Digitel.pdfelectric power digital&&&&&&&&&

5d4mn6gzmk 8 views 24 slides Nov 01, 2025
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

Digital


Slide Content

Digital Circuits
REZAN AHMAD
26 February 2023 1
Erbil Polytechnic University
Erbil Technology Institute
AIT department

Introduction of Digital Systems
Digitalsystemsusedigitalcircuitsthatprocessdigitalsignalswhich
cantakeononeoftwovalues,wecall:
0and1(digitsofthebinarynumbersystem)
or LOWandHIGH
or FALSEandTRUE
Digital Logic circuits handle data encoded in binary form, i.e. signals
that have only two values, 0 and 1.
2

• Analog information is made up of a continuum of values within a
given range
• At its most basic, digital information can assume only one of two
possible values: one/zero, on/off, high/low, true/false, etc.
3

4
Digital vs. Analog Waveforms
Analog systemshave inputs and
outputs that take on a continuous
range of values
Digital systemshave inputs and outputs
that are represented by discrete values
Binary digital systemshave exactly two
possible inputs /
output values, i.e., 0 or +5 V.+5
V
–5
T ime

5

1.Accuracy of results
2.More reliable than analog systems due to better immunity to
noise.
3.Ease of design
4.Digital signals use less power
5.Programmability.
6.Speed: A digital logic element can produce an output in
less than 10 nanoseconds (10
-8
seconds).
7.Economy: Due to the integration of millions of digital logic
elements on a single miniature chip forming low cost
integrated circuit (ICs).
6

7

8
Allnumbersystemshaveabaseorradix,whichspecifieshow
manydigitscanbeusedineachplacecount.
Inthedecimalsystemthebaseis10,sotherearetendigitsthat
canbeusedforeachplacecount.Thedigitsare
0,1,2,3,4,5,6,7,8,9.
Forbinarynumbers,thebaseis2,with0and1astheonlytwo
digits.
Octalnumbersystem,thebaseis8,thismeansthatthedigits
usedisfrom0,1,2,3,4,5,6,7.
Hexadecimalnumbers,withabaseof16,thefirsttendigitsare
representedbythenumbers0,1,2,3,4,5,6,7,8,9,andtheletters
A,B,C,D,E,Fareusedtorepresentthenumbers10,11,12,13,
14and15respectively.

9
The Decimal number system is a weighted number system.
For Integer decimal numbers, the weight of the rightmost digit (at position 0 )
is 1, the weight of position 1 digit is 10, that of position 2 digit is 100,
position 3 is 1000, etc.

Radix (base) = 10
MSD= Most Significant decimal
LSD= Least Significant decimal
10

⚫Base=2
⚫Two allowed digits {0,1}
⚫A Binary Digitis referred to as bit
⚫Examples: 1100011, 01, 0001, 11100
⚫The leftmost bit is called the Most Significant Bit (MSB)
⚫The rightmost bit is called the Least Significant Bit (LSB)
11010
Most Significant Bit
Least Significant Bit
11

Converting fromDecimalto Binary
EX: Convert (80)10to Binary ?
2(80
2(400 LSB
2(200
2(100
2(50
2(21
2(10
(01 MSB
(80)10=(1010000)2
12

13

Converting from Binaryto Decimal:
EX: Convert (10010)
2to decimal ?
1 0 0 1 0
2
4
2
3
2
2
2
1
2
0
= 1x2
4
+0 x 2
3
+ 0x2
2
+ 1x2
1
+ 0x2
0
= (18)
10
14

15

16

17

Base-16
Hexadecimal numbers are made of 16symbols:
(0,1,2,3,4,5,6,7,8,9,A, B, C, D, E, F)
Convert a hexadecimal number to decimal
(9AF)
16= 9x16
2 +
10x16
1 +
15x16
0
= (2479)
10
Note that each hexadecimal digit can be represented
with four bits.
(1011)
2 = (B)
16
18

Converting from DecimaltoHexadecimal
EX: Convert (45)10to hexadecimal
16(45
16(213=D
(0 2
(45)10 =(2D)16
19

20

21
Converting from Hexadecimal toDecimal
EX: Convert (2A5)
16to decimal ?

22

23
EX: Convert (2A5)16 to decimal

24
EX: Convert (2A5)16 to decimal