Digital Logic & Design (DLD) presentation

foyezahammad1 11,612 views 40 slides Aug 11, 2016
Slide 1
Slide 1 of 40
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40

About This Presentation

Digital Logic & Design (DLD) Prepared By:Md Foyez Ahammad.
Email:[email protected] or foyezbijoy@ gmail.com


Slide Content

DIGITAL LOGIC & DESIGNDIGITAL LOGIC & DESIGN
PRESENTED BY:PRESENTED BY:
Md. Foyez AhammadMd. Foyez Ahammad
Dept: EEEDept: EEE
ID:13205100ID:13205100
 PRESENTED FOR:PRESENTED FOR:
 Dr. Shariful IslamDr. Shariful Islam
 Faculty,Dept of EEEFaculty,Dept of EEE
Combinational Logic 1

Combinational Logic 2
RememberRemember
CombinationalCombinational
The outputs depend only on the current input The outputs depend only on the current input
valuesvalues
It uses only logic gatesIt uses only logic gates
Sequential Sequential
The outputs depend on the current and past input The outputs depend on the current and past input
valuesvalues
It uses logic gates and storage elementsIt uses logic gates and storage elements
Network
.
.
.
.
.
.
Inputs
Outputs

Combinational Logic 3
NotesNotes
If there are If there are n n input variables, there are input variables, there are
2^n input combinations2^n input combinations
For each input combination, there is For each input combination, there is
one output valueone output value
Truth tables are used to list all Truth tables are used to list all
possible combinations of inputs and possible combinations of inputs and
corresponding output values corresponding output values

Combinational Logic 4
Basic Combinational Basic Combinational
CircuitsCircuits
AddersAdders
MultipliersMultipliers
MultiplexersMultiplexers
DecodersDecoders
EncodersEncoders
ComparatorsComparators
SubtractorsSubtractors

Combinational Logic 5
DesignDesign
Determine the inputs and outputsDetermine the inputs and outputs
Assign a symbol for eachAssign a symbol for each
Derive the truth tableDerive the truth table
Get the simplified boolean expression Get the simplified boolean expression
for each outputfor each output
Draw the network diagramDraw the network diagram

Combinational Logic 6
ExampleExample
Conversion from BCD to excess-5Conversion from BCD to excess-5

Combinational Logic 7
Example (Cont.)Example (Cont.)
CDBAW ++=

Combinational Logic 8
Example (Cont.)Example (Cont.)
'''' BCDCBDBAX +++=

Combinational Logic 9
Example (Cont.)Example (Cont.)
diagramnetwork theDraw
Zand FindY

Combinational Logic 10
AddersAdders
Essential part of every CPUEssential part of every CPU
Half adder (Ignore the carry-in bit)Half adder (Ignore the carry-in bit)
It performs the addition of two bitsIt performs the addition of two bits
Full adderFull adder
It performs the addition of three bitsIt performs the addition of three bits

Combinational Logic 11
Half-AdderHalf-Adder
You can use K-Map to simplifyYou can use K-Map to simplify
It is also obvious from the truth tableIt is also obvious from the truth table

Combinational Logic 12
Full-AdderFull-Adder

Combinational Logic 13
Full-AdderFull-Adder
iiiiiiiii
iiii
BACBACBAC
CBAS
++=
ÅÅ=
+
''
1
HOW?????

Combinational Logic 14
4-bit Adder Implementation4-bit Adder Implementation
From course book
0
0
=C

Combinational Logic 15
QuestionQuestion
How can you get 32-bit implementation?How can you get 32-bit implementation?

Combinational Logic 16
Binary SubtractorBinary Subtractor
RememberRemember
You need to take 2’s complement to represent You need to take 2’s complement to represent
negative numbersnegative numbers
A-BA-B
Take 2’s complement of B and add it to ATake 2’s complement of B and add it to A
First take 1’s complement and add 1First take 1’s complement and add 1

Combinational Logic 17
4-Bit Adder and Subtractor4-Bit Adder and Subtractor
)(
)(1
)(0
OverflowV
SubtractorM
AdderM
=
=
From course book

Combinational Logic 18
Binary MultiplierBinary Multiplier
From course book

Combinational Logic 19
ComparatorsComparators
Compare two input wordsCompare two input words
Returns 1 if Returns 1 if
A=B, 0 A=B, 0
otherwiseotherwise

Combinational Logic 20
From course book

Combinational Logic 21
DecoderDecoder
n by 2^n decoder n by 2^n decoder
Converts information from n input lines into 2^n Converts information from n input lines into 2^n
output linesoutput lines
2x4 Decoder2x4 Decoder
3x8 Decoder3x8 Decoder

Combinational Logic 22
2x4 Decoder2x4 Decoder

Combinational Logic 23
Internal Structure of 2x4 Internal Structure of 2x4
Decoder Decoder

Combinational Logic 24
Another View Another View

Combinational Logic 25
From
course
book

Combinational Logic 26
ExampleExample

Combinational Logic 27
4x16 Decoder4x16 Decoder
From course book

Combinational Logic 28
Full Adder with DecoderFull Adder with Decoder
iiiiiiiii
iiii
BACBACBAC
CBAS
++=
ÅÅ=
+
''
1

Combinational Logic 29
MultiplexersMultiplexers
You can select information from one of You can select information from one of
many input lines and assign it to one many input lines and assign it to one
output lineoutput line
You have input lines, control lines, and You have input lines, control lines, and
one output lineone output line
It is called MUXIt is called MUX

Combinational Logic 30
2x1 Multiplexer2x1 Multiplexer

Combinational Logic 31
4x1 Multiplexer4x1 Multiplexer

Combinational Logic 32
Boolean Function Boolean Function
ImplementationImplementation
How do you implement it with 8x1 MUX?

Combinational Logic 33
ExampleExample

Combinational Logic 34
Three-State BufferThree-State Buffer

Combinational Logic 35
2x1 MUX with Three-State 2x1 MUX with Three-State
BufferBuffer

Combinational Logic 36
ShiftersShifters
8-input, 8-output shifter8-input, 8-output shifter
C=1 => right shift, C=0 => left shiftC=1 => right shift, C=0 => left shift

Combinational Logic 37
Study ProblemStudy Problem
Course Book Chapter – 4 ProblemsCourse Book Chapter – 4 Problems
4 – 314 – 31
Construct a 16x1 multiplexer with two 8x1 and Construct a 16x1 multiplexer with two 8x1 and
one 2x1 multiplexer. Use block diagramsone 2x1 multiplexer. Use block diagrams

Combinational Logic 38
Study ProblemStudy Problem
Course Book Chapter – 4 ProblemsCourse Book Chapter – 4 Problems
4 – 344 – 34
implementsr multiplexe hat thefunction tBoolean theDetermine
'
;
;1
;0
inputs data The
ly.respective S and ,S ,S inputsselection the
toconnected C and B, A, inputs hasr multiplexe 8x1An
6
40
53
721
012
DI
DII
II
III
=
==
==
===

Combinational Logic 39
Study ProblemsStudy Problems
Course Book Chapter – 4 ProblemsCourse Book Chapter – 4 Problems
4 – 14 – 1
4 – 44 – 4
4 – 64 – 6
4 – 114 – 11
4 – 204 – 20
4 – 214 – 21
4 – 254 – 25
4 – 324 – 32
4 – 334 – 33
4 – 354 – 35

Combinational Logic 40
QuestionsQuestions
Tags