eco -system services in fruit crops.pptx

rojasrinivas2018 68 views 51 slides Aug 31, 2024
Slide 1
Slide 1 of 51
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51

About This Presentation

Ecosystem services are the ecological processes or functions that directly or directly benefit human well - being. The goods and services provided by ecosystem ranging from tangible to intangible. Fruit crops provide a multitude of ecosystem services vital for human well-being and environmental sust...


Slide Content

v WELCOME

Ecosystem Services of Fruit Orchard Roja H S Ph. D. 1st Year IARIBEN202310010 Division of Fruit Crops ICAR-IIHR, Bengaluru

Contents 3

Definition of Ecosystem Services Ecosystem services are the conditions and processes through which natural ecosystems and the species that make up, sustain and fulfill human life (Daily, 1997). Ecosystem goods and services represents the benefits human population derive, directly or indirectly from the ecosystem functions ( Contanza , 1997).

History of the concept development In 1970, Study of Critical Environmental Problems (SCEP), a concept of Environmental services was first mentioned An important milestone in ecosystem service evaluation was de Groot’s publication “Function of Nature” followed by Costanza et. al. (1997) and Daily (1997) who promoted the concept in global context. The concept gained recognition among policy makers when the United Nations published the Millennium Ecosystem Assessment (MA) in 2005

Provisioning Services Cultural Services Regulating Services Supporting Services Types

Ecosystem Services of Fruit Orchards Millennium Ecosystem Assessment, 2005

Provisioning services Food Production Economic benefits Medicinal Value Nutritional Value

Food Production Country Production ( milliion metric tonnes ) Share (%) China 240.75 20.9 India 103.27 13.6 Brazil 40.05 4.1 USA 26.02 2.7 Turkey 23.6 2.5 Horticulture items Export value Billion Indian ₹ Fresh fruits 65.61 Fresh vegetables 59.8 Processed fruits, pulps 57.93 Processed vegetables 31.72 Floriculture, fruits and vegetable seeds 16.14 Global fruit production (million metric tons) (Source: APEDA )

Nutritional values of fruits (Source: USDA, National Nutrient data base) Antioxidant Minerals Vitamins Nutrients H igh nutritionally valued and low volume Phyto-nutrients Protective Food

Medicinal Value Phytonutrients Sources Health benefits Quercetin Grape fruit, apple, cranberries A ntidiabetic Kaempferol Strawberries, gooseberries, grapefruit, apple Possesses antidiabetic activity Myricetin Grapes, berries, walnuts Antidiabetics Rutin Citrus fruits, berries, grapefruit, peaches, apples Has free radical scavenging activity Hesperidin Citrus fruits I ncreases the concentration of glycogen and glycolysis (hepatic) Naringenin Citrus fruits Acts as antihyperlipidemic Catechin Grapes, apple juice Prevents high blood glucose levels Epigallocatechin gallate Pomegranate juice Helps enhance the expression of insulin receptor Anthocyanins Bilberry, raspberry, strawberry, peach, plum Anticancer and anti-inflammatory Flavonones Citrus fruit Possess antioxidant and anticancer activity Flavonols Apple A ntioxidant Phenolic acids Berries Anticancer and have antioxidant activity Resveratrol Dark grapes, peanut, berries antidiabetic and antihyperlipidemic potentials Ferulic acid Apple, pears, citrus fruit Improves eye vision and is effective against heart diseases Proanthocyanidines Cranberries Prevention of cardiovascular disease and urinary tract disorders Lycopene Grapefruit, guava, papaya Has antioxidative and anticancer activities (Source: Farooq et al ., 2020)

Economic Benefits High net profit Higher value per unit Year round demand Value added products Premium varieties Less susceptible to price fluctuations Lower input cost Higher demand for organic products Source of raw material for agro based industries Rural people development Utilization of waste and barren lands for production Juice and beverage industries Jam and jelly production Canning and preservation Dried fruit production Fruit based desserts Cosmetics and pharmaceutical industries Providing fresh fruit for consumption, timber etc Creating value added products Offering employment oppurtunities Food safety and nutritional security Community empowerment Most of the fruits crops are hardy in nature, Mango, Ber, Cashew, Custard apple, Aonla , Phalsa, Jamun etc. which are grown on poor shallow, undulated soils considered unsuitable for growing agronomical crops. Foreign exchange During 2022-23, India exported fresh fruits worth Rs. 770.70 USD Millions. The processed fruits and juices Rs. USD 737.81 million in 2022-23. Grapes, Pomegranates, Mangoes, Bananas, and Oranges account for the larger portion of fruits exported. (Source: APEDA)

Regulating Services Pollination Climate regulation Pollution index Soil conservation Carbon sequestration

Climate Regulation Forest > Grassland > Fruit orchard > Aerable land Source: IPCC (2022) FAO, 2022

Carbon Sequestration Schematic diagram of apple carbon pool Sharma et al , 2021 Relationship between fruit trees and carbon sequestration.

P ollution Index Role of Fruit trees in the removal of air pollutants Dust capturing potentiality M. alba 2.18 mg/cm 2 Javanmard et al ., 2020 Ficus carica 1.19 g/m 2 Kashyap et al ., 2018 G. robusta 3.67 mg/cm 2 Singh et al ., 2020 M. indica 2.6 mg/cm 2 Singh et al ., 2020 Heavy Metal bioaccumulation (ppm) Crops Cu Zn Pb Cd Reference M. indica 5.65 24.65 24.80 - Roy et al ., 2020 P. guajava 216.2 37.12 11.05 0.60 Roy et al ., 2020 Artemisia spp 4.52 44.80 1.91 - Hosseini et al ., 2020 “Measure used to quantify the level of pollution in a particular area” Particulate matter absorption crops Young (gram/tree) Adult (gram/tree) Corylus avellana 12.8 117.8 Cydonia oblonga 21.3 103.5 Diospyrus kaki 18.8 98.7 Ficus carica 15.7 146.4 Juglans regia 28.6 195.6 Malus sylvestries 19.8 121.4 Prunus avium 11.2 106.7 Prunus domestica 9.4 71.1 Pyrus communis 10.4 80.2 ( Orlandi et al , 2023) (Singh et al. , 2023)

Pollination Diversity in Pollinator Species Avoiding pesticide application during blooming Enhancing Biodiversity Environmental Sustainability Osterman et al , 2021

Soil Conservation Soil erosion control Soil stabilization Soil structure

Supporting Services Biodiversity Photosynthesis Soil Formation Genetic Resources

Biodiversity of fruit crops “Totality of genes, species, and ecosystems of a region” 12 – World Mega Diversity Centres 2 – Reservoirs of Plant Genetic Resources 17 – Mega Diverse Nations 8 – Centres of Origin of Crop Plants 36 – Hot Spots 4 – Hotspots in India Fruits and nuts 117 Cultivated species 175 Wild relatives 25 Domesticated species (Sankaran and Dinesh, 2020)

The main centre of diversity for fruits in India Elaeagnus hortensis Fragaria indica Prunus acuminala P. cerasiodes P. cornuta P. napaulensis P. prostrata P. tomentosa Pyrus baccata P. communis P. kumaoni P. pashia Ribes graciale R. nigrurn Rubus ellipticus Fragaria indica Morus spp., Myrica esculenta Prunus acuminata P. cerasiodes P. jcirkinyii P. nupauiensis Hives yraciale Rubus lineatus R. ellipticus R. lasiocarpus R. moluccanus R. reticulatus Citrus assamensis C. ichangensis C. lndica C. jambiri C. macroptera C. media C. aurantium, E. angustifolia M. Sylvatica Musa accuminata M. balbisiana Pyrus pyrifolia P. pashia Prunus cerasiodes P. cornuta Ribes graciale Aegle marmelos Cordia myxa C. rothi E. officinalis Grewia as/at/ca, Morus spp., Phoenix spp., Syzygium spp., Zizyphus spp., Manilkara hexandra (more in North-Western plains). Meagre occurrence of Syzygium , rich variaton in Carissa bcongesta . Artocarpus heterophyllus A. lakoocha Garcinia indica Diospyros spp., Ensete superba Mangifera indica Mimosops elengii Spondias pinnata Vitis spp., Zizyphu oenoplia Z. rugosa Ruhus ellipticus R. laeiocarpus R. moluccanus N. Himalayas E. Himalayas NE. Himalayas Indo Gangetic Indus region W. Plateu (Arora and Nayar, 1984)

Genetic Resources Genotypes of particular species, collected from different sources and geographical origin

Germplasm collection at various Institute Si. No. Fruit crops Genetic resource – germplasm collection 1. Banana Trichy (366), Kannara (350), Coimbatore (200), Arabhavi (70 accessions), Bhubaneswar (26), Gandevi (101), Jalgaon (90), Jorhat (84), Kovvur (107), Mohanpur (124), Pusa (65) and 2. Citrus Nagpur (614), Tinsukia (139), Tirupati (117), Srininagar (37), Rahuri (37), and Ludhiana (17). 3. Grapes Pune (121), Rajendranagar (58), Ludhiana (17) and Rahuri (5). 4. Guava Lucknow (150), Sangareddy (28), Ranchi (52), Sabour (10), Udaipur (26) and Bengaluru (76) including five species 5. Mango Bengaluru (767), Lucknow (745), Sangareddy (477), Vengurla (307), Rewa (228), Paria (184), Sabour (152), Mohanpur (143), Periyakulam (117), Rahuri (85), Udaipur (24), and Pantnagar (15). 6. Papaya 85 accessions (35 dioecious and 50 gynodioecious) at Coimbatore, Pune (17) and Bengaluru (24) 7. Sapota Arabhavi (42), Gandevi (23), Kovvur (34), Palghar (18) and periyakulam (19) Source: https://www.iihr.res.in/aicrp-achievements Field Gene bank collection IIHR Mango 767 Pomegranate 265 Jackfruit 171 Bael 119 Jamun 95 Guava 67 Tamarind 58 Sapota 52 Custardapple 48 Avocado 47 Papaya 35 Pommelo 35 Garcinia 32 Grapes 20 Wood Apple 16

Inherent properties Depth Clay types Texture Manageable properties Mp OM N and P pH Cultural Services Regulating Services Provisioning services Human needs Degradation processes Erosion Compaction Supporting process Nutrient cycling Water cycling Soil biological activity External drivers Natural and anthropogenic Climate, landuse Soil Formation and maintenance Soil degradation SOIL ECOSYSTEM SERVICES SOIL NATURAL CAPITAL Soil Formation Dominati et al ., 2010

Cultural Services Recreational and Aesthetics Spiritual and Cultural values Inspiration for art and literature Educational opportunities

Case Study 1 ( Montanaro et al ., 2016)

To test the hypothesis that in a sustainable Mediterranean peach orchard ( Prunus Persica L. Batsch ), the absolute annual C change is net positive (i.e. NECB > 0). To examine whether a switch from conventional to sustainable cultivation would significantly contribute to GHG mitigation through the growth of the soil C pools (SOC and litter). To quantify C sequestration in standing above- and below-ground biomass of fruit trees growing in a Mediterranean peach orchard throughout their commercial lifetime. Objectives:

Materials and methodology Study site Southern Italy, Peach cv. Super Crimson grafted on GF677, planted in 1997 and managed according to conventional management practices Treatment In the year 2004, 1ha block of same orchard was subjected to sustainable management practices for 7 year period (No tillage, compost application 15t/ha, understorey grass maintenance and application of pruned material to soil) Above and below ground biomass Destructive sampling of each component Soil organic carbon and litter Potassium dichromate oxidation method and random sampling of 1m x 1m plot, respectively Soil CO 2 emission Non dispersive infrared gas analysis equipped with soil respiration chamber

S mng C mng Tree Above Fruit 134.6 ± 5.3* 93.2 ± 3.7     Summer pruning 100.4 ± 27.1 99.5 ± 26.8     Leaves 60.3 ± 3.0* 84.5 ± 4.6     Thinned fruit 15.8 ± 3.2 14.9 ± 4.0     Shoot current year 106.0 ± 7.4 107.8 ± 7.5     Dwood 116.2 ± 9.3 108.9 ± 6.7   Below Root current year 67.5 ± 5.4 58.1 ± 4.6     DRoot 54.1 ± 2.7 48.7 ± 2.9     Total tree NPP 654.9 ± 52.3 615.6 ± 39.2 Cover crops Above mowed biomass 135.0 ± 8.1* 13.5 ± 0.6   Below Root 20.3 ± 1.5* 2.0 ± 0.2     Total orchard NPP 810.2 ± 62.1* 630.9 ± 40.1 Allocation of the mean ( SE) annual Net Primary Production (NPP, g C m —2 yr —1 ) in various above- and below-ground components of tree and cover crops grown under sustainable ( S mng ) and local conventional ( C mng ) management practices. Relative partitioning (%) of the annual net primary production (NPP) in various above- and below-ground components in trees grown under (A) sustainable and (B) conventional managements. Fruit S mng C mng

Seasonal trend of the daily soil CO 2 respiration ( R s ) (g m -2 d - 1 ) and soil temperature (ºC) S mng C mng NPP 810.2 ± 62.1* 630.9 ± 40.1 R h 335.3 ± 42.8 310.6 ± 13.0 NEP 474.9 ± 43.4* 320.3 ± 17.8 R h /NPP 0.5 0.78 Mean ( SE) net ecosystem production (g C m - 2 yr - 1 ) and Rh/NPP ratio Annual mean ( SE) fluxes (g C m - 2 yr - 1 ) of lateral transport of carbon, net ecosystem production (NEP) and net ecosystem carbon balance S mng C mng LTC Components 393.8 ± 2.8 na Pruning na –138.2 ± 20.7 Yield –134.6 ± 7.5* –93.2 ± 3.2 Total LTC 259.2 ± 9.1 * –231.4 ± 25.4 NEP 474.9 ± 43.4 * 320.3 ± 17.8 NECB 734.1 ± 47.7 * 88.9 ± 6.2

Soil layer (cm) SOC (%) C stock (t/ha) C mng S mng C mng S mng   Initial   Final   Initial   Final Initial   Final   Initial   Final 0–10 1.30aA   1.31aA 1.30aA 1.78bB 12.62aA 12.88aA 12.94aA 17.94bB 10–20 1.10aA 1.10aA   1.10aA 1.09aA 11.22aA 11.42aA 11.55aA 11.38aA 20–40 0.80aA   0.78aA 0.80aA 0.89aA 8.59aA 8.38aA 8.45aA 9.40aA Mean value of SOC and C stock measured at the beginning and end of experiment 1 - year - old 15 - year - old Lifetime removal Above- ground 0.02 17.21 17.19 Below- ground 0.01 8.15 8.14 Total 0.03 25.36 25.33 C accumulated in biomass (t C/ha) during the 14 year lifetime of the orchard

Inference Positive inference of sustainable agricultural practices on soil C sequestration. The higher NCEB (730 gC /cm 2 / yr ) of S mng orchard indicate that ecosystem is strong sink . While, C mng orchard act as a weak sink (88.9 gC /cm 2 / yr ) and remains susceptible to a source in case of increased LTC. Adoption of S mng practices promoted accretion of soil C pools such as SOC (88.9 gC /cm 2 / yr ) and litter (62 gC /cm 2 / yr ). The lifetime potentially achievable C sequestration ability of peach orchard is 25 t C/ha .

Case Study 2 (Roy et al ., 2020)

to examine Air Pollution Tolerance Index and Anticipated Pollution Index values in plant species To estimate the metals accumulation efficiency and dust capturing capacity among the tropical trees to measure the metal transfer co-efficient and the bio indicating capacity of metals in plant species. Objectives:

Study site Jharkhand, Jam- shedpur (industrial), Ranchi (commercial) and Birla Institute of Technology, Mesra (control site) Treatment Air Pollution Tolerance Index A (mg/g) = Ascorbic acid, T (mg/g) = Total chlorophyll, P = Leaf extract pH, R (%) = Relative water content Anticipated Tolerance Index Dust capturing capacity Metal Accumulation Index (MAI) N = Number of heavy metals, IJ = IJ is sub-index of J gained by dividing the metal concentration by its standard deviation Transfer coefficient (TC) CHMP = Heavy metal's concentration in plants CHMS = Heavy metal's concentration in soil Materials and methodology Mangifera indica Azadirachta indica Psidium guajava Sara caasoca Tectona grandis Ficus bengalensis Alstonia scholaris Ficus religiosa Ailanthus excelsa

Ascorbic acid content of leaf samples, in the industrial, commercial and control sites, for monsoon and post monsoon seasons. T otal chlorophyll content of leaf samples, in the industrial, commercial and control sites, for monsoon and post monsoon seasons.

Relative water content of leaf samples, in the industrial, commercial and control sites, for monsoon and post monsoon seasons. pH value of leaf samples, in the industrial, commercial and control sites, for monsoon and post monsoon seasons.

Common name Species name   Monsoon     Post-monsoon       Industrial Commercial Control Industrial Commercial Control Mahanimb Ailanthus excelsa I (16.93) S (11.67) S (11.40) I (24.05) S (12.19) S (12.18) Saptparni Alstonia scholaris S (13.73) S (11.37) S (11.51) I (18.27) S (12.64) I (16.88) Neem Azadirachta indica I (16.77) I (22.45) S (12.31) I (28.62) I (23.83) I (22.98) Banyan Ficus bengalensis S (15.23) S (13.66) I (16.71) I (17.29) I (17.68) S (18.39) Peepal Ficus religiosa I (14.65) S (15.66) S (14.08) I (17.27) I (17.13) I (19.16) Mango Mangifera indica I (21.28) I (25.31) I (18.67) I (26.43) I (29.42) I (22.93) Guava Psidium guajava I (17.90) S (10.91) S (13.14) I (18.19) S (13.74) S (10.21) Ashok Saraca asoca S (14.42) S (10.82) S (12.08) S (16.46) I (17.68) S (14.19) Teak Tectona grandis S (11.42) S (10.20) S (8.92) S (11.79) S (12.30) S (9.28) Categorization of APTI in study sites for monsoon and post-monsoon. 1–16:- Sensitive (S), 17–29:- Intermediate (I), 30–100:- Tolerant (T)

A P I S c o re ( u p to 3 0% )= G r a de 0, A P I S c o r e ( 3 1 – 4 ) = G r a d e 1, A P I S c o re ( 41 – 5 0) = G r a de 2, API Score (51–60)= Grade 3, API Score (61–70)= Grade 4, API Score (71–80)= Grade 5, API Score (81–90)= Grade 6, API Score (91–100)= Grade 7. Assessment category: VP=Very poor, P = poor, M = moderate, G = good, VG = very good, E = excellent. Species API grade and assessment category Industrial Commercial Control Ailanthus excelsa 3 (M) 3 (M) 3 (M) Alstonia scholaris 2(P) 2(P) 2(P) Azadirachta indica 4(G) 4(G) 4(G) Ficus bengalensis 5(VG) 5(VG) 5(VG) Ficus religiosa 4(G) 4(G) 4(G) Mangifera indica 6(E) 6(E) 6(E) Psidium guajava 3(M) 3(M) 3(M) Saraca asoca 1(VP) 1(VP) 1(VP) Tectona grandis 1(VP) 2(VP) 1(VP) Anticipated Performance Index in studied plant species

Species Industrial Commercial Control Ailanthus excelsa 0.35 ± 0.24 0.26 ± 0.13 0.20 ± 0.09 Azardirahta indica 0.34 ± 0.22 0.29 ± 0.06 0.23 ± 0.07 Alstonia scholaris 0.53 ± 0.22 0.41 ± 0.14 0.07 ± 0.04 Ficus bengalensis 0.95 ± 0.51 0.99 ± 0.63 0.25 ± 0.14 Ficus religiosa 0.88 ± 0.31 0.82 ± 0.61 0.25 ± 0.14 Mangifera indica 0.82 ± 0.41 0.75 ± 0.41 0.33 ± 0.10 Psidium guajava 0.46 ± 0.25 0.49 ± 0.08 0.33 ± 0.13 Saraca asoca 0.48 ± 0.16 0.52 ± 0.41 0.49 ± 0.24 Tectona grandis 0.62 ± 0.18 0.59 ± 0.23 0.24 ± 0.10 Dust capturing capacity of plants (mg/cm 2 ) in the commercial, industrial and control

Species Cd Cr Cu Mn Ni Pb Zn MAI Ailanthus excelsa 0.42 ± 0.28   6.06 ± 5   150.00 ± 63.41   100.85 ± 33.29   1.50 ± 1.07   10.05 ± 2.92   33.90 ± 13.38 2.13 Alstonia scholaris 0.44 ± 0.38 4.50 ± 1.40 189.40 ± 72.90 83.05 ± 38.30 4.45 ± 2.65 8.40 ± 1.92 36.20 ± 8.37 2.23 Azadirachta indica 0.25 ± 0.01 6.12 ± 1.70 180.1 ± 129.4 95.16 ± 33.80 1.75 ± 1.06 9.19 ± 7.11 55.81 ± 30.90 3.27 Ficus bengalensis 0.25 ± 0.00 6.60 ± 3.47 150.80 ± 37.80 71.95 ± 43.10 2.95 ± 0.87 11.45 ± 5.94 48.65 ± 37.30 5.15 Ficus religiosa 0.25 ± 0.00 3.30 ± 1.24 181.80 ± 80.10 54.56 ± 29.90 1.93 ± 1.24 8.80 ± 1.80 29.00 ± 9.10 3.92 Mangifera indica 0.25 ± 0.01 5.25 ± 3.24 198.40 ± 57.82 87.10 ± 18.23 0.75 ± 0.6 8.60 ± 1.74 30.20 ± 12.40 2.55 Psidium guajava 0.60 ± 0.54 5.43 ± 2.18 216.20 ± 70.30 82.00 ± 39.87 2.56 ± 2.00 11.05 ± 4.4 37.12 ± 11.36 2.30 Saraca asoca 0.1 ± 0.01 5.25 ± 1.54 166.95 ± 55.20 53.55 ± 25.87 2.70 ± 1.31 8.05 ± 2.24 40.68 ± 12.90 3.77 Tectona grandis 87.75 ± 35.60 98.50 ± 19.75 3.00 ± 1.26 6.00 ± 1.57 32.75 ± 11.68 2.35 Commercial (mg/kg)                 Ailanthus excelsa 0.38 ± 0.22 3.23 ± 2.12 15.23 ± 8.65 32.68 ± 13.92 1.74 ± 0.65 24.32 ± 12.38 25.79 ± 2.64 2.03 Alstonia scholaris 0.35 ± 0.10 9.00 ± 1 35.90 ± 5.86 0.91 ± 0.6 27.06 ± 1.08 18.10 ± 4.05 6.82 Azadirachta indica 30.00 ± 10.12 0.87 ± 0.5 27.75 ± 1.50 21.50 ± 6.70 3.57 Ficus bengalensis 0.35 ± 0.10 1.70 ± 0.1 6.30 ± 1 51.7 ± 14.10 2.13 ± 1.89 26.35 ± 3.30 28.60 ± 4.21 6.09 Ficus religiosa 1.45 ± 0.1 4.85 ± 1 41.8 ± 25.39 2.75 ± 0.71 25.25 ± 5.80 43.00 ± 22.70 4.14 Mangifera indica 5.65 ± 1 102.40 ± 54.7 1.80 ± 0.80 24.80 ± 3.90 24.65 ± 7.80 2.76 Psidium guajava 27.87 ± 2.5 47.15 ± 27.43 1.05 ± 0.81 27.40 ± 3.90 35.00 ± 20.2 3.21 Saraca asoca 0.45 ± 0.1 29.25 ± 14.62 29.37 ± 9.47 1.62 ± 0.59 28.70 ± 2.33 26.41 ± 5.77 4.17 Tectona grandis 0.43 ± 0.10 56.37 ± 25.50 1.00 ± 0.70 25.80 ± 0.94 28.30 ± 4.23 5.48 Control (mg/kg) Ailanthus excelsa   0.32   3.16   12.23   23.68   1.38   21.32   19.64   Alstonia scholaris 0.25 6.25 68.75 101.00 3.25 6.75 26.00   Azadirachta indica 0.25 5.25 103.50 33.50 1.25 5.50 46.75   Ficus bengalensis 8.00 72.00 115.75 2.25 6.75 32.50   Ficus religiosa 4.50 111.25 38.25 1.00 4.50 25.00   Mangifera indica 1.75 106.50 193.25 1.25 5.00 15.75   Psidium guajava 0.25 7.75 90.00 47.25 1.50 6.00 31.75   Saraca asoca 0.25 3.50 67.25 45.00 2.75 0.50 21.00   Tectona grandis 0.23 42.65 0.98 5.35 25.62   Heavy metals in leaves (mg/kg) and their respective Metal Accumulation Index

Species/metals Cd Cr Cu Mn Ni Pb Zn Industrial Ailanthus excelsa   0.06   0.14   4.32   0.16   0.07   0.29   0.25 Alstonia scholaris 0.06 0.11 5.45 0.13 0.21 0.24 0.27 Azadirachta indica 0.01 0.15 5.18 0.15 0.08 0.26 0.42 Ficus bengalensis 0.01 0.16 4.34 0.11 0.14 0.33 0.36 Ficus religiosa 0.01 0.08 5.23 0.08 0.09 0.25 0.21 Mangifera indica 0.12 5.69 0.14 0.03 0.25 0.22 Psidium guajava 0.08 0.13 6.22 1.34 0.12 0.32 0.27 Saraca asoca 0.14 0.13 4.80 0.08 0.12 0.23 0.3 Tectona grandis 0.05 0.13 0.24 0.10 0.27 0.32 Commercial Ailanthus excelsa   0.10   0.19   0.08   0.11   0.12   1.18   0.50 Alstonia scholaris 0.10 0.53 0.13 0.03 1.31 0.24 Azadirachta indica 0.11 0.03 1.35 0.29 Ficus bengalensis 0.10 0.10 0.19 0.07 1.28 0.38 Ficus religiosa 0.08 0.03 0.15 0.09 1.23 0.58 Mangifera indica 0.02 0.37 0.06 1.21 0.33 Psidium guajava 0.10 0.17 0.03 1.33 0.47 Saraca asoca 0.02 1.6 0.10 0.05 1.37 0.35 Tectona grandis 0.12 0.20 0.04 1.26 0.38 Control Ailanthus excelsa   0.09   0.24     0.05   0.08     0.17 Alstonia scholaris 0.07 0.48 0.22 0.19 0.23 Azadirachta indica 0.07 0.4 0.07 0.07 0.41 Ficus bengalensis 0.61 0.25 0.13 0.28 Ficus religiosa 0.34 0.08 0.05 0.22 Mangifera indica 0.13 0.42 0.07 0.14 Psidium guajava 0.07 0.59 0.10 0.08 0.28 Saraca asoca 0.07 0.26 0.09 0.16 0.18 Tectona grandis 0.5 0.21 0.17 0.29 Transfer coefficient in leaves from industrial, commercial and control sites

Inference

Challenges and Threats Ecosystem Services Threats to Ecosystem Services

Mitigation Strategies Integrated Pest Management (IPM) Habitat Restoration Agroforestry Practices Sustainable Agricultural Practices Community Engagement and Education

Future Directions Sustainable Orchard Management Practices Technological Innovations in Orchard Management Policy Recommendations Research Needs Global Initiatives and Partnerships

Conclusion Fruit orchards play a crucial role in providing a diverse range of ecosystem services that are indispensable for human well-being and environmental sustainability. The multifunctionality of fruit orchards is essential for promoting sustainable agricultural practices, the conservation of natural resources, mitigating environmental degradation, reduce reliance on synthetic inputs, to improve the overall sustainability of fruit production and fostering resilient food systems. Recognizing and valuing these ecosystem services through agroecological approaches and preserve ecosystems surrounding, fruit crop cultivation are vital for maintaining the long-term viability of these services.

THANkYOU