Design of roller and rolling contact bearings.ppt

CHINNARASUK 155 views 124 slides Jun 08, 2024
Slide 1
Slide 1 of 124
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124

About This Presentation

Design of bearing


Slide Content

Design of roller contact bearings

Session outline
Terminologies
•AdvantagesandDisadvantages
Failurecriterion
Designofrollercontactbearings
Tutorialproblems

Bearings-Applications

Bearings-Applications

BEARINGS -DEFINITION
•Bearingisamechanicalelementthatpermitsrelativemotion
betweentwoparts,suchastheshaftandthehousing,with
minimumfriction
•Themostimportantcriteriontoclassifythebearingsisthetype
offrictionbetweentheshaftandthebearingsurface

BEARINGS -DEFINITION
•Dependinguponthetypeoffriction,bearingsareclassifiedintotwo
maingroups—slidingcontactbearingsandrollingcontactbearings

BEARINGS -FUNCTIONS
•Thebearingensuresfreerotationoftheshaftortheaxlewith
minimumfriction
•Thebearingsupportstheshaftortheaxleandholdsitinthe
correctposition
•Thebearingtakesuptheforcesthatactontheshaftortheaxle
andtransmitsthemtotheframeorthefoundation

ROLLING CONTACT BEARINGS
•Rollingcontactbearingsarealsocalledantifrictionbearingsor
simplyballbearings.
•Rollingelements,suchasballsorrollers,areintroduced
betweenthesurfacesthatareinrelativemotion
•Inthistypeofbearing,slidingfrictionisreplacedbyrolling
friction

ROLLING CONTACT BEARINGS -
APPLICATIONS
•Machinetoolspindles
•Automobilefrontandrearaxles
•Gearboxes
•Smallsizeelectricmotors
•Ropesheaves,cranehooksandhoistingdrums

ROLLING CONTACT
BEARINGS-PARTS
•Arollingcontactbearingconsistsoffourparts-innerandouter
races,arollingelementlikeball,rollerorneedleandacage
whichholdstherollingelementstogetherandspacesthem
evenlyaroundtheperipheryoftheshaft

ROLLING CONTACT
BEARINGS-PARTS

ROLLING CONTACT
BEARINGS-PARTS

ROLLING CONTACT
BEARINGS-TYPES
Dependinguponthetypeofrollingelement,thebearingsare
classifiedas
•Ballbearing
•Cylindricalrollerbearing
•Taperrollerbearingand
•Needlebearing

ROLLING CONTACT
BEARINGS-TYPES

ROLLING CONTACT
BEARINGS-TYPES
Dependinguponthedirectionofload,thebearingsarealso
classifiedas
•Radialbearing
•Thrustbearing

DEEP GROOVE BALL
BEARINGS
•Inthistypeofbearing,theradiusoftheballisslightlyless
thantheradiiofcurvatureofthegroovesintheraces
•Kinematically,thisgivesapointcontactbetweentheballs
andtheraces
•Therefore,theballsandtheracesmayrollfreelywithoutany
sliding

DEEP GROOVE BALL
BEARINGS

DEEP GROOVE BALL
BEARINGS-ADVANTAGES
•Duetorelativelylargesizeoftheballs,deepgrooveball
bearinghashighloadcarryingcapacity
•Deepgrooveballbearingtakesloadsintheradialaswellas
axialdirection
•Duetopointcontactbetweentheballsandraces,frictional
lossandtheresultanttemperatureriseislessinthisbearing
•Deepgrooveballbearinggenerateslessnoiseduetopoint
contact

DEEP GROOVE BALL
BEARINGS-ADVANTAGES
•Deepgrooveballbearingsareavailablewithborediameters
fromafewmillimetersto400millimeters

DEEP GROOVE BALL
BEARINGS-DISADVANTAGES
•Deepgrooveballbearingisnotself-aligning
•Accuratealignmentbetweenaxesoftheshaftandthehousing
boreisrequired
•Deepgrooveballbearinghaspoorrigiditycomparedwith
rollerbearing

CYLINDRICAL ROLLER
BEARING
•Whenmaximumloadcarryingcapacityisrequiredinagiven
space,thepointcontactinballbearingisreplacedbytheline
contactofrollerbearing
•Acylindricalrollerbearingconsistsofrelativelyshortrollers
thatarepositionedandguidedbythecage

CYLINDRICAL ROLLER
BEARING

CYLINDRICAL ROLLER
BEARING-ADVANTAGES
•Duetolinecontactbetweenrollersandraces,theradialload
carryingcapacityofthecylindricalrollerbearingisveryhigh
•Cylindricalrollerbearingismorerigidthanballbearing
•Thecoefficientoffrictionislowandfrictionallossislessin
high-speedapplications

CYLINDRICAL ROLLER
BEARING-DISADVANTAGES
•Ingeneral,cylindricalrollerbearingcannottakethrustload
•Cylindricalrollerbearingisnotself-aligning
•Itcannottoleratemisalignment
•Itneedsprecisealignmentbetweenaxesoftheshaftandthe
boreofthehousing
•Cylindricalrollerbearinggeneratesmorenoise

ANGULAR CONTACT BEARING
•Inangularcontactbearing,thegroovesininnerandouter
racesaresoshapedthatthelineofreactionatthecontact
betweenballsandracesmakesananglewiththeaxisofthe
bearing
•Thisreactionhastwocomponents-radialandaxial
•Therefore,angularcontactbearingcantakeradialandthrust
loads

ANGULAR CONTACT BEARING

ANGULAR CONTACT
BEARING-ADVANTAGES
•Angularcontactbearingcantakebothradialandthrust
loads
•Inangularcontactbearing,onesideofthegrooveintheouter
raceiscutawaytopermittheinsertionoflargernumberof
ballsthanthatofdeepgrooveballbearing.Thispermitsthe
bearingtocarryrelativelylargeaxialandradialloads.
Therefore,theloadcarryingcapacityofangularcontact
bearingismorethanthatofdeepgrooveballbearing

ANGULAR CONTACT
BEARING-DISADVANTAGES
•Twobearingsarerequiredtotakethrustloadinboth
directions
•Theangularcontactbearingmustbemountedwithoutaxial
play
•Theangularcontactbearingrequiresinitialpre-loading

SELF-ALIGNING BEARINGS
•Theself-aligningballbearingconsistsoftworowsofballs,
whichrollonacommonsphericalsurfaceintheouterrace
•Inthiscase,theassemblyoftheshaft,theinnerraceandthe
ballswithcagecanfreelyrollandadjustitselftotheangular
misalignmentoftheshaft
•Thereissimilararrangementinthesphericalrollerbearing,
whereballsarereplacedbytworowsofsphericalrollers,
whichrunonacommonsphericalsurfaceintheouterrace

SELF-ALIGNING BEARINGS
•Comparedwiththeselfaligningballbearing,thespherical
rollerbearingcancarryrelativelyhighradialandthrustloads
•Bothtypesofself-aligningbearingpermitminorangular
misalignmentoftheshaftrelativetothehousing
•Theyarethereforeparticularlysuitableforapplications
wheremisalignmentcanariseduetoerrorsinmountingor
duetodeflectionoftheshaft
Theyareusedinagriculturalmachinery,ventilators,and
railwayaxle-boxes

SELF-ALIGNING BEARINGS

TAPER ROLLER BEARING
•Thetaperrollerbearingconsistsofrollingelementsinthe
formofafrustumofcone
•Theyarearrangedinsuchawaythattheaxesofindividual
rollingelementsintersectinacommonapexpointontheaxis
ofthebearing
•Intaperrollerbearing,thelineofresultantreactionthrough
therollingelementsmakesananglewiththeaxisofthe
bearing

TAPER ROLLER BEARING
•Therefore,taperrollerbearingcancarrybothradialand
axialloads
•Taperrollerbearinghasseparableconstruction
•Theouterringiscalled‘cup’andtheinnerringiscalled
‘cone’
•Thecupisseparablefromtheremainderassemblyofthe
bearingelementsincludingtherollers,cageandthecone

TAPER ROLLER BEARING

TAPER ROLLER BEARING -
ADVANTAGES
•Taperrollerbearingcantakeheavyradialandthrustloads
•Taperrollerbearinghasmorerigidity
•Taperrollerbearingcanbeeasilyassembledand
disassembledduetoseparableparts

TAPER ROLLER BEARING -
DISADVANTAGES
•Itisnecessarytousetwotaperrollerbearingsontheshaftto
balancetheaxialforce
•Itisnecessarytoadjusttheaxialpositionofthebearingwith
pre-load
•Thisisessentialtocoincidetheapexoftheconewiththe
commonapexoftherollingelements
•Taperrollerbearingcannottoleratemisalignmentbetween
theaxesoftheshaftandthehousingbore
•Taperrollerbearingsarecostly

SELECTION OF BEARING -
TYPE
•Forlowandmediumradialloads,ballbearingsareused,
whereasforheavyloadsandlargeshaftdiameters,roller
bearingsareselected
•Self-aligningballbearingsandsphericalrollerbearingsare
usedinapplicationswhereamisalignmentbetweentheaxesof
theshaftandhousingislikelytoexist
•Thrustballbearingsareusedformediumthrustloads
whereasforheavythrustloads,cylindricalrollerthrust
bearingsarerecommended

SELECTION OF BEARING -
TYPE
•Deepgrooveballbearings,angularcontactbearingsand
sphericalrollerbearingsaresuitableinapplicationswherethe
loadactingonthebearingconsistsoftwocomponents-radial
andthrust
•Themaximumpermissiblespeedoftheshaftdependsupon
thetemperatureriseinthebearing.Forhighspeed
applications,deepgrooveballbearings,angularcontact
bearingsandcylindricalrollerbearingsarerecommended

SELECTION OF BEARING -
TYPE
•Doublerowcylindricalrollerbearingsortaperroller
bearingsareusedundertheseconditions.Thelineofcontact
inthesebearings,ascomparedwiththepointofcontactinball
bearings,improvestherigidityofthesystem
•Noisebecomesthecriterionofselectioninapplicationslike
householdappliances.Forsuchapplications,deepgrooveball
bearingsarerecommended

STATIC LOAD CARRYING
CAPACITY
•Staticloadisdefinedastheloadactingonthebearingwhen
theshaftisstationary
•Itproducespermanentdeformationinballsandraces,which
increaseswithincreasingload
•Thestaticloadcarryingcapacityofabearingisdefinedas
thestaticloadwhichcorrespondstoatotalpermanent
deformationofballsandraces,atthemostheavilystressed
pointofcontact,equalto0.0001oftheballdiameter

STRIBECK’S EQUATION
Stribeck’sequationgivesthestaticloadcapacityofbearing.It
isbasedonthefollowingassumptions:
(i)Theracesarerigidandretaintheircircularshape
(ii)Theballsareequallyspaced
(iii)Theballsintheupperhalfdonotsupportanyload

DYNAMIC LOAD CARRYING
CAPACITY
•Thelifeofaballbearingislimitedbythefatiguefailureat
thesurfacesofballsandraces
•Thedynamicloadcarryingcapacityofthebearingis,
therefore,basedonthefatiguelifeofthebearing
•Thelifeofanindividualballbearingisdefinedasthenumber
ofrevolutions(orhoursofserviceatsomegivenconstant
speed),whichthebearingrunsbeforethefirstevidenceof
fatiguecrackinballsorraces

DYNAMIC LOAD CARRYING
CAPACITY
•Theratinglifeofagroupofapparentlyidenticalball
bearingsisdefinedasthenumberofrevolutionsthat90%of
thebearingswillcompleteorexceedbeforethefirstevidence
offatiguecrack
•Thedynamicloadcarryingcapacityofabearingisdefinedas
theradialloadinradialbearings(orthrustloadinthrust
bearings)thatcanbecarriedforaminimumlifeofonemillion
revolutions

EQUIVALENT BEARING LOAD
•Inactualapplications,theforceactingonthebearinghastwo
components—radialandthrust
•Itisthereforenecessarytoconvertthetwocomponents
actingonthebearingintoasinglehypotheticalload,fulfilling
theconditionsappliedtothedynamicloadcarryingcapacity
•Thenthehypotheticalloadcanbecomparedwiththe
dynamicloadcapacity

EQUIVALENT BEARING LOAD
Theequivalentdynamicloadisdefinedastheconstantradial
loadinradialbearings(orthrustloadinthrustbearings),
whichifappliedtothebearingwouldgivesamelifeasthat
whichthebearingwillattainunderactualconditionofforces
Theexpressionfortheequivalentdynamicloadis
P = XVF
r+ YF
a
P = equivalent dynamic load (N)
Fr = radial load (N)
Fa = axial or thrust load (N)
V = race-rotation factor
X =radial factor
Y = thrust factor

LOAD-LIFE RELATIONSHIP
The relationship between the dynamic load carrying capacity,
the equivalent dynamic load, and the bearing life is given by
L
10= rated bearing life (in million revolutions)
C = dynamic load capacity (N), and
p = 3 (for ball bearings)
p = 10/3 (for roller bearings)
For all types of ball bearings -C = P ( L
10)
1/3
For all types of roller bearings-C = P ( L
10)
0.3L
10=(
P
C
)
p

LOAD-LIFE RELATIONSHIP
The relationship between life in million revolutions and life in
working hours is given by
L
10h= rated bearing life (hours)
n = speed of rotation (rpm)L
10=
10
6
60nL
10h

SELECTION OF BEARING LIFE
Bearing life for wheel applications

SELECTION OF BEARING LIFE
Bearing life for industrial applications

LOAD FACTOR

SELECTION OF BEARING FROM
MANUFACTURER’S CATALOGUE
(i)Calculatetheradialandaxialforcesactingonthebearing
anddeterminethediameteroftheshaftwherethebearingisto
befitted.
(ii)Selectthetypeofbearingforthegivenapplication.
(iii)DeterminethevaluesofXandY,theradialandthrustfactors,
fromthecatalogue.

SELECTION OF BEARING FROM
MANUFACTURER’S CATALOGUE
(i)Calculatetheradialandaxialforcesactingonthebearing
anddeterminethediameteroftheshaftwherethebearingisto
befitted.
(ii)Selectthetypeofbearingforthegivenapplication.
(iii)DeterminethevaluesofXandY,theradialandthrustfactors,
fromthecatalogue.

SELECTION OF BEARING FROM
MANUFACTURER’S CATALOGUE
(iv)Calculatetheequivalentdynamicloadfromtheequation.
P = XF
r+ YF
a
(v)Makeadecisionabouttheexpectedbearinglifeandexpress
thelifeL
10inmillionrevolutions.
(vi)Calculatethedynamicloadcapacityfromtheequation
C=P(L
10)
1/3

DIMENSION SERIES OF
BEARING

DIMENSION SERIES OF
BEARING
(i)Thelasttwodigitsindicatetheborediameterofthebearing
inmm(borediameterdividedy5).Forexample,XX07indicates
abearingof35mmborediameter.
(ii)Thethirddigitfromtherightindicatestheseriesofthe
bearing.Thenumbersusedtoindicatetheseriesareasfollows:
Extralightseries–1Lightseries–2Mediumseries–3
Heavyseries–4Forexample,X307indicatesamedium
seriesbearingwithaborediameterof35mm.

DIMENSION SERIES OF
BEARING
(iii)Thefourthdigitandsometimesfifthdigitfromtheright
specifiesthetypeofrollingcontactbearing.Forexample,the
digit6indicatesdeepgrooveballbearings

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Inaparticularapplication,theradialloadactingonaball
bearingis5kNandtheexpectedlifefor90%ofthebearingsis
8000h.Calculatethedynamicloadcarryingcapacityofthe
bearing,whentheshaftrotatesat1450rpm.
Given:
F
r=5kN
L
10h=8000h
n=1450rpm

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Bearinglife(L
10):L
10=
10
6
60nL
10h
=
10
6
60(1450)(8000)
L
10=696millionrevolutions

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Dynamicloadcapacity:
Since the bearing is subjected to purely radial load,
P = F
r= 5000 NC=P(L
10)
3
1
=(5000)(696)
3
1
C=44310.48N

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Ataperrollerbearinghasadynamicloadcapacityof26kN.The
desiredlifefor90%ofthebearingsis8000handthespeedis
300rpm.Calculatetheequivalentradialloadthatthebearing
cancarry.
Given :
C=26kN
L
10h=8000h
n=300rpm

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Bearinglife(L
10):L
10=
10
6
60nL
10h
=
10
6
60(300)(8000)
L
10=144millionrevolutions

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Equivalentradialload:C=P(L
10
)
p
1
=P(L
10
)
(10/3)
1
C=P(L
10)
(10)
3
=P(L
10)
0.3
P=
(L
10)
0.3
C
=
(144)
0.3
26000
P=5854.16N
Since the bearing is subjected to purely radial load,
Fr = P = 5854.16 N

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Asingle-rowdeepgrooveballbearingissubjectedtoaradialforceof
8kNandathrustforceof3kN.Theshaftrotatesat1200rpm.The
expectedlifeL
10hofthebearingis20000h.Theminimum
acceptablediameteroftheshaftis75mm.Selectasuitableball
bearingforthisapplication.

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Given:
F
r=8kN
F
a=3kN
L
10h=20000hr
n=1200rpm
d=75mm

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
XandYfactors:
Whenthebearingissubjectedtoradialaswellasaxialload,the
valuesofXandYfactorsareobtainedfromTablebytrialand
errorprocedure.
Itisobserved,thatvaluesofXareconstantandthevaluesofY
varyonlyincasewhen,Fr
Fa
2e

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
XandYfactors:
Inthiscase,thevalueofYvariesfrom1.0to2.0.Wewillassume
theaveragevalue1.5asthefirsttrialvalueforthefactorY.
X=0.56
Y=1.5
F
r=8000N
F
a=3000N

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Equivalentbearingload:
P=XF
r+YF
a=0.56(8000)+1.5(3000)=8980NL
10=
10
6
60nL
10h
=
10
6
60(1200)(20000)
L
10=1440millionrevolutions

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGSDynamicloadcapacity:C=P(L
10)
3
1
=(8980)(1440)
3
1
C=101406.04N

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGSBearing selection:
FromTable,itisobservedthatfortheshaftof75mmdiameter,
BearingNo.6315(C=112000)issuitablefortheabovedata.
Forthisbearing,C
o=72000NFr
Fa
=
8000
3000
=0.375
Fco
Fa
=
72000
3000
=0.04167

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGSBearing selection:
e=0.24(approximately)Fr
Fa
=
8000
3000
=0.375
Fco
Fa
=
72000
3000
=0.04167 Fr
Fa
2e

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGSBearing selection:
ThevalueofYisobtainedbylinearinterpolationY=1.8-
0.07-0.04
1.8-1.6
x(0.04167-0.04)
Y=1.79
and
X=0.56

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Dynamicloadcapacity:
P=XF
r+YF
a=0.56(8000)+1.79(3000)=9850NC=P(L
10)
3
1
=(9850)(1440)
3
1
C=111230.46N

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGSSelectionofbearing:
BearingNo.6315(C=112000)issuitablefortheabove
application

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Asingle-rowdeepgrooveballbearingNo.6002issubjectedtoan
axialthrustof1000Nandaradialloadof2200N.Findtheexpected
lifethat50%ofthebearingswillcompleteunderthiscondition.

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Given:
F
a=1000N
F
r=2200N
Bearing=No.6002

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
XandYfactors:
ThecapacitiesofbearingNo.6002are,C
o=2500NandC=
5590NFr
Fa
2e Fr
Fa
=
2200
1000
=0.455
Fco
Fa
=
2500
1000
=0.4

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGSBearing selection:
ThevalueofYisobtainedbylinearinterpolationY=1.2-
0.5-0.25
1.2-1.0
x(0.4-0.25)
Y=1.08
and
X=0.56

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Dynamicloadcapacity:
P=XF
r+YF
a=0.56(2200)+1.08(1000)=2312NC=P(L
10)
3
1
5590=(2312)(L
10
)
3
1
L
10=14.13millionrevolutions

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Bearinglife(L
50):
Itcanbeprovedthatthelife(L50),which50%ofthebearings
willcompleteorexceed,isapproximatelyfivetimesthelifeL10
which90%ofthebearingswillcompleteorexceed
L
50= 5L
10= 5 (14.13) = 70.65 million rev.

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Atransmissionshaftrotatingat720rpmandtransmitting
powerfromthepulleyPtothespurgearGisshowninFigure.
Thebelttensionsandthegeartoothforcesareasfollows:
P
1=498NP
2=166NP
t=497NP
r=181N.Theweightofthe
pulleyis100N.ThediameteroftheshaftatbearingsB
1andB
2
is10mmand20mmrespectively.Theloadfactoris2.5andthe
expectedlifefor90%ofthebearingsis8000h.Selectsinglerow
deepgrooveballbearingsatB
1andB
2.

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Given:
n=720rpm
d
1=10mm
d
2=20mm
L
10h=8000h
loadfactor=2.5

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

DESIGN FOR CYCLIC LOADS
AND SPEEDS
Incertainapplications,ballbearingsaresubjectedtocyclic
loadsandspeeds.Asanexample,consideraballbearing
operatingunderthefollowingconditions:
(i)radialload2500Nat700rpmfor25%ofthetime,
(ii)radialload5000Nat900rpmfor50%ofthetime,and
(iii)radialload1000Nat750rpmfortheremaining25%ofthe
time.

DESIGN FOR CYCLIC LOADS
AND SPEEDS
•Underthesecircumstances,itisnecessarytoconsiderthe
completeworkcyclewhilefindingoutthedynamicloadcapacity
ofthebearing
•Theprocedureconsistsofdividingtheworkcycleintoa
numberofelements,duringwhichtheoperatingconditionsof
loadandspeedareconstant

DESIGN FOR CYCLIC LOADS
AND SPEEDS
IfP
eistheequivalentloadforthecompleteworkcycle,thelife
consumedbytheworkcycleisgivenby,Pe=[
N
1+N
2+..
N
1
P
1
3
+N
2
P
2
3
+...
]
3

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGSAsingle-rowdeepgrooveballbearinghasadynamicload
capacityof40500Nandoperatesonthefollowingworkcycle:
(i)radialloadof5000Nat500rpmfor25%ofthetime;
(ii)radialloadof10000Nat700rpmfor50%ofthetime;and
(iii)radialloadof7000Nat400rpmfortheremaining25%of
thetime.
Calculatetheexpectedlifeofthebearinginhours

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Equivalentloadforcompleteworkcycle:

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Equivalentloadforcompleteworkcycle:Pe=[
N
1+N
2+N
3
N
1P
1
3
+N
2P
2
3
+N
3P
3
3
]
3
=[
125+350+100
125(5000)
3
+350(10000)
3
+100(7000)
3
]
3
Pe=8860.6N L
10=(
P
C
)
p

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Bearinglife(L
10h):L
10=(
P
C
)
p
=(
8860.6
40500
)
3
L
10=95.51millionrevolutions
L
10h=
60n
L
10(10
6
)
=
60(575)
95.51(10
6
)
L
10h=2768.45hours

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Asingle-rowdeepgrooveballbearingisusedtosupportthelay
shaftofafourspeedautomobilegearbox.Itissubjectedtothe
followingloadsinrespectivespeedratios:

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Thelayshaftisfixedtotheengineshaftandrotatesat1750rpm.
Thestaticanddynamicloadcarryingcapacitiesofthebearing
are11600and17600Nrespectively.Thebearingisexpectedto
beinusefor4000hoursofoperation.Findoutthereliability
withwhichthelifecouldbeexpected.

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Given:
n=1750rpm
C
o=11600N
C=17600N
L
h=4000h

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Equivalentloadforcompleteworkcycle:
N1+N2+N3+N4=1750rpmN
1=
100
1
(1750)=17.5rpm
N
2=
100
3
(1750)=52.5rpm
N
3=
100
21
(1750)=367.5rpm
N
4=
100
75
(1750)=1312.5rpm

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Firstgear:Fr
Fa
2e Fr
Fa
=
4000
3250
=0.8125
Fco
Fa
=
11600
3250
=0.28 Y=1.2-
0.5-0.25
1.2-1.0
x(0.28-0.25)
Y=1.176
and
X=0.56

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Firstgear:
P
1=XF
r+YF
a=0.56(4000)+1.176(3250)=6062N
Secondgear:Fr
Fa
1e Fr
Fa
=
2750
500
=0.182
Fco
Fa
=
11600
500
=0.0431
P
2=F
r=2750N

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Thirdgear:Fr
Fa
1e Fr
Fa
=
2750
50
=0.0182
Fco
Fa
=
11600
50
=0.00431
P
3= F
r= 2750 N
Fourthgear:
P
4=0

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Equivalentloadforcompleteworkcycle:Pe=[
N
1+N
2+N
3+N
4
N
1P
1
3
+N
2P
2
3
+N
3P
3
3
+N
4P
4
3
]
3
=[
125+350+100+0
17.5(6062)
3
+52.5(2750)
3
+367.5(2750)
3
+0
]
3
Pe=1932.67N L
10=(
P
C
)
p

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
BearinglifeL
10andL:L
10=(
P
C
)
p
=(
1932.67
17600
)
3
L
10=755.2millionrevolutions
L
h=
60n
L(10
6
)
4000=
60(1750)
L(10
6
)
L=420millionrevolutions

TUTORIAL PROBLEMS -
ROLLING CONTACT
BEARINGS
Reliabilityofbearing:L10
L
=[
loge
p10
1
loge
p
1
]
b
1
755.2
420
=[
loge
0.90
1
loge
p
1
]
1.17
1
p=0.9483=94.83%

THANK YOU
Tags