Design Guide for Rural Substations

egua1535 7,273 views 190 slides Aug 10, 2012
Slide 1
Slide 1 of 190
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166
Slide 167
167
Slide 168
168
Slide 169
169
Slide 170
170
Slide 171
171
Slide 172
172
Slide 173
173
Slide 174
174
Slide 175
175
Slide 176
176
Slide 177
177
Slide 178
178
Slide 179
179
Slide 180
180
Slide 181
181
Slide 182
182
Slide 183
183
Slide 184
184
Slide 185
185
Slide 186
186
Slide 187
187
Slide 188
188
Slide 189
189
Slide 190
190

About This Presentation

diseño y guia de subestaciones rurales


Slide Content

9. Rupard, Paul, East Kentucky Power Co-op., Winchester, KY
10, Sloan, Gordon, Sulphur Springs Valley Electric Co-op, Willeox, Arizona, (Former Chairman)
11. Crouch, Jim, Fairfield Electric Co-op, Winnsboro, South Carolina, (Former Member)

12. Nelson, Stewart, Lower Colorado River Authority, Austin, TX, (Former Member)

13. Emerson, Charles, Trico Electric Co-op, Tucson, Arizona, (Former Member

4, Platz, Peter, Coast Electrie Power Association, Bay St. Louis, MS, (Former Member)

15. Optiz, Mike, Western Farmers Electric Co-op, Anadarko, OK, (Former Member)

16. Heflin, Jack, Western Farmers Electric Co-op, Anadarko, OK, (Former Member)

17. Souhrada, Dan, Hoosier Energy Rural Electric Co-op, Bloomington, IN, (Former Member)
18. Sears, Chuck, Lea County Electric Co-op, Inc. Lovington, NM, (Former Member)

19. Grey, Weldon, Concho Valley Electric Co-op, San Angelo, TX, (Former Member)

20. Pehosh, Mike, Ozarks Electric Co-op, Fayetteville, AR, (Former Member)

21. Dedman, Jim, NRECA, Arlington, VA, (Former Coordinator)

Our thanks and appreciation are also extended tothe following organizations and companies who have
provided photographs, tables, charts, and figures that are used inthe bulletin:

American National Standards Institute Kullman Electric
‘American Society of Civil Engineers Lapp Insulator Co.

American Society for Testing Materials MeGraw Hill, ne

Bitronics Mitsubishi

Cooper Power Systems National Electrical Manufacturers Association
GE-Hitachi HVB, Ine Nova Net, Inc.

Haefely Trench Pedersen Power Products

Hubbell Power Systems Siemens

International Conference of Building Officials Southern States, Inc.

Insulated Cable Engineers Association, Inc. TM Sales, Inc

Institute of Electrical and Electronics Engineers Yokogawa

Keamey

RUS extends special thanks to Bil Kahanck, Lower Colorado River Authority, Austin, Texas, Chair of

the

IRECA T&D Engineering Committee's Substation Subcommittee who provided a great deal of
1 and effort to integrate the text and graphics into one whole document.

Finally our special thanks and appreciation to Allgeier Martin & Associate, Inc. who provided the
substation photo on the cover page.

BLAINE D. STOCKTON
Assistant Administrator
Electric Program

An example of an outage consideration for a
substation would include a transmission switching

Station that operates with a simple main bus. An
age ofthe bas results in a complet inten
tion of power through the substation, The

mgineer will need to consider other equipment in
the substation, such as a transfer bus or diferent
muli-bus arrangement, The engineer should also
evaluate the adjacent system to determine i x
Toad can be divened around the substation fo
outages to minimize the equipment hat is
installed in a substation

ample of confusion over the definition
‘of terms tha ean be experienced exist fr ih
term “outage.” An industrial firm with a
‘arible-speed drive (VSD) required a minimum
number of outages on the incoming feed since
‘ny otage resulted in the drive down,
Several hours” delay in the retar, and possible
environmental consequences during the outage
The utility reviewedits own outage criteria and
determine it met the customers requirement
Alter instalation, the customer complained
bout the large number outages forcing the VSD.
motor 0 de-nergize Further discussion

revealed the customers definition of outage was
ny voltage drop of 20 percent or more for more
than three cycles, The wily’ defini

Outage was any discontinuance of ser

ali o oeder filo

of common terms real

10 the instal

requirements when equipment À

Med. These requirements shoul
bbe considered with the utility
ability to serve the load during any

‘Alaska Note: a
For coastal areas and islands,
‘use nearest contour

KI Special Wind Region
+ Population Center

Location V mph_(nvs)
705

Hawal (7)
Puerto Rico 125 (56)
[Guam 170 (76)
Virgin Islands 125 (56)
[American Samoa 125 _ (56)

1. Values are 3-second gust speeds In miles per hour (mis) at 33 ft
(10m) above ground for Exposure C category and are associated
with an annual probability of 0.02.

2. Linear interpolation between wind speed contours is permitted.

3. Islands and coastal areas shall.use wind speed contour of coastal
area

4. Mountainous terrain, gorges, ocean promontories, and special wind
regions shall be examined for unusual wind' conditions.

ons,
(Glow PHASING AND, TERMINAL
DESIGNATION ON VECTORS)

INFORMATION SAME AS
INCLUDE ALL IMPEDANCES
INCL "ON MVA Bast

ure = TPE
NO — FR = TPE

_ A
— KV BIL

KV BIL

3 - MFR - TYPE

__ KV
{OR MFR CAT. NO.)

à CONN

Depicrs “INTERRUPTING MEDIUM

à ror arr
6 For ott
a“ VER vacuum
tine oo

— MFR = TYPE

DRAWOUT VACUUM NED. VOLTAGE

POWER CIRCUIT BREAKER

CIRCUIT BREAKER (LOW VOLTAGE)

RESISTANCE OR HEATING ELEMENT
ACTOR

DISCONNECT ON DRAWOUT CONNECTION

GROUND CONNECTION

STRESS RELIEF DEVICE

TEST SWITCH (POT. OR ISOLATION)

TEST SWITCH (CURRENT SHORTING)
INDICATING LIGHT
FIBER-OPTIC CIRCUIT

MICROWAVE PATH

ARROW INDICATES
DIRECTION OF TRIPPING

DO To OTHER RELAYS
X METE! REQUI
POTENTIAL CONNECTIONS, AS
REQUIRED, AT RIGHT ANGLES
TO CURRENT CONNECTIONS

To POTENTIAL
SOURCE

«A PARTIAL LISTING OF Di

A (FOR AMMETER)
V (FOR VOLTHETER)
W (FOR WATIMETER)
WH (FOR WATT-HOUR METER)
VOUT AMPERE REACTIVE METER)

WITH ANSI STO, €;

21 (DISTANCE RELAY)
7 (UNDERVOLTACE RELA
(DIRECTIONAL POWER RELAY)
(INSTANTANEOUS OVERCURRENT RELAY)
(AC TIME OVERCURRENT RELAY)
(AC DIRECTIONAL OVERCURRENT RELAY)
(ALARM RELAY)
(DIFFERENTIAL PROTECTIVE RELAY)

CRE

TYPICAL, ONE-LINE DIAGRAM

Gain

PLAN VIEW—TYPICAL BAY

Xx 4
TLEVATIN=TWICAL BY

Ea CE

PLAN VIEW-TYPICAL BAY
ELEVATION TYPICAL BAY

TYPICAL ONE-LINE DIAGRAM

PLAN VIEW—TYPICAL BAY

ELEVATON—TYPICAL BAY

ls
y
T

AP

TYPICAL ONE-LINE DIAGRAM

PLAN VIEW—TYPICAL BAY

‘weve he

ELEVATION —TYPICAL BAY

Lina Lech, cree

SUMED

WAST OR SHIELD WIRE

Table 4-4: Typical Characteristics of Cap and Pin-Type Insulators. Ref. Std. ANSI C29.8-1985, Table 1
Reproduced with permission of the National Electrical Manufacturers Association.

BIL(IMPULSE | TECHNICAL | UPRIGHT CANTILEVER] UNDERHUNG CANTILEVER! BOLT
WITHSTAND) | REFERENCE ‘STRENGTH ‘STRENGTH CIRCLE HEIGHT |LEAKAGE DISTANCE

Kv NUMBER | POUNDS | (NEWTONS) | POUNDS | (NEWTONS) | IN] CM] m. | CM | m Cm
5 T 2,000 6.896) 7,000 aaa | 3 [ren] 75 [as] 75 | om
95 si 4,000 (17,792) 3,000 asus | 3 |e} 8 || 8 (20.3)
110 4 2,000 (6.896) 1.000 gag | 3 [762] 10 | @54| 120 | (05)
110 44 4,000 (17,792) 3,000 aaa | 5 |a2n| 10 | @s4| 140 | (56)
150 7 2,000 (6.896) 1.000 aa) | 3 | 762)| 12 | @o5)| 200 | (508)
150 46 4,000 (17,792) 3.000 aaa | 5 [an] 12 | Gos| 180 | (457)
190 147 3,000 (13/344) 2.000 esos) | 3 |(762)| 145 | (668)| 260 | (660)
200 10 2.000 (6.896) 1,000 (ss | 3 |os)| 15 | Gen] 280 | (710
200 49 4,000 (17,792) 3.000 aaa | 5 can] 15 | Gan} 280 | win
210 140 7.000 (31,196) 4,000 (7792) | 5 can] 145 | G68| 330 | (638
210 141 10.000 | (44,480) 6.000 esse) | 5 |(127| 15 | Ges} 330 | (838
210 142 10.000 | (44,480) 6.000 (25.588) | 7 |(17e| 145 | Ges} 330 | (838)
210 191 20.000 | (88,960) 12,000 (3.376) | 7 |(78| 145 | Win] 330 | (838)
210 164 4,000 (17,792) 3,500 (15,568) | 3 [ee] 145 | (668)| 330 | (838)
250 13 2,000 (6.896) 1,000 (ses | 3 | 762)| 18 | 457] 360 | (014)
250 165 3.000 (13,344) 2.000 esse | 3 |7e2| 18 | (57| 360 | (0140
350 16 1.500 (6672) 1,000 was) | 3 | (762)| 2 | (737)| 50 | (1320)
350 56 3.000 (13,344) 2,350 (10,453) | 5 | 127] 280(1) | 73.7} 660 | (168.0)
350 166 2,000 (6896) 2,000 (ses) | 3 | (7.62)| 2801) | can | 680 | (168.0)
560 19 1,700 (7562) 1.470 (6539) | 5 | (127)| 43.5(1) |(111.0)] 990 | (2520
550 167 1,000 (4,448) 1.000 was | 3 | 762) | 43.5(1) [(1110)| 990 | (2520)
650 170 1.000 (4,448) 1:000 (4.448) | 3 |(762)| 540(1) | (1372)| 1080 | (2743)
750 168 1,000 (4,448) 1,000 was) | 3 | (7.62 | 58.0(1) | (1473) | 1320 | (9353)
750 25 1200 (6.338) 1.070 (4759) | 5 | (127 | 58.0(1) |(1470)| 1320 | (35.0)
750 123 2.000 (6.896) 1,750 are | 5 | (127)| 58.0(1) | (147.0)] 1320 | (350
900 126 910 (4.048) 840 (736) | 5 |(127)| 725(1) | (1840)| 1650 | (4190)
900 27 1450 (6.450) 1,350 (6005, | 5 |(127)| 725(1) | (1840)| 1650 | (419.0)
1050 128 750 (3.336) 700 rs | 5 | (12.7)| 87.0(1) [@210)| 1980 | 603.0)
1050 28 1,170 (5204) 1,100 ws) | 5 |(127)| 87.o(1) |(221.0)| 1980 | (6030
1050 196 2300 (10,230) 2.300 (10,230) | 7 |(178)| 871 |(210)| 198 | (503.0)
1300 133 1,000 (4,448) 950 (4.226) | 7 | (17.8)| 101.5(1) | (257.8) | 281 | (686.7
1300 197 2.000 (8.896) 2.000 ses) | 7 Jura | 101.511) | @57.8)| 231 | (6867
Notes:

(1) Does not include 3.5-inch (8.89 cm) high sub-base that is required for ful BIL.

(2) The insulators listed are representative of those currently available. Additional ratings are available for some voltages. Refer to
‘manufacturers’ data for information.

(3) The characteristics listed are typical. Refer to manufacturers’ data for actual ratings and additional characteristics.

Table 4-5: Typical Characteristics of Post-Type Insulators. Ref. ANSI Std. C29.9-1983, Tables 1 and 2.
Reproduced with permission of the National Electrical Manufacturers Association.

BIL (IMPULSE | TECHNICAL UPRIGHT UNDERHUNG BOLT CIRCLE
CANTILEVER CANTILEVER,
WITHSTAND) | REFERENCE ‘STRENGTH ‘STRENGTH TOP BOTTOM | HEIGHT TEAKAGE
DISTANCE
o_o m (CM)
7.62) | 75 |(1917| 105 | (287
(12.7) | 75 | (19:1) | 105 | (267)
(7.62) | 10 | (254) | 155 | (39.4)
(12.7) | 12 | (05) | 155 | (294)
(7.62) | 14 | (356) | 24 | (510)
(27) | 15 | @8n)| 24 | (610)
(7.62) | 18 | (45.7) | 37 (94)
(12.7) | 20 | (50.8) | 37 (94)
(7.62) | 22 | (55) | 43 | (109)
(127) | 24 | (610) | 43 | (109)
(7.62) | 30 | (762) | 72 | (183)
(127) | 30 | (762) | 72 | (183)
(127) | 45 | (114) | 99 | (251
(127) | 45 | (114) | 99 | (251
(12:7) | ss | (137) | 116 | ss)
(127) | 54 | (137) | 116 | (295
(127) | 62 | (157) | 132 | (335)
(12.7) | 62 | (157) | 132 | (335)
(127) | 80 | (203) | 165 | (419)
(12:7) | 80 | (208) | 165 | (419)
(12.7) | 92 | (234) | 198 | (503)
(127) | 92 | (234) | 198 | (503)
(173) | 92 | (234) | 198 | (503)
(12.7) | 106 | (269) | 231 | (587)
(178) | 106 | (269) | 231 | (687)
(178) | 106 | (260) | 231 | (587)
(178) | 106 | (269) | 231 | (687)

kv NUMBER _ [POUNDS | (NEWTONS) | POUNDS | (NEWTONS)
95 202 2000 (8896) 2000 (8896)
95 202 4000 | (17782) 4000 (17792)
110 205 2000 (8896) 2000 (8896)
110 225 4000 | (17792) 4000 (17792)
150 208 2000 (6896) 2000 (8896)
150 227 4000 | (17792) 4000 (17792)
200 210 2000 (8896) 2000 (8896)
200 231 4000 | (17792) 4000 (17792)
250 214 2000 (8896) 2000 (8896)
250 267 4000 | (17792) 4000 (17782)
350 216 1500 (6872) 1500 (6672)
350 278 3000 | (13344) 3000 (13344)
550 286 1700 (7562) 1700 (7562)
550 287 2600 | (11564) 2600 (11564)
650 288 1400 (6227) 1400 (6227)
650 289 2200 (9786) 2200 (9786)
750 291 1200 (5338) 1200 (5338)
750 295 1850 (8229) 1850 (8229)
900 304 950 (4226) 950 (4226)
900 308 1450 (6450) 1450 (6450)
1050 312 800 (3558) 800 (3558)
1050 316 1250 (5560) 1250 (5560)
1050 362 2300 | (10230) 2300 (10230)
1300 324 1000 (4448) 1000 (4448)
1300 367 1450 (6450) 1450 (6450)
1300 368 2000 (8896) 2000 (8896)
1300 369 2050 (9118) 2050 (9118)
Notes:
(1) The insulators listed are representative of those currently available. Additional ratings are available for some voltages. Refer to manufacturers’ data for
information,
(2) The characteristics listed are typical. Refer to manufacturers’ data for actual ratings and additional characteristics.

E

Cm

7.82)
(12.7)
(7.52)
(12.7)
(7.52)
(12.7)
(7.52)
(12.7)
(7.52)
(127)
(7-62)
(12.7)
(127)
(127)
(127)
(127)
(127)
(127)
(127)
(12.7)
(12.7)
(127)
(178)
(127)
(127)
(178)
(12.7)

2

Pt
¡aaa

= SÍ
> VA VA

Sy

|
À
|

PROFILE AND WIND DIRECTION

Z
©

4% = RATIO OF SPAN LENGTH TO VERTICAL DIMENSION OF BUS CONDUCTOR

UREMENT DIRECT