(0)) / 1 ) + 1 = 9 + 1 = 10 (10 x 10 x 16) = ( n x m x l ) * k = ( 5 x 5 x 6 + 1 ) * 16 = 2,416 Second layer: Max-Pool fs=(2,2), p=0, s=2, #f=16 (10 x 10 x 16) = ( (10 – 2 + 2(0)) / 2 ) + 1 = 4 + 1 = 4 (5 x 5 x 16) Flatten Layer (5 x 5 x 16) (1,400) First Dense Layer (nodes=120) (1,400) (1,120) =(input*nodes)+biases =(400*120)+120=48,120 (1*1) * 400 * 120 + 120 2 nd Dense Layer (nodes=84) (1,120) (1,84) =(120*84+84)=10,164 Final output layer (1,84) (1,10) =(84x10+10)=850 Total learnable parameters 61,706 or 241 KB AMMAR AHMED