Step 3: In this step, we will find the minimum distance by visiting 2 cities as intermediate city. Cost(2, {3, 4}, 1) = min { d[2, 3] + Cost(3, {4}, 1), d[2, 4] + Cost(4, {3}, 1)]} = min { [2 + 18], [5 + 35] } = min{20, 40} = 20 Cost(2, {4, 5}, 1) = min { d[2, 4] + Cost(4, {5}, 1), d[2, 5] + Cost(5, {4}, 1)]} = min { [5 + 15], [11 + 21] } = min{20, 32} = 20 Cost(2, {3, 5}, 1) = min { d[2, 3] + Cost(3, {4}, 1), d[2, 4] + Cost(4, {3}, 1)]} = min { [2 + 18], [5 + 35] } = min{20, 40} = 20 Cost(3, {2, 4}, 1) = min { d[3, 2] + Cost(2, {4}, 1), d[3, 4] + Cost(4, {2}, 1)]} = min { [12 + 15], [8 + 47] } = min{27, 55} = 27 Cost(3, {4, 5}, 1) = min { d[3, 4] + Cost(4, {5}, 1), d[3, 5] + Cost(5, {4}, 1)]} = min { [8 + 15], [7 + 21] } = min{23, 28} = 23 Cost(3, {2, 5}, 1) = min { d[3, 2] + Cost(2, {5}, 1), d[3, 5] + Cost(5, {2}, 1)]} = min { [12 + 20], [7 + 28] } = min{32, 35} = 32 Cost(4, {2, 3}, 1) = min{ d[4, 2] + Cost(2, {3}, 1), d[4, 3] + Cost(3, {2}, 1)]} = min { [23 + 13], [24 + 36] } = min{36, 60} = 36 Cost(4, {3, 5}, 1) = min{ d[4, 3] + Cost(3, {5}, 1), d[4, 5] + Cost(5, {3}, 1)]} = min { [24 + 16], [6 + 19] } = min{40, 25} = 25 Cost(4, {2, 5}, 1) = min{ d[4, 2] + Cost(2, {5}, 1), d[4, 5] + Cost(5, {2}, 1)]} = min { [23 + 20], [6 + 28] } = min{43, 34} = 34 Cost(5, {2, 3}, 1) = min{ d[5, 2] + Cost(2, {3}, 1), d[5, 3] + Cost(3, {2}, 1)]} = min { [4 + 13], [8 + 36] } = min{17, 44} = 17 Cost(5, {3, 4}, 1) = min{ d[5, 3] + Cost(3, {4}, 1), d[5, 4] + Cost(4, {3}, 1)]} = min { [8 + 18], [11 + 35] } = min{26, 46} = 26 Cost(5, {2, 4}, 1) = min{ d[5, 2] + Cost(2, {4}, 1), d[5, 4] + Cost(4, {2}, 1)]} = min { [4 + 15], [11 + 47] } = min{19, 58} = 19