DIP_Lecture-1_2_RKJ_Introduction to Image Processing-1.pdf

aloksingh15122004 7 views 75 slides Oct 19, 2025
Slide 1
Slide 1 of 75
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75

About This Presentation

dip


Slide Content

Digital Image Processing
Dr. RajibKumar Jha
Associate Professor
Depart of Electrical Engineering
Indian Institute of Technology Patna
[email protected]
1
Lecture Notes-2025

Lecture-1-2
Digital Image Processing: An
Introduction
2

Marks Distribution
•Mid Semester: 20%
•End Semester: 40%
•Project work-1: 15%
•Project work-2: 20%
•Attendance: 05%
3

Reference Books
•R.C.Gonzalez&R.E.Woods,“Digital
ImageProcessing”4
th
edition.
•AnilK.Jain,“FundamentalofDigital
ImageProcessing”
4

Contents of DIP Syllabus
•Introduction-------1
•ImageDigitization-------2
•PixelRelationships---------2
•CameraModelandImagingGeometry------1
•CameraCalibrationandStereoImaging-----2
•InterpolationandResampling------3
•ImageTransformation,FourierTransform,DiscreteCosine
Transform,K-LTransform---------5
•ImageEnhancementinspatialdomain------2
•ImageEnhancementinfrequencydomain-----2
5

Contents of DIP Syllabus
•ImageRestoration------3
•ImageRegistration------1
•ColourImageProcessing---3
•Image Segmentation------4
•Mathematical Morphology----3
•Image Compression------4
•Wavelet Transform & Applications---2
•Project Presentation.
6

Introduction
•Animageisa2-dimensionalfunctionf(x,y),wherex,yarethespatial(plane)co-
ordinatesandtheamplitudeoffatanypairofcoordinates(x,y)iscalledtheintensity
oftheimageatthatpoint.
•Ifx,yandtheamplitudevaluesoffarefiniteanddiscretequantities,wecalltheimage
adigitalimage.
•Adigitalimageiscomposedoffinitenumberofelementscalledpixelseachofwhich
hasaparticularlocationandvalue.
•DigitalImageprocessingisamethodtoperformsomeoperationsonanimage,inorder
togetanenhancedimageortoextractusefulinformationfromit.
ImageProcessinghastwoaspects:
•Improvingthevisualappearanceofimagestoahumanviewer
•PreparingImagesformeasuringdifferentfeatureslikeshape,structureetc.
7

Similar Areas/Doubt
•Digital Image Processing:
Input is an image-------------output is processed image
•ComputerGraphics:Herewegeneratelines,shadingsofan
objectetc.andthenputthesesasdescriptions(itisrelatedto
theimagewewanttodraw)totheinputofcomputer.Then
thatdescriptionsarecomputerprocessedinordertorepresent
thatobjectpictorially.
Input is Description-------------output is synthetic not real image
8
Comp
Comp

Similar Areas/Doubt
•PatternRecognition:Imageisaninputandwewanttoextractthe
meaningfuldescriptionsfromtheimage.
•Ex-Satelliteimage:howmanyclassesarethereintheimage.Thatis,
whereisthevegetationarea,waterbodyarea,forestareaetc.canbe
classified.
•Inputisanimage-----------Outputisasetofdescriptionsindicatingthe
differentclasses.
9
Comp

Digital Image Processing to Computer Vision
10
•ComputerVision:Afterprocessinganimageweanalysetheimageandget
moremeaningfulinformation.
•ThecontinuumfromImageProcessingtoComputerVisioncanbebrokenup
intoLow,MidandHighlevelProcesses.

Image Representation by Digital Computer
•AnImageisa2-Dlightintensityfunctionoff(x,y).
•Adigitalimagef(x,y)isdiscretizedbothinspatialcoordinates(sampling)and
brightness(quantization).
•Itcanbeconsideredasamatrixwhoserow,columnindicesspecifyapointinthe
imageandtheelementalvalueidentifiesgrayvalueatthatpoint.
•Theseelementsarereferredtoaspixels.
•f(x,y)=r(x,y)i(x,y); 0≤r(x,y)≤1, 0≤i(x,y)<∞
–r(x,y)reflectivityofsurfaceofcorrespondingimagepoint.
–i(x,y)intensityoftheincidencelight.
•Thelightfromthelightsourcefallsontheobjectsurface,itgetsreflected,
reachesoureyeandthenonlywecanseethatparticularobject.
•Pixelvaluesareproportionaltotheenergyradiatedbyaphysicalsource(em
waves).0≤f(x,y)<∞
11

Image Representation
12

Image Representation
13

Pixels

Pixel, Image Size, Resolution
•Everypixelkeepcolourinformation.
•Morepixelsinanimagemeanstheimagesizewillbelargebutit
doesn’talwaysmeanthatit’sabetterquality.
•Resolutionismeasuredindpiorppi(dotsperinchorpixelsperinch)
•300-PPI---Onaninchdistanceweprintout300pixelsfromtheoriginal
image.

Pixel, Image Size, Resolution
•Cameracaptures14.6megapixelimageswhichisaround14,600,000pixelsperimage
(14.6x1,000,000).
•Thisinformationtellsyounothingabouttheactualpixeldimensionsoftheimage–it
onlytellsyouthetotalnumberofpixelsthatcomprisetheimage.
•InmostdSLR(digitalsingle-lensreflexcamera)camera,capturedimageshavean
aspectratioof1.5.Sotheratiocomparingthenumberofpixelsalongthelongedgeto
theshortedgeis3:2.
•Eachfullsizerawimageis4672x3104pixelsindimension.So,bymultiplyingthe
numberofpixelsalongthewidthbythoseoftheheight(4672x3104=14,501,888)we
gettheactualnumberofpixelsintheimage.
16

Pixel, Image Size, Resolution
•Toprintanimage4x6inches
at300ppi,thenafilehasat
least4x300(1200)pixels
alongitsshortsideand6x
300(1800)pixelsonthelong
side.So,itneedstobeatleast
1200x1800pixelsinsize.
•Toprintan8x10inchesat
300ppiusethesamemath–
Theresultis2,400x3,000
pixelssizeofanimage.
17

Resolution
For commercial printer 300ppi is standard

Low and High Resolution Image

Resolution

Resolution/Image Size
•All theimage resolution formats reach up to
1280x720, they are high definition (HD).
•CurrentHDresolutionformatsinclude1.0
megapixel(720p),1.3megapixel(960p),2
megapixel(1080p),3megapixel,5megapixel,
8megapixel(4KUHD),12megapixel,33
megapixel(8KUHD).

HD (high degree of detail) Resolution

23

Electromagnetic Spectrum
24

25

26
•It is used for treatment of cancerous cell in our body without the use of the surgery.
•It is used in industries to kill the harmful bacteria, organism like yeast etc.
•Like x –rays, it is also used to disinfect medical instruments.
•It is used to detect brain and heart abnormalities.
•Gamma rays are used by Engineers, since they can penetrate better than X-rays, to
look for cracks in pipes and aircraft parts.
•Gammaraysaremostlyusedin
theradiotherapy/radio-
oncologytotreatcancer.
•Gammarayscankilllivingcells
anddamagemalignanttumor.

27
UsesGammarayscankilllivingcells,theyareusedtokillcancercellswithouthavingtoresorttosurgery.
Thisprocedureiscalled"Radiotherapy",

28

X-ray Images
29

X-ray image
30

X-ray image
31
Tomosynthesisor “3D” mammography is a new type of digital x-ray
mammogram which creates 2D and 3D-like pictures of the mammogram

Ultraviolet-ray
•Ultravioletphotographyisaphotographicprocessofrecording
imagesbyusinglightfromtheultraviolet(UV)spectrumonly.
•Diagnosticmedialimagesmaybeusedtodetectcertainskin
disordersorasanevidenceofinjury.
32

UV Ray Image
•Ultraviolet(UV)lightisacommonlyusedmethodforkillingbacteriaand
•Veryhighlevelsofultravioletlightdisinfectsareascontaminatedwith
COVID-19etc.
33

Ultraviolet photography
34

Ultraviolet-ray
35
Thebiggestcontributortoagingskinisthesunexposureduringour
lifetimes.

Visible Light Spectrum
36

Visible ray
37

Infrared images
38

Normal Image/Infrared Images
39

Infrared images
40

Night Vision
41

IR Image
42

Why do we need Image Processing ?
•It is motivated by some major applications:
–Improvement of pictorial information
–autonomous machine application
–Efficient Storage and transmission
–Object detection & recognition
43

Why Image Processing
•Google,
•Amazon,
•Facebook,
•Twitter,
•Cellphone company,
•Computer Vision,
•Machine Learning,
•Deep learning
44

Why do we need to process the images ?
•Improvementofpictorialinformationforhumanperception
–Imagecontentenhancement:whateverimageweget,wewant
toenhancethequalityofanimagesothattheimagewillhave
abetterlook.Somemethodsare
•Noisefiltering&ImageEnhancement
•Debluringofblurredimage
•ClassifyingpixelsofRemotesensingimages
45

Noise Filtered image
46

Image Enhancement
47

OutputImage
Image Enhancement
48
Input Image

Input Image
Image Enhancement
49
OutputImage

Image Enhancement
50
Input Image Output Image
Input Image Output Image

51

52

Image Deblurring
53

Blurred and De-blurred Image
54

Blurred and De-blurred Image
55

Classifying pixels of Remote sensing images
56

Remote sensing image
57
•Study that whether the river has changed its path,
•Study what is the growth of vegetable over a certain region etc.

Remote Sensing image to Count Trees
58
•Build a city over certain region with help of satellite image.
•One can determine that where the residential area, industrial area etc. have
to be grown.

•Imageprocessingforautonomousmachineapplication
–Industry Machine vision for product assembly and inspection
–Automated target detection and tracking
–Finger print recognition
–Medical Applications
59

Automated Inspection
60

Fingerprint Enhancement
61

Medical Imaging
62

Medical Imaging
•For different types of fatty images, cancerous
regions look like (a) to (c)
63

Medical Imaging
64

•Video(displayingofimagesequence)SequenceProcessing:
–Detectionandtrackingofmovingtargetforsecuritysurveillance.
–Monitoringthemovementsoforganboundariesinmedical
applicationsetc.
65

Movement detection
66

Movement detection
67

•Efficientstorageandtransmission:
–Animageusuallycontainslotofredundancythatcanbeexploitedtoachieve
compression.
–Ifimagedataiscompresseswithoutinformationlossthenitisveryusefulfordata
compression&transmission.
–Redundancy
•Pixelredundancy
•Codingredundancy
•Psychovisualredundancy
68
•ImagekeepsInformationandRedundancyboth.
•Soprocessonimage,removetheredundancyandkeeptheinformation.

69
•Psychovisualredundancyarisesduetotheproblemofperception.
•Oureyesaremoreresponsivetoslowandgradualchangesofillumination
thanperceivingfinerdetailsandrapidchangesofintensities.
•Hence,towhatextentweshouldpreservethedetailsforperceptionor
compromiseonthequalityofreconstructedimageisessentiallycarried
outbyexploitingthepsychovisualredundancy.
Psychovisualredundancy

Image Compression
70

71
Image Compression

Fundamental steps of digital image processing
72

Fundamental steps of digital image processing
•Imageacquisition:Itcouldbeassimpleasbeinggivenanimagethatis
alreadyindigitalform;
•Imageenhancement:Ideaistobringoutdetailsthatareobscured,or
simplytohighlightcertainfeaturesofinterestinanimage;
•Imagerestoration:thatdealswithimprovingtheappearanceofan
image;
•Colorimageprocessing:includecolormodelingandprocessingina
digitaldomain,etc;
•Waveletsandmultiresolutionprocessing:Thesearethefoundationfor
representingimagesinvariousdegreesofresolution;
•Compression:Reducingthestoragerequiredtosaveortransmitan
image;
73

Fundamental steps of digital image processing
•Morphologicalprocessing:Extractimagecomponentsusefulinthe
representationanddescriptionofshape;
•Segmentation:Dividesanimageintoitsconstituentpartsorobjects;
•Representationanddescription:Transformsrawdataintoaform
suitableforsubsequentcomputerprocessing;
•Objectrecognition:Itistheprocessthatassignsalabelintoobject
basedonitsdescriptor;
•Knowledgebase:Itindicatesregionsofanimagewheretheinformation
ofinterestisknowntobelocated
74

Thanks
75
Tags