COMPONENTS OF THROUGH TYPE
BRIDGE
FloorSystem:
Crossgirder(Bending)
RailbearersorStringers(Bending)
PrimaryMembers:
Bottomchordmembers(Tensionmembers)
Topchordmembers(Compressionmembers)
Endrackers(Compression&Bendingmembers)
Diagonals(Reversiblestressmembers)
Verticals(Tensionmembers&redundantmembers)
GENERAL CONFIGRUATION(Cont…)
Heightoftruss
ThroughtypeVsDecktype
Between1/8and1/5ofspanlength
Spacingoftrusses
Sufficienttopreventoverturningduetolateralloads
>1/3ofheightoftruss&>1/20ofspan
ESTIMATION OF LOADS
Dead load
Live load
Dynamic effects
Longitudinal force
Racking force
Wind pressure effect
Forces and effect due to earthquake
DEAD LOAD
Deadloadoftrussisassumedbeforedesignonthe
basisofexperience&earlierdesigns
Afterdesignoftrusstheactualdeadloadoftrussis
comparewithassumeddeadload
Ifthereisdifferencebetweentwo,thenassumed
deadloadisrevisedandstructureisdesignedwith
reviseddeadload
SEISMIC FORCE (Cont…)
F=Wm*αh(orαv)
F=Seismicforce
Wm=Weight of mass under consideration
ignoringreductionduetobuoyancy
Horizontalseismicforceduetoliveloadonthe
bridgeshallbeignoredwhenactinginthedirection
oftraffic
Whenactinginthedirectionperpendiculartotraffic,
thisistobeconsideredfor50%ofdesignliveload
withoutimpact.
INCLINATION FACTOR = 13128 /10500 = 1.25
DEPTH OF BC = 620 mm
DEPTH OF TC = 620 + 16 = 636 mm
WIDTH OF ER = 630 + 20 = 640 mm
WIDTH OF VERT. = 280
WIDTH OF DIAGONAL = 400 mm
LA = = 85.3 Cm
LA = 407.8 Cm
LA = 1081 Cm
1
2
3
1440+265
2
610 610
5500
610 610
620
636
10500
1676
4670
3505
1440
265
620
940
100
75
WIND LOAD ANALYSIS (Cont…)
EXPOSED AREA TC BC
1.Between RL and bottom of
B.C.
B1
2.Between Moving load and RL
of stringer
ER, Vertical ,Diagonal
(l x b x No.)
B2
3.Moving load B3
4.TC and top of moving load T1
5.Top Chord T2
6.Gusset Top T2
TotalAT=T1+T2+T3AB=B1+B2+B3
Through Type Truss
Windforceontopchord=WindpressurexATX1.5=WT
Windforceonbottomchord=WP[1.5(AB-
B3)+B3]=WB
Nodalforceattopchord:
Atintermediatenodes=WT/No.oftoppanel=Tint.
Atendnodes=Tint/2
Nodal force at bottom chord:
At intermediate nodes = WB/No. of bottom panel=Bint.
At end nodes = Bint/2
WIND LOAD ANALYSIS (Cont…)
DESIGN OF TOP CHORD
Topchordmembersarecompressionmember
Sectionassumedfortopchordmembers(takinginto
considerationclause4.5&clause6.2ofSBC)
Effectiveareaofthesection(clause6.2.2ofSBC)
Actualstressescalculatedforaxialcompressionfor:
Withoutseismicorwindforces
Withseismicorwindforces
Permissiblestressinaxialcompressionisminimum
of:
Basicpermissiblestress(clause3.7ofSBC)
Stressinaxialcompression(clause3.7ofSBC)
Permissiblestressinfatigue(clause3.6ofSBC)
DESIGN OF TOP CHORD (Cont…)
Permissiblestressforwindorseismiccaseis
increasedby16.667%(Table1ofSBC)
Actualstress<permissiblestressforbothcasesthen
assumedsectionissafeotherwiserevisethesection
Designofstitchingweld:
Calculationofforceatthelevelofweld
Permissiblestressinweld(Appendix-GofSBC&clause
13.4ofweldedbridgecode)
Sizeofweldcalculated(Subjecttoclause6.2ofwelded
bridgecode)
Designoflacing&batteningofcompression
members(Clause6.5&6.6ofSBC)
Designofdiaphragms(Clause6.16ofSBC)
DESIGN OF END RACKER
Endrackersubjectedtoaxialcompression&bending
(Clause6.19ofSBC)
Sectionassumedforendracker(takinginto
considerationclause4.5&clause6.2ofSBC)
Effectiveareaofthesection(Clause6.2.2ofSBC)
Actualstressescalculatedforaxialcompression&
bendingfor:
Withoutseismicorwindforces
Withseismicorwindforces
Permissible stress in compression is minimum of:
Basic permissible stress (Clause 3.7of SBC)
stress in axial compression (Clause 3.7of SBC)
permissible stress in fatigue (Clause 3.6 of SBC)
DESIGN OF END RACKER (Cont…)
Permissiblestressinbending(Table2ofSBC)
Permissiblestressforwindorseismiccaseis
increasedby16.667%foraxialcompression&
bendingboth(Table1ofSBC)
Adequacyofsectionischeckedforcombined
stressesforbothcases(Clause3.11.1ofSBC)
Design of stitching weld, design of lacing & battening
and design of diaphragms same as compression
member
DESIGN OF DIAGONALS & VERTICALS
Diagonalsarereversiblestressmembers
Sectionofdiagonalshavetobecheckedforboth
tension&compression
Verticalsaretensionmembers
Designdonesimilartobottomchord
DESIGN OF PORTAL BRACINGS SYSTEM
Forceanalysisinmembersofportalsystemdonefor
forces:(Clause6.19ofSBC)
50%oflateralforcesontopchord
Lateralshearequalto1.25%oftotalforceintwoend
rackerorintwotopchordsinendpanelwhicheveris
greater
Topmemberofportalsubjectedtoaxialcompression
&bendingmomentboth
Designoftopmemberissimilartothatofendracker
Kneeportalistensionorcompressionmemberasper
thedirectionofapplicationofnodalforce
Kneeportalisdesignedforbothaxialtension&
compression
DESIGN OF TOP LATERAL BRACINGS
Forceanalysisintoplateralbracingsystemdonefor
forces:(Clause6.17ofSBC)
Lateralforceontopchord
2.5%offorceintopchordmembers
Bracingmembersaretensionorcompression
memberdependinguponthedirectionofapplication
ofnodalforce
Bracingmembersaredesignedforbothaxialtension
&compression