DocScanner skjxhksjxsa23 Feb 2025 1-48 pm.pdf

copainsacademy 9 views 34 slides Sep 07, 2025
Slide 1
Slide 1 of 34
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34

About This Presentation

doct scane show


Slide Content

PA nn

Unit IM — Series

Infinite Series °

Y. Introduction, 2, Sequences, Series.
onvergence 4. Ge
terms 6 Comparison tests, 7. Integra test. 8,Cmparsa fran DA cas

fonvergence of Expunental, Logarithmic and
sfr convergence. 17. Uniform convergence
formly convergent series. 20. Objectice Type of

Binomial series. 16. Procedure for testing
18. Weierstrass's Most. 19. Properties of y
Question.

91. INTRODUCTION

Infinite series occur so frequently in all types of problems thatthe necessity ofstudying their
convergence or divergence is very important. Unless a series employed in an investigation is
convergent, it may lead to absurd conclusions, Hence it is essential that the students of
engineering begin by acquiring an intelligent grasp ofthis subject.

92. SEQUENCES
(1) An ordered set of real numbers ay, 6 ay,

called a sequence and is denoted by
id t be an infinite sequence and

For instance (2) 1, 8,6, 7, (20 =D, sn (6) 1,1/2, 1/3, ny 1/8 «y
UP

(2) Limit. A sequence is said to tend t a lis
such that [a,~Z] <e for n 2N.

We then write Lt (¢,)=1 or simply (¢,) 1 a8 n +.

infinite sequences,
Tor every > 0, a value N ofn can be found

(8) Convergence. Ifa sequence (a) has a init limi is called a convergent sequence.
11 (,)is nat converbent it is said to be divergent.

In the above examples, (i) is convergent, while) and (i) are divergent,

(4) Bounded sequence. A sequence (,) in said t be bounded, her exist a number à
such that a, <A for every n,

(6) Monotonic sequence. The sequence (a)
steadily according a8 dy 12 dy OF dy 41, for all values on, Both incas
Sequences are called monotonic sequences

A monotonic sequence always tends to a limit, finite or infinite, Thus, a sequence which is
‘ronotonie and bounded is convergent.

said to increase steadily or to decrease
and decreasing

399

95 sn OF FETE TEMS
ance rent

an. len peste em res aa era

ease pinta er ere dogs
sra edi be it
"ca enden farenrersenee I

nn ane

ras april rm are post pe

oe
o

A POSTVE TERMS
peas il mae am
La site cris terme ter id ae

em her mg de +
eines te a

ore

KG. SCSCSCSC*C*~S

suse

911. CAUCHYS ROOTTEST™

a

ron band Gres E

CPS

rater, 270, 000

seb mate

open neg sey,

item
font such that for cory

same 24 e

urier Series

Foi

Een ju
ering a ig try

co
= sounds [E ne pot

init xe, rs 10-0)=-nands000)00 = 10

2 ES 335250 mer
> ame 08 Pete rr sí spain of pore
Toren tenet
eee an Betas E means
Bent

+E mure E

PE [APA]

mare fp

sans;

mn
‘Conse th eros nica defi («20 To banco probe pe

[7 cia nur ¿cm an un à Lors
Leaves

cajon»)

deo tocata int

debe

ati t

Pr
Fran

rock a

ely, un 8 faction eyelet te

the nest para

LE recon 25 oyo fein Ede

A

e
ayo REESE PS

OR couru fon FOUR seas

at Pts ts te ani ri 2

iss

nv
ae pate expanding = £2) 0 Fo

en
owt

ans)

en ee he
shes

etek ronmsncdeo2imenn val tf cox nxin 0,201 | 75
El omit ails rm er
Ti ma to Hel e
a mtn ama 2
Wege naeh LES de im 5 ed
‘Show ht he it mat pr np cet

msl te foot harmon