Desarrollo de contenido tematico Nº 02.pptx

washingtonquispe4 7 views 28 slides Oct 28, 2025
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

Clases de introduccion a los semiconductores


Slide Content

ELECTRONICA ANALOGICA TEMA: El diodo semiconductor UNIDAD DIDÁCTICA: CONTENIDO TEMÁTICO – 02 DOCENTE: ING. WASHINGTON QUISPE SOTO

Temas El diodo semiconductor Polarización de un diodo Características de voltaje – corriente del diodo Circuitos equivalentes del diodo

1. El diodo semiconductor Si se toma un bloque de silicio y se dopa una parte de él con una impureza trivalente y la otra con una impureza pentavalente, se forma un límite llamado unión pn entre las partes tipo p y tipo n resultantes y se crea un diodo básico. Un diodo es un dispositivo que conduce corriente en sólo una dirección. La unión pn es la característica que permite funcionar a diodos, ciertos transistores y otros dispositivos. Un material tipo p consta de átomos de silicio y átomos de impureza trivalentes tales como el boro. El átomo de boro agrega un hueco cuando se enlaza con los átomos de silicio. Sin embargo, como el número de protones y el número de electrones son iguales en todo el material, no existe carga neta en el material y por lo tanto es neutro. Un material de silicio tipo n se compone de átomos de silicio y átomos de impureza pentavalentes tales como el antimonio. Como ya se vio, un átomo de impureza libera un electrón cuando se enlaza a cuatro átomos de silicio. Como sigue habiendo un número igual de protones y electrones (incluidos los electrones libres) por todo el material, no existe carga neta en el material y por lo tanto es neutro.

… Figura 1. (a) Algunos electrones libres en la región n cerca de la unión pn comienzan a difundirse a través de la unión y caen en huecos cerca de la unión en la región p. (b) Por cada electrón que se difunde a través de la unión y se combina con un hueco, queda una carga positiva en la región n, se crea una negativa en la región p, y se forma un potencial de barrera. Esta acción continúa hasta que el voltaje de la barrera se opone a más difusión. Las flechas entre las cargas positivas y negativas en la región de empobrecimiento representan el campo eléctrico.

… Potencial de barrera . En cualquier momento que exista una carga positiva y una carga negativa, una cerca de la otra, existe una fuerza que actúa en la carga como lo describe la ley de Coulomb. En la región de empobrecimiento existen muchas cargas positivas y muchas cargas negativas en los lados opuestos de la unión pn . Las fuerzas entre las cargas opuestas forman un campo eléctrico, como se indica en la figura 1- (b) mediante flechas entre las cargas positivas y las cargas negativas. Este campo eléctrico es una barrera para los electrones libres en la región n y se debe consumir energía para mover un electrón a través del campo eléctrico; es decir, se debe aplicar energía externa para hacer que los electrones se muevan a través de la barrera del campo eléctrico en la región de empobrecimiento. El potencial de barrera de una unión pn depende de varios factores, incluido el tipo de material semiconductor, la cantidad de dopado y la temperatura. El potencial de barrera típico es aproximadamente de 0.7 V para el silicio y de 0.3 V para el germanio a 25°C.

… Diagramas de energía de la unión PN y la región de empobrecimiento Las bandas de valencia y conducción de un material tipo n se encuentran a niveles de energía un poco más bajos que las bandas de valencia y conducción en un material tipo p. Recuerde que el material tipo p tiene impurezas trivalentes en tanto que el tipo n tiene impurezas pentavalentes. Las impurezas trivalentes ejercen fuerzas más bajas sobre los electrones de la capa externa que las impurezas pentavalentes. Las fuerzas más bajas en materiales tipo p hacen que las órbitas de los electrones sean un poco más grandes y que consecuentemente tengan una energía más grande que las órbitas de los electrones en los materiales tipo n.

… Las bandas de valencia y conducción de un material tipo n se encuentran a niveles de energía un poco más bajos que las bandas de valencia y conducción en un material tipo p. Las impurezas trivalentes ejercen fuerzas más bajas sobre los electrones de la capa externa que las impurezas pentavalentes. Las fuerzas más bajas en materiales tipo p hacen que las órbitas de los electrones sean un poco más grandes y que consecuentemente tengan una energía más grande que las órbitas de los electrones en los materiales tipo n.

2. Polarización de un diodo Polarización en directa Para polarizar un diodo se aplica un voltaje de cc a través de él. Polarización en directa es la condición que permite la circulación de corriente a través de la unión pn . La figura 3 muestra una fuente de voltaje de cc conectada por un material conductor (contactos y alambres) a través de un diodo en la dirección que produce polarización en directa

… Como las cargas iguales se repelen, el lado negativo de la fuente de voltaje de polarización “empuja” a los electrones libres, los cuales son los portadores mayoritarios en la región n, hacia la unión pn . Este flujo de electrones libre se llama corriente de electrones. El lado negativo de la fuente también genera un flujo continuo de electrones a través de la conexión externa (conductor) y hacia la región n como muestra la figura. La fuente de voltaje de polarización proporciona suficiente energía a los electrones libres para que venzan el potencial de barrera de la región de empobrecimiento y continúen moviéndose hacia la región p. Una vez que llegan a la región p, estos electrones de conducción han perdido suficiente energía para combinarse de inmediato con los huecos presentes en la banda de valencia. Entonces, los electrones quedan en la banda de valencia de la región p simplemente porque perdieron demasiada energía al vencer el potencial de barrera y permanecer en la banda de conducción.

… Como las cargas diferentes se atraen, el lado positivo de la fuente de voltaje de polarización atrae los electrones de valencia hacia el extremo izquierdo de la región p. Los huecos en la región p proporcionan el medio o “ruta” para que estos electrones de valencia se desplacen hacia la región p. Los electrones de valencia se desplazan de un hueco al siguiente hacia la izquierda. Los huecos, que son portadores mayoritarios en la región p, efectivamente (no en realidad) se desplazan a la derecha hacia la unión, como ilustra la figura 4. Este flujo efectivo de huecos es la corriente de huecos. También se ve que el flujo de electrones de valencia a través de la región p crea la corriente de huecos y los huecos son el único medio para que estos electrones fluyan.

… A medida que los electrones salen de la región p a través de la conexión externa (conductor) en dirección al lado positivo de la fuente de voltaje de polarización, dejan huecos en la región p; al mismo tiempo, estos electrones se convierten en electrones de conducción en el conductor metálico. Recuerde que la banda de conducción de un conductor se traslapa con la banda de valencia de modo que se requiere mucho menos energía para que un electrón sea un electrón libre en un conductor que en un semiconductor, y que los conductores metálicos no tienen huecos en su estructura. Existe disponibilidad continua de huecos que efectivamente se mueven hacia la unión pn para combinarse con la corriente continua de electrones cuando atraviesan la unión pn hacia la unión p.

… Polarización en inversa La polarización en inversa es la condición que en esencia evita la circulación de corriente a través del diodo. La figura 6 muestra una fuente de voltaje de cc conectada a través de un diodo en la dirección que produce polarización en inversa. Este voltaje de polarización externo se designa como V POLARIZACIÓN , como en el caso de polarización en directa. Observe que el lado positivo de V POLARIZACIÓN está conectado a la región n del diodo y el lado negativo está conectado a la región p. Observe también que la región de empobrecimiento se muestra mucho más ancha que la condición de polarización en directa o equilibrio.

… Como las cargas diferentes se atraen, el lado positivo de la fuente de voltaje de polarización “jala” los electrones libres, los cuales son los portadores mayoritarios en la región n, lejos de la unión pn . A medida que los electrones fluyen hacia el lado positivo de la fuente de voltaje, se crean iones positivos adicionales. Esto produce el ensanchamiento de la región de empobrecimiento y el consecuente empobrecimiento de los portadores mayoritarios. En la región p, los electrones procedentes del lado negativo de la fuente de voltaje entran como electrones de valencia y se desplazan de hueco en hueco hacia la región de empobrecimiento, donde crean iones negativos adicionales. Esto ensancha la región de empobrecimiento y agota los portadores mayoritarios. El flujo de electrones de valencia puede ser considerado como huecos que están siendo “jalados” hacia el lado positivo.

… El flujo inicial de portadores de carga es transitorio y subsiste sólo durante un lapso muy poco después de que se aplica el voltaje de polarización en inversa. Conforme la región de empobrecimiento se ensancha, la disponibilidad de portadores mayoritarios se reduce. A medida que más regiones n y p se quedan sin portadores mayoritarios, la intensidad del campo eléctrico entre los iones positivos y negativos se incrementa hasta que el potencial a través de la región de empobrecimiento es igual al voltaje de polarización, V POLARIZACIÓN . En ese momento, la corriente de transición en esencia cesa, excepto por una muy pequeña corriente en inversa que casi siempre se puede despreciar.

… Corriente en inversa . La corriente extremadamente pequeña que existe en la condición de polarización en inversa después de que la corriente de transición se disipa es provocada por los portadores minoritarios en las regiones n y p producidos por pares de electrón-hueco generados térmicamente. El pequeño número de electrones minoritarios libres en la región p son “empujados” hacia la unión pn por el voltaje de polarización negativo. Cuando estos electrones llegan a la región de empobrecimiento ancha, “descienden la colina de energía”, se combinan con huecos minoritarios presentes en la región n como electrones de valencia, fluyen hacia el voltaje de polarización positivo y se crea una pequeña corriente de huecos.

… Ruptura en inversa . Normalmente, la corriente en inversa es tan pequeña que se puede despreciar. No obstante, si el voltaje de polarización en inversa externo se incrementa a un valor llamado voltaje de ruptura, la corriente en inversa se incrementará drásticamente. Esto es lo que sucede. El alto voltaje de polarización en inversa proporciona energía a los electrones minoritarios, así que a medida que adquieren velocidad a través de la región p chocan con átomos con suficiente energía para sacar a los electrones de valencia de su órbita para enviarlos hacia la banda de conducción. Los electrones de conducción recién creados también contienen mucha energía y repiten el proceso. Si un electrón expulsa a sólo otros dos electrones de su órbita de valencia durante su recorrido a través de la región p, los números se multiplican con rapidez. A medida que estos electrones de alta energía pasan a través de la región de empobrecimiento, su energía es suficiente para atravesar la región n como electrones de conducción en lugar de combinarse con huecos.

3. Características de voltaje – corriente del diodo Característica V-I en condición de polarización en directa Cuando se aplica un voltaje de polarización en directa a través de un diodo se produce corriente. Esta corriente se conoce como corriente de polarización en directa y se expresa como IF. La figura siguiente ilustra lo que sucede a medida que el voltaje de polarización en directa se incrementa positivamente desde 0 V. Se utiliza el resistor para limitar la corriente de polarización en directa a un valor que no sobrecaliente el diodo y no provoque daños. Con 0 V a través del diodo, no se produce corriente de polarización en directa. A medida que se incrementa gradualmente el voltaje de polarización en directa, la corriente de polarización y el voltaje a través del diodo se incrementan gradualmente. Una parte del voltaje de polarización en directa decae a través del resistor limitador.

… Cuando el voltaje de polarización en directa se incrementa a un valor en el que el voltaje a través del diodo alcanza aproximadamente 0.7 V (potencial de barrera), la corriente de polarización en directa comienza a incrementarse con rapidez

… Trazo de la curva V-I

… Característica V-I para polarización en inversa

… La curva de característica V-I Si combinara las curvas tanto de polarización en directa como de polarización en inversa, obtendría la curva de característica V-I de un diodo, como la que muestra la figura.

4. Circuitos equivalentes del diodo Conexión para polarización en directa Un diodo está polarizado en directa cuando se conecta a una fuente de voltaje como muestra la figura. La terminal positiva de la fuente se conecta al ánodo mediante un resistor limitador de corriente. La terminal negativa se conecta al cátodo. La corriente de polarización en directa (I F ) circula del ánodo al cátodo.

… Conexión para polarización en inversa Un diodo está polarizado en inversa cuando se conecta una fuente de voltaje, como muestra la figura anterior. La terminal negativa de la fuente se conecta al ánodo del circuito y la positiva al cátodo. No es necesario un resistor de polarización en inversa, pero se muestra, por consistencia, en el circuito. Aproximaciones del diodo El modelo ideal de un diodo . El modelo ideal de un diodo es la aproximación menos precisa y puede ser representado por un interruptor simple. Cuando el diodo está polarizado en directa, actúa idealmente como un interruptor cerrado (prendido), como lo muestra la figura siguiente. Cuando el diodo está polarizado en inversa, idealmente actúa como un interruptor abierto (apagado). Aunque el potencial de barrera, la resistencia dinámica de polarización en directa y la corriente de polarización en inversa se desprecian, este modelo es adecuado en la mayoría de las situaciones de solución de fallas cuando se está tratando de determinar si el diodo está trabajando apropiadamente.

… Modelo del diodo ideal

… El modelo práctico de un diodo . El modelo práctico incluye el potencial de barrera. Cuando el diodo está polarizado en directa, equivale a un interruptor cerrado en serie con una pequeña fuente de voltaje equivalente (VF) igual al potencial de barrera (0.7 V) con el lado positivo hacia el ánodo, como lo muestra la figura siguiente. Esta fuente de voltaje equivalente representa el potencial de barrera que debe ser excedido por el voltaje de polarización antes de que el diodo conduzca y no sea una fuente de voltaje activa. Cuando conduce, aparece una caída de voltaje de 0.7 V a través del diodo. Cuando el diodo está polarizado en inversa, equivale a un interruptor abierto exactamente como el modelo ideal. El potencial de barrera no afecta la polarización en inversa, así que no es un factor.

… El modelo práctico de un diodo.

… El modelo completo de diodo . El modelo completo de un diodo es la aproximación más precisa e incluye el potencial de barrera, la pequeña resistencia dinámica de polarización en directa y la gran resistencia interna de polarización en inversa ( r’ R ). La resistencia de polarización en inversa se toma en cuenta porque proporciona una trayectoria para la corriente de polarización en inversa, la cual está incluida en este modelo de diodo. Cuando el diodo está polarizado en directa, actúa como un interruptor cerrado en serie con el voltaje de potencial de barrera equivalente (V B ) y la pequeña resistencia dinámica de polarización en. Cuando el diodo está polarizado en inversa, actúa como un interruptor abierto en paralelo con la gran resistencia interna de polarización en inversa como lo ilustra la figura siguiente. El potencial de barrera no afecta la polarización en inversa, por lo que no es un factor.

… El modelo completo de diodo.