Ecuaciones de estado. Ejercicios resueltos

104,390 views 12 slides Dec 14, 2013
Slide 1
Slide 1 of 12
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12

About This Presentation

Este archivo contiene ejercicios sobre ecuaciones de estado (Van der Waals, Redlich-Kwong, Peng-Robinson) resueltos detalladamente.


Slide Content

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

ECUACIONES DE ESTADO.

EJEMPLO 1: Utilizando la ecuación de Van der Waals, calcule el volumen específico para
el agua como vapor saturado y líquido saturado a 1 atm.
Solución: A presión atmosférica, la temperatura de saturación para el agua es 100ºC
(373,15 K). Por lo tanto, como se conocen la presión y la temperatura, puede utilizarse la
ecuación de estado para el cálculo del volumen molar de cada fase, los cuales se
convertirán finalmente a volumen específico.
La ecuación de Van der Waals, en su forma factorizada, se expresa de la siguiente forma:
UN I
V
ER
S
D ER O- Ú C L
Esta ecuación no puede resolverse fácilmente de forma algebraica para el volumen; por lo
tanto, debe reacomodarse para obtener una fórmula de recurrencia y aplicar un método
iterativo:
ER- O IZ
ÚL
UN I
V
ER
S
D

Para el cálculo del volumen del vapor, se utilizará para el método iterativo como valor
inicial el volumen del gas ideal:
ER
ÚL
N

82,053
V;ÍQ MÍ
W
FÍ12Q 0
C B3B.i:Z0
iZV;Í
- BP[iÁ.PÁZMÍ
W
cFÍ12
Para aplicar la ecuación de Van der Waals, se requiere conocer sus parámetros, los cuales
tienen los siguientes valores para el agua: A = 5,461*10
6
cm
6
/gmol
2
; B = 30,46 cm
3
/gmol.
Sustituyendo en la fórmula iterativa, se ejemplificará la primera iteración a continuación:

ER 30,46

W
FÍ12
IZ
82,053
V;ÍQ MÍ
W
FÍ12Q 0
C B3B.i:Z0
&
'iZV;Í I
:.m[i C iP
(
V;Í

(
FÍ12
)
*30618,08

W
FÍ12
+
)
,
-
- BPm3i.GiZMÍ
W
cFÍ12
Ahora se calcula el porcentaje de error relativo para determinar si es necesario continuar
iterando.

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

ÓZ() - ]
V
2 V
234
V
234
+ C iPP - ]
BP[iÁ.PÁ BPm3i.Gi
30471,21
+ C iPPZUZ()Z - ZP.mÁÓQ
Como el porcentaje de error resultó menor al 1%, no es necesario continuar iterando. Por lo
tanto, el volumen molar para el vapor de agua saturado será V
G
sat = 30471,2 cm
3
/gmol.
Para la fase líquida, se utilizará el mismo método iterativo. Sin embargo, se utilizará como
valor inicial la mitad del volumen crítico, lo cual es una suposición razonable considerando
que la densidad de una sustancia pura en fase líquida nunca será menor que su densidad en
el punto crítico (¿Por qué?).
ER
1
2
ERM -Z
1
2
C :[

W
FÍ12t ER 28

W
FÍ12
Sustituyendo en la fórmula de iteración, se obtiene:
ER 30,46

W
FÍ12IZ
82,053
V;ÍQ MÍ
W
FÍ12Q 0
C B3B.i:Z0
&
'iZV;Í I
:.m[i C iP
(
V;Í

(
FÍ12
)
*28

W
FÍ12+
)
,
-
t ER- Bm.Á:ZMÍ
W
cFÍ12
Calculando el porcentaje de error relativo, se tiene que:
ÓZ() - ]
V
2 V
234
V
234+ C iPP - ]
GÁ.PP Bm.Á:
34,85
+ C iPPZUZ()Z -Z i=.[3ÓQ
Este error es demasiado alto y por lo tanto, debe continuarse iterando. A continuación se
muestra una tabla resumen del procedimiento. El contador “i” representa el número de
iteraciones realizadas.
i V
i [cm
3
/gmol] V i+1 [cm
3
/gmol] %Er
0 28,00 34,85 -19,67
1 34,85 37,27 -6,48
2 37,27 38,25 -2,55
3 38,25 38,66 -1,07
4 38,66 38,84 -0,46

El volumen molar para el agua como líquido saturado será V L
sat=38,84 cm
3
/gmol.
Ahora se expresarán estos resultados como volumen específico, sabiendo que el agua tiene
una masa molar de 18,016 g/gmol.

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

E
7
89:Z-Z
BPm3i.GZMÍ
W
cFÍ12
iÁ.Pi[ZFcFÍ12
C
iZÍ
W
10
(
ZMÍ
W
C
10
W
ZF
iZ;Ft E
7
89: 1,6913
Í
W
;F
.
E
<
89:Z-Z
BÁ.ÁmZMÍ
W
cFÍ12
iÁ.Pi[ZFcFÍ12
C
iZÍ
W
10
(
ZMÍ
W
C
10
W
ZF
iZ;Ft E
<
89: 0,002156
Í
W
;F
.
Cabe destacar que los valores experimentales reportados en las tablas termodinámicas para
el agua saturada a 100ºC son:
E
7
89: 1,6729
=
W
>?
@ E
<
89: 0,001044
=
W
>?.
Por lo tanto, el error cometido al utilizar la ecuación de Van der Waals fue de 1,10% para el
vapor saturado y 106,51% para la fase líquida (SÍ, leyó bien). Esto indica que dicha
ecuación fue una buena elección para el vapor pero arrojó un pésimo resultado para la fase
líquida. Puede concluirse que si bien la ecuación de Van der Waals predice la existencia de
una fase líquida (lo cual fue una mejora importante con respecto al modelo de gas ideal),
sus resultados numéricos son bastante pésimos y por lo tanto, NO se recomienda para
calcular la densidad de un líquido.
EJEMPLO 2. El cloro es un compuesto gaseoso a condiciones ambiente, con importantes
aplicaciones a nivel industrial, además de su conocido uso como agente desinfectante. El
cloro suele despacharse en recipientes cilíndricos como gas comprimido o como gas
licuado, según la aplicación que se requiera. Considere un cilindro de 50 L de capacidad
que contiene cloro a 300 K como gas licuado. El 35% del volumen del recipiente contiene
líquido, así que el volumen restante está ocupado por vapor. Determine los kilogramos de
cloro almacenados en el cilindro. Utilice la ecuación de Riedlich-Kwong para efectuar los
cálculos.

Solución: Se indica que hay líquido y vapor simultáneamente; por lo tanto, existe una
situación de equilibrio. La masa total de cloro será la suma de la masa de líquido y la masa
de vapor. Se pueden conocer fácilmente los volúmenes totales de cada fase, ya que se
conoce la capacidad total del cilindro y el porcentaje ocupado por cada fase. Se requiere,
por lo tanto, conocer el volumen molar de cada fase para determinar los moles de líquido y
vapor, y por ende, la masa total en kilogramos de cloro.
Se utilizará la ecuación de Riedlich-Kwong para los cálculos de volumen molar. A
continuación se presenta en su forma factorizada:
AN I
V
ERAERI OTL
B/)
C ER O- Ú C L
COMPUESTO FÓRMULA M (g/gmol) Tbn [K] Pc [atm] Tc [K] Vc (cm
3
/gmol) Zc
CLORO CL 2 70,91 239,1 76,1 417,0 124 0,276

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

Haciendo un arreglo, se obtiene la fórmula de recurrencia para el método iterativo. Observe
la similitud con respecto al modelo de Van der Waals.
ER- O IZ
ÚL
DN I
V
ERAERI OTL
B/)
E

Los parámetros A y B para un fluido de RK se calculan a partir de las propiedades críticas
del compuesto, obteniéndose los siguientes valores para el cloro: A = 1,343*10
8

atm
.
(cm
3
/gmol)
.
K
1/2
; B = 38,96 cm
3
/gmol. Investigue las ecuaciones utilizadas para ese
cálculo y su respectiva deducción.
Como ya habrá notado, no se conoce la presión del sistema. Sin embargo, por lo que
sugiere el enunciado, el cloro se encuentra como líquido y vapor en equilibrio. Por lo tanto,
la presión del sistema será igual a la presión de saturación correspondiente a la temperatura
de 300 K. En ausencia de datos experimentales, es válido utilizar la ecuación de Modell-
Reid para determinar la presión de saturación.

ln NH
89:
*
LHI
LHI i
+ *
1
LH
1+ ln *
1
NHI
+
Los magnitudes adimensionales están definidas de la siguiente forma: Trn = Tbn/Tc; Prn =
1 atm/Pc; Pr
sat
=P
sat
/Pc; Tr = T/Tc.
Cabe destacar que esta ecuación se utiliza SOLAMENTE para calcular la presión de
saturación de una sustancia pura a una temperatura conocida y viceversa. Por lo tanto, NO
tiene sentido utilizarla para una mezcla de gases NI para determinar la presión absoluta a la
cual se encuentra una sustancia pura que se encuentre como líquido comprimido, vapor
sobrecalentado ni gas permanente. Otra observación importante es que sólo puede utilizarse
esa ecuación para un rango de presiones y temperaturas inferiores a las del punto crítico
(¿Por qué?).
Al hacer cálculos con la ecuación de Modell-Reid, se sugiere hacerlo en las siguientes
etapas:
1.- Calcular las magnitudes adimensionales (5 cifras decimales de exactitud).
2.- Sustituir primero en la ecuación los parámetros, valores que dependen sólo de
las propiedades físicas invariables (punto de ebullición normal, temperatura crítica, presión
crítica), para obtener una versión “simplificada” de la ecuación
3.- Sustituir la variable conocida (presión o temperatura) para calcular la que está
faltando.
Esto facilitará los cálculos cuando se requiera trabajar a distintas valores de presión o
temperatura de saturación. A continuación se muestra de forma resumida los cálculos
realizados para el ejemplo:

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

ln NH
89:
*
0,57338
P.:3BBÁ i
+ *
1
LH
1+ ln *
1
0,013141
+
ln NH
89:
- :.ÁGGG[ ]
1
LH
1+
Despejando, se obtiene una presión de saturación de 7,8565 atm.
Ahora que se conoce la presión a la cual se encuentra el cloro, ya puede utilizarse la
ecuación de estado, ya que se conocen dos propiedades termodinámicas intensivas (presión
y temperatura, en este caso) para el sistema. Primero se realizarán los cálculos para la fase
de vapor y luego para la fase líquida (esta elección es arbitraria).
Por razones de “espacio”, se omitirán las unidades al mostrar los cálculos para el método
iterativo, dándose por sobreentendido que se trabajará las magnitudes Presión, Temperatura
y Volumen molar en [atm], [K], [cm
3
/gmol], respectivamente. Sin embargo, es MUY
importante cuando realice los cálculos de forma manual que siempre indique las unidades
para cada cantidad y verifique que se cancelen correctamente; esto le permitirá detectar
errores en el álgebra, por ejemplo.
Para el vapor saturado, se tiene que:
ER
J
ÚL
N

82,053
V;ÍQ MÍ
W
FÍ12Q 0
C BPPZ0
3.Á:[:ZV;Í
- BiBB.GZMÍ
W
cFÍ12Z

ER
4- BÁ.=[ IZ
ÁG.P:B C BPP
D3.Á[Z I
i.BmB C iP
K
3133,2C A3133,2I BÁ.=[TABPPZT
B/)
E
tZER 2889,1

W
FÍ12
Existe cierta divergencia entre el valor calculado y el valor inicial, así que requiere
continuar iterando. Nótese que a pesar de que la presión es relativamente baja, el vapor no
tiene comportamiento ideal. La principal razón para este comportamiento es que se
encuentra como “vapor saturado”: a medida que un gas se acerca más a su punto de rocío,
se aleja más de la idealidad. A continuación se refleja la tabla resumen:
i V
i [cm
3
/gmol] Vi+1 [cm
3
/gmol] %Er
0 3133,2 2889,1 8,45
1 2889,1 2844,8 1,56
2 2844,8 2835,7 0,32

Para la fase líquida, se efectuaron los siguientes cálculos:

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

ER
1
2
ERM -Z
1
2
C iGm

W
FÍ12t ER 62

W
FÍ12
Sustituyendo en la fórmula de iteración, se obtiene:
ER- BÁ.=[ IZ
ÁG.P:B C BPP
D3.Á[Z I
i.BmB C iP
K
62,00C 62,00I BÁ.=[ 300
B/)
E
tZER 58,70

W
FÍ12
Nuevamente, se requiere seguir iterando. A continuación se muestra la tabla resumen:
i Vi [cm
3
/gmol] Vi+1 [cm3/gmol] %Er
0 62,00 58,70 5,62
1 58,70 57,05 2,90
2 57,05 56,25 1,43
3 56,25 55,86 0,69

Por lo tanto, puede concluirse que según la ecuación de RK, el cloro a 300 K tiene los
siguientes valores para el volumen molar del vapor y líquido saturado, respectivamente:
v
G
sat = 2835,7 cm
3
/gmol; vL
sat = 55,86 cm3/gmol.
Finalmente, se puede calcular la masa de líquido y vapor.
C IL -
E
<
M
<

P.B: C :PPPPZMÍ
W
55,86

W
FÍ12
- BiB.GÁBGZFÍ12 t
Í
< I
<C N - BiB.GÁBGZFÍ12 C 3P.=i
F
FÍ12
C
iZ;F
iPPPZF
- GG.Gi:Z;F
C IL -
E
<
M
<

P.[: C :PPPPZMÍ
W
2835,7

W
FÍ12
- ii.m[iPZFÍ12 t
Í
< I
<C N - ii.m[iPZFÍ12 C 3P.=i
F
FÍ12
C
iZ;F
iPPPZF
- P.ÁiBZ;F
*m = mL + mG = 22,215 kg + 0,813 kg = 23,038 kg.

Por lo tanto, se concluye que el cilindro contiene 23 kg de cloro.

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

Preguntas adicionales.

a) Los siguientes valores experimentales corresponden al cloro a 300 K y pueden
consultarse en: Perry. Manual del Ingeniero Químico. Tomo I: v
G
sat = 0,6357 ft
3
/lbm; vL
sat =
0,01154 ft
3
/lbm. Confirme la exactitud de la ecuación de RK.
b) ¿Qué ventajas significativas presenta la ecuación de estado RK con respecto a VW? ¿En
cuáles situaciones se recomienda utilizarla? ¿Qué limitaciones presenta?
c) Investigue acerca de la correlación de Rackett y repita el cálculo del volumen molar para
el líquido saturado. Compárelo con el valor experimental y compare la exactitud de Rackett
y RK para la fase líquida. ¿Cuál ecuación es más conveniente?
d) Algunas referencias indican que el cloro líquido tiene una densidad equivalente a 1,2-1,5
veces la del agua. Confirme la veracidad de dicha afirmación.
e) Aunque el vapor ocupa casi el doble de volumen que el líquido dentro del cilindro, habrá
notado que su masa es mucho menor que la del líquido. ¿Cómo se explica esto?
f) La ecuación de Modell Reid puede expresarse directamente en función de las
propiedades totales de la sustancia en lugar de las reducidas. Deduzca dicha expresión.
g) ¿Qué ocurriría si la temperatura del cilindro aumentara un poco?

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

EJEMPLO 3. Calcular el volumen específico del líquido y vapor saturados a 230ºC y
2,795 MPa, mediante las ecuaciones de Soave-Redlich-Kwong y Peng-Robinson.
Compárese con los valores de las tablas termodinámicas para el agua
: P
Q 0,001209
=
R
>?
;
P
? 0,07158
=
R
>?
. Propiedades críticas: Tc 647,13 K; Pc 216,5 atm.


Soave-
Redlich-
Kwong

DN IZ
h C V
8i>
j Aj I
8i>
E j
8i>- ÚL
V0,42478
ÚL
k
S
N
k
;
O - P.PÁ[[mZ
ÚL
k
N
k
h - li I Ími √LHop
S

Í0,48508I1,5517q0,15613q
S

Peng-
Robinson
DN IZ
h C V
si
j j II r j r
E j r- ÚL
V0,4572
ÚL
k
S
N
k
;
O - P.P33ÁPZ
ÚL
k
N
k
h - li I Ími √LHop
S

Í0,37464I1,5422q0,26992q
S


t^Z-ZGBPZuvZ-Z:PB.i:Z_Z
tSZ-ZG.3=:ZwSYZ-ZG3.:ÁZY]`Z
SOAVESOAVESOAVESOAVE----REDLICHREDLICHREDLICHREDLICH----KWONG.KWONG.KWONG.KWONG.

Al reordenar los términos de la ecuación original, se obtiene la fórmula iterativa :
jZ- O
8i>I
ÚL
DN IZ
h C V
8i>
j Aj IO
8i>
E

Para calcular Para calcular Para calcular Para calcular α
h - li I AP.mÁ:PÁ I i.::i3q P.i:[iBq
S
Tmi √LHop
S

L
i
L
LM

503,15 K
647,13 K
0,78

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

Para hallar Para hallar Para hallar Para hallar ?, el factor acéntrico, se consulta, el factor acéntrico, se consulta, el factor acéntrico, se consulta, el factor acéntrico, se consulta la Tabla Fla Tabla Fla Tabla Fla Tabla F----3 del Manual de Tablas de 3 del Manual de Tablas de 3 del Manual de Tablas de 3 del Manual de Tablas de
FisicoquímicaFisicoquímicaFisicoquímicaFisicoquímica: : : : q
???= 0,344.
h - li I AP.mÁ:PÁ I i.::i3AP.BmmT P.i:[iBAP.BmmT
S
Tmi √0,78
op
S
= 1,25
Para calcular las constantes Para calcular las constantes Para calcular las constantes Para calcular las constantes ?
??? y y y y ?
???, se requiere conocer, se requiere conocer, se requiere conocer, se requiere conocer los parámetros críticoslos parámetros críticoslos parámetros críticoslos parámetros críticos
a = 0,42478
RT
?
S
P
?
= 0,42478
*82,053
cm
W
. atm
gmol. K
C [m3.iBZ_+
S
216,5 atm
= 5,567x10
(
atm
cm
(
gmol
S

= 0,08664
ÚL
k
N
k
= 0,08664
82,053

?
QZZV;Í
FÍ12QZZ0
C [m3.iBZ_
216,5 atm
= 21,249

?
FÍ12
CálcCálcCálcCálculo del volumen molar del gasulo del volumen molar del gasulo del volumen molar del gasulo del volumen molar del gas....
Para empezar con las iteraciones, necesitamos un valor inicial, uno cercano al
volumen del gas por lo que usaremos el volumen molar del gas ideal, y continuar con
las iteraciones hasta alcanzar un % error menor o igual a 1%
j
? =
RT
P
=
82,053

3
QZZV;Í
FÍ12QZZ0
C :PB.i:Z_
27,58 atm
= 1496,92

3
FÍ12
Sustituyendo los valores requeridos en la fórmula de recurrencia, utilizando sólo
unidades [atm]-[cm
3
/gmol]-[K], se obtiene j
4:
j
4Z- ?Gi.Gm= I
ÁG.P:B C :PB.i:
DG3.:Á IZ
i.G: C :.:[3?iP
(
B??(, ?) B??(, ?)I Gi.Gm=
E
? = 1368,53
?
cFÍ12
Los resultados de las iteraciones posteriores se muestran en la tabla:
iiii j
?
??
W
/???? j
?3B
??
W
/???? % E% E% E% Errorrrorrrorrror
0 1496,92 1368,53 9,38
1 1368,53 1342,79 1,92
2 1342,79 1336,87 0,44
El volumen molar del vapor saturado es: j
?=1336,87 cm
3
/gmol.

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

Cálculo del volumen molar del líquidoCálculo del volumen molar del líquidoCálculo del volumen molar del líquidoCálculo del volumen molar del líquido....

De igual manera, se necesita un valor inicial (j
Jpara aproximar el volumen molar del
líquido, por lo que se tomará el valor de la constante b
srksrksrksrk=21,249 cm
3
/gmol. Pudo
haberse también como valor inicial Vc/2 como en el ejemplo anterior. Algo que cabe
destacar es que el volumen molar de un líquido saturado predicho por una ecuación
de estado cúbica debe ser mayor que su respectivo parámetro “b” y debe ser inferior
que el volumen molar crítico (¿por qué?¿por qué?¿por qué?¿por qué?. Sustituyendo los valores requeridos en la
fórmula de recurrencia, utilizando sólo unidades atm-cm
3333
/gmol-K, se tiene que:
j
4Z- ?Gi.Gm= I
ÁG.P:B C :PB.i:
DG3.:Á IZ
i.G: C :.:[3?iP
(
21,249 (21,249I Gi.Gm=
E
?
cm
W
gmol= 26,586 cm
W
/gmol
Número de
iteraciones (i
j
2
(MÍ
?
/FÍ12 j
234
(MÍ
?
/FÍ12 % Error
0 21,249 26,586
1 26,586 28,753 7,5
2 28,753 29,728 3,3
3 29,728 30,183 1,5
4 30,183 30,399 0,7
El volumen molar del líquido saturado es: j
?= 30,399 cm
W
/gmol.
Comparando con los valores tabuladosComparando con los valores tabuladosComparando con los valores tabuladosComparando con los valores tabulados
::::
*P
?= 1336,87
k=
R
?=??
CU
4=
R
4?4J
?
k=
R
DCU
4?=??
4?,J4? ?
DCU
4JJJ ?
4 ??
D= 0,07420
=
R
>?

% desv = ?
0,07158
Í
3
;F
ZZZ ZZZP.P3mGPZ
Í
3
;F

0,07158
Í
3
;F
?x100 = 3,66%
*P
Q= 30,399
k=
R
?=??
CU
4=
R
4?4J
?
k=
R
DCU
4?=??
4?,J4? ?
DCU
4JJJ ?
4 ??
D= 0,001687
=
R
>?

% desv =
?
0,001209
Í
3
;F
ZZZ ZZZP.PPi[Á3Z
Í
3
;F

0,001209
Í
3
;F
?x100 = 39,5%

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

PENGPENGPENGPENG----ROBINSONROBINSONROBINSONROBINSON,,,,

RRRReordenando los términos eordenando los términos eordenando los términos eordenando los términos de la ecuación, se de la ecuación, se de la ecuación, se de la ecuación, se ttttiiiieneeneeneene la fórmula iterativa:la fórmula iterativa:la fórmula iterativa:la fórmula iterativa:
j- O
siI
ÚL
AN IZ
h C V
si
j
S
IG j O
si O
si
S
C

Para calcular Para calcular Para calcular Para calcular ?::::
α = li I A0,B3m[m I i,:mGG? P,26992ω
S
Tmi √Trop
S

α = li I A0,B3m[m I i,5422 0,BmmT P,26992 0,344
S
Tmi ?P,78
op
S
=1,22
Para calcular las constantes Para calcular las constantes Para calcular las constantes Para calcular las constantes ?
?? y y y y ?
??,,,, se usaránse usaránse usaránse usarán los parámetros críticoslos parámetros críticoslos parámetros críticoslos parámetros críticos::::
a = 0,4572
RT
?
S
P
?
5,955x10
(
atm.
cm
(
gmol
S

r - P,07780
RT
?
P
?
=19,081
cm
W
gmol
Cálculo del volumen molar del gasCálculo del volumen molar del gasCálculo del volumen molar del gasCálculo del volumen molar del gas....
j
? =
RT
P
=
82,053
V;ÍQ MÍ
3
FÍ12Q 0C :PB,15 K
27,58 atm
=1496,92

3
FÍ12
Sustituyendo en la fórmula de recurrencia, en unidades de [atm]-[cm
3
/gmol]-[K]:
j
4= ?19,PÁi I
82,P:B C :PB,15
D27.:ÁZ IZ
1,GG C :,955x10
(

1496,92
)
I G C1496,92C i=,PÁi i=,081
)

E
? A
cm
W
gmolC
j
4=1362,35 cm
W
/gmol
iiii j
?
??
W
/???? j
?3B
??
W
/???? % E% E% E% Errorrrorrrorrror
0 1496,92 1362,35 9,88
1 1362,35 1334,74 2,07
2 1334,74 1328,21 0,49
El volumen del vapor saturado es: j
? 1328,21 cm
W
/gmol.

UNIVERSIDAD DE ORIENTE-NÚCLEO ANZOÁTEGUI. REALIZAD O POR: DAVID ESCOBAR;
INGENIERÍA QUÍMICA. WILFREDO RUIZ.
FISICOQUÍMICA. SEMESTRE: 1-2013.

Cálculo del volumen molar del líquidoCálculo del volumen molar del líquidoCálculo del volumen molar del líquidoCálculo del volumen molar del líquido....

Como primera aproximación para el volumen del líquido, se tomará el valor de la
constante

si=19,081

3
FÍ12
. Aplicando el método iterativo, se obtiene:
iiii j
?
((((??
W
/???? j
?3B
((((??
W
/???? % E% E% E% Errorrrorrrorrror
0 19,081 23,217
1 23,217 25,100 7,5
2 25,100 26,019 3,5
3 26,019 26,482 1,7
4 26,482 26,719 0,9
El volumen del líquido saturado es: j
?26,719 cm
3
/gmol
Comparando con los valores tabuladosComparando con los valores tabuladosComparando con los valores tabuladosComparando con los valores tabulados::::
*
P
?1328,21
k=
R
?=??
CU
4=
R
4?4J
?
k=
R
DCU
4?=??
4?,J4? ?
DCU
4JJJ ?
4 ??
D 0,07372
=
R
>?

ÓZXWZbZ-
?
0,07158
Í
3
;F
ZZZ ZZZP.P3B3GZ
Í
3
;F

0,07158
Í
3
;F
?x100Z-Z2,99%
*P
Q26,719
k=
R
?=??
CU
4=
R
4?4J
?
k=
R
DCU
4?=??
4?,J4? ?
DCU
4JJJ ?
4 ??
D 0,001483
=
R
>?

ÓZXWZbZ-
?
0,001209
Í
3
;F
ZZZ ZZZP.PPimÁBZ
Í
3
;F

0,001209
Í
3
;F
?x100Z-Z22,7%