‘The authors and publisher have taken caren the preparation of this book but make no expressed.
orimplied waranty of any kind and assume no esponsibility for mor or omissions. No ability
is assumed for incidental or consequential damages in connection with o rising out ofthe use of
{he infomation o programs contained herein
This work is protected by United Stats copyright laws and is provided soley forthe se of
incor in caching their courses and ssessng student learning. Dissemination or sale of any
par ofthis work (including on te World Wide Web) will destroy ¡he integrity ofthe work sis
ot permite, The work and materials fom it should never be made available to students except
y instructors using the accompanying ext hie classe, All eipens of his work are
expected to abide by these restons and 10 honor he intended pedagogical purposes and the
needs of ther instrucins wh rely on these materias
ISBN 0 13.186363.
“Tex printed in he United Stats at OPM in Lali Pennsylvania
Fis printing, November 2005
sexe CONFIDENTIAL **#*
UNIVERSITY OF MICHIGAN
IVE COMPUTER MODULES FOR CHEMICAL
‘CHEMICAL REACTION ENGINEERING MODULES
INTERACT
A Scot Fogler Project Director
AM. Mit Gurren, Projet Manage (20022004)
Susan Montgomery, Project Manager (1991-1993)
Department of Chemical Engincering
University of Michigan
‘Aan Aor, MI 48109 2136
02005
Regent fie University of Michigan
A Righs Reserved
INTERPRETATION OF PERFORMANCE NUMBERS
‘Students should record their Performance Number for each program, along with the
name of the program, and turn it in to the instructor. The Performance Number for
each program is decoded as described in the following pages.
The official site for the distribution of the modules
butp://www.engin.umich edu/~crelicm
Please report problems to iem suppon @umi
Module Format
KINETIC CHALLENGE 1
Cabas
KINETIC CHALLENGE It
Cane
MURDER MYSTERY
TICTACTOR
Dach
sas CONFIDENTIAL ****
ICMs with Windows? interface
Interpretation Example
Score = 15 * ABC
‘= random numbers
Note: 759% constitutes mastery.
Seore=2.0* ABC
22 random numbers
Nove: 759 consis mastery.
Perf. No. = 50732
Score: No credit
‘Acad Killer a victim
Note: An even number forthe mile digit constitutes mastery
‘Score =40° ABC
2= random numbers
Configuration 7 completed
Configurations
nn;
==
à =:
BE 8 88
Not: Student receives 20 points for every square answered comet.
‘A score of 60 i needed for misery ofthis module.
GREAT RACE
28e
Score = 60° ABC Pest. No, = 77738078
2= random numbers ‘Score =6*07.3) = 44
Note: A score of 40 s needed for mastery of his module
sus CONFIDENTIAL *#**
ECOLOGY
AbCoaad
A gives info on 12 vale ofthe smden' Hacatized plot
AY 22209
11092
i08> 125207
Hor>e2
AQ if Wetland AnalysiySimulatorp
has not been completed
B gives info on alpha
104 => students alpha < (sims alpha 09)
[B-S to D => students alpha > simulator’ alpha 0.5)
[BOX if Weiland AnalysivSimulato pron hs not been completed
‘Cindicstes number o data points deactivated during analysis
‘number of deactivated ata pont Fat east 1 point has been deactivated
randomly generated eter from A o Y if pots deactivated
(C22 if Wetand Analysi/Simulator portion has not been complete
Dives info on solution method used by student
Dat it polynomial regression was used
D=2 if difteria! ormalas were used
Dz if graphical iferentition vas used
‘Dato it Wetland Anaysis/Simulatce portion has noten completed
Pest No. = AT2ISDF2
DA=09>12>=08
2) 2 students alpha < (simolacors
alpha + 0.5)
3) 25 one dat point was
deactivated
4) 2=> differential formulas were
ied
STAGING
Pest. No = 2125482913
2CBrAFED
Please make a pus erh based on these values.
24% CONFIDENTIAL *#**
ICMs with Dos? interface
Module Format Interpretation Example
HETCAT.
HABICD A=2.35,7:imerocton done Per. No. = 8027635
35.7 ino done ‘A: Worked on interaction
223 3.7 review done Be Looked at into
denotes how much they Ci Looked at review
‘id in the ftraction Di found parameter values,
‘Note: Performance number given ony ¡sados goes through the
interaction portion of the module
MEATEX1
make Aeven: score > 85% Per No. = 53607
2 random numbers Score > 85 %
Note: Student told they have achieved mastery i thor Score is greater than
33%
HEATEX2
madre Acven: completed interaction Perf No, = 407382
22 random numbers Interaction no completed
Note: Performance number given only if student goes through the
interaction potion ofthe module.
Solutions for Chapter 1 - Mole Balances
Synopsis
General: The gol ofthese poble ao rif deis and provide a understanding of be
‘Sle als the irn pes o ao lys he sanacion fr ie of he alin in Cape,
Pi.
m2.
ms.
Pis.
Pré.
LE
PL.
“This problem helps the student understand the course goals and objectives,
Pat (d) gives hints on how to solve problems when they get stuck. Encourages
‘students to get in the habi of writing down what they learned from each chapter
Kako gives tips on problem solving.
Helps the student understand estical thinking and ereative thinking, which are
{wo major goals of the couse
Requires the student 10 at least Took al the wide and wonderful resources
‘available on the CD-ROM and the Web,
“The ICMs have been found to be great motivation for this material
‘Uses Example 1-1 to ealculate a CSTR volume. Its straightforward and gives
the student an idea of things (0 come in terms of sizing reactors in chapter 4. An
alternative to PLIS,
Straight forward modification of Example 1-1
Helps the student review and member assumption for each design equation.
PL9 and PI-10. The results of these problems will appear in later chapters. Straight
PLA.
12.
forward application of chapter | principles
Suaight forward modification of the mole balance. Assigned for those who
‘emphasize bioreaction problems
Can be assigned to just be read and not necessarily to be worked. I will give
students a favor ofthe top selling chemicals and top chemical companies.
16
PLB.
Pad,
Phas.
PIA6.
NA
PLB,
Will be useful when the table is completed und the students can refer back 10 it
in later chapters. Answers to this problem can be found on Professor Susan
Montgomery's equipment module onthe CD-ROM. See P1-17.
Many students like this straight forward problem because they sce how CRE
principles can be applied to an everyday example. I is often assigned as an in-
lass problem where pars (a) through (P are printed out from the web. Part (g)
is usually mi
‘Shows a bit of things to come in terms of reactor sizing. Can be rotated from
year to year with PI.
Open-ended problem.
1 always assign this problem so that the students will Team how 10 use
POLYMATIVMaLab before needing it for chemical reaction engineering
problems,
Part (a) and (b) are open-ended problem.
PI-19 and PI-20. Help develop critical thinking and analysis,
COPLA
corra
Similar to problems 3, 4 11, and 12.
Points out difference in rate per unit liquid volume and rate per reactor
volume.
SE = Straight forward renforcement of principles (plug and chug)
FSF = Fairly straight forward (requires some manipulation of equations or an
intermediate calculation).
Intermediate calculation required
More difficult
Some pats open-ended,
ic
OE:
"Note the letter problems are found on the CD-ROM, For example A = CDPI-A.
Summary Table Ch 1
Review of Definitions and Assumptions 1,5.67,89
Introduction to the CD-ROM 1234
‘Make a calculation 6
Openrended 8.16
PI initie station
PI-2 dido sation
PI-3 dvd solucion
PLA Individual station
PIS San inthe decoding grit gs with the modales
PL-6
‘The general equation o CSTR is
Here a that it oder econ sven by
LA
(Given: Cu Ch. 023 min!» 10” min, Fy 0 mar
And we kr at = Ca a Fo = Cae
Sco Fa 208 man”
buda la hs above equation me gt
y = Casto = Cave (0Smol dnd? min) ~0.10.5mol XL fin
I, (23min DO Smal dr
Vas du?
en, A
£=023min"
Na
a
rey mol ne ay
19
Combine:
roof ta
FESTE 00m
oon)
1
Eno) min
023 (100)
CON
PLS
2) Te assump men desing he design custo of tte tec ne
ind sem: 00 scams eying mus er reve te system
We med ost ann sen popes
Constr Volumen cos presse
1b) The sumptions made in deriving be design oqo CSTR ae
‘Steady st
No pal variation consent, temper, or easton tte whose ese
8) e sumptions ma deriving he sign equation of PBR ate:
Send ste
[Nora rio in pope fhe ste.
€) Fa rss,
e
i he number uf moles of À eating (Appearing) por ait mo por uni vol
2
moles
10
ie nate of dsppemanse of pal A por ni mass (or) of cat f=) mae! (ne
‘meso uly)
1 eth at of formation generation) of species A or uit mus (or ac) of elt =} mole
ime. mats cata)
a an tenir proper, ht, is à function of concen ation tempera presse, and te
‘ype of xa i ay, nd dei a y pol (cation) wii he stem Is independent
amount On the other ha an eee proper btanal by suman up the popes of
nd ss within he tl ptr in asi, independent of th xe of he
sem,
PLO
ate obomogenous can is defied ste mole ofA formed pr uni volum ofthe reactor pe
cond Hi an Intense property and te conan temperature and hence the ate vais wah spi
‘dinates
Y, onthe other had i defies of ent pe gi of he catalyst per second. Hee mus of
ays he ass as suas pta cacaos and not he ac volume.
ons sn mae banco we
pp", + fra
E + fr
No securlation and m pl vision pies
0= Fo =F,+ JrdV
Abo pu and We Vp ae pal th Balk deity ol the id
= Fg F)+ flav)
Hewett tone egin besos
weich
‘We ana jus opty ie geral ml alan as
AN,
Mere [ram
Ben Fo A+ Jota)
Assuming o acumalton and o spi variation nat, we get theme forma
PI-10
Mol alan on species ji
PR
a
Let M, = muscular wt of spies)
‘Then FM, = Wg = muss flow ate of} o eat
NM, = m= mas of pies jin he recor
Matlin the moe lance om species by M,
As
None M, à conan
PL
“Applying mole alc o Peni: Pein i produce nh cel tony su (See Chapter 7.30
Abe cll row andthe tics ae used poking od
Lats do pate ist.
{Un Momento (less) pc + (fan ae (estimo) psa ~ (Out ours (lie)
ns = [re 9 acumulan (molt
, «fe
mare SOF
huso zas o eta)
oe fav
acte,
‘yea tae de
” a
sai aly se tl ou pen salsa
do
Ant no varias
Sim, Cor Sp Ligurie 0
FREE
LE Fa
Le Te
Am RNA rc des hang nh ston se ano RNA pot do
PEO) ~~
"Rag of 0 eroded ces in 1995 m 2002 u Hite blow
[Rank 2002 [Rank 1995
7 + so,
2 2 x
5 i cn,
A ; ES
: 3 Cin
A ï
13
7 7 Ni
s lo a
5 PO,
do,
> Chemie, O, ¡CC en mn op TO cl ad Ca ls jump cn
Snow tena 1995
P1-12 (b)
Ranking to 10 chemical companies in sls a ya 200 end 202:
Sure ack ie imporos in manalcuing I sed in some pas ofthe manucure of ea ll
‘nial prac ad in producti of every ther song ci! Because o lige mur of es,
Ws the mos proce choca Sule cd wes a
"Sis contd in prodaston o nen sch as aumento slate (NSO, and
peiphanpate (CalPO4)) wich ums when ok phosphate wee wih fr cd
‘Sse an std ae.
‘Sst in manucang of explosives, esas br acid, parchment pape, la putin
+ potolcamasd pckng ol metas
to remove one am rn and steel Ets galvanizing o lstoplting
Uca in tens etal ingen of ayn and fi,
‘Das bear cgen und chan and age bats
Dita geral purpose fod ave
PI-12 (A) Anna Production te pen fr yes 2002s $214 10" et
‘Anil Producto ate of Benen o ea 202 LE 10 cat
144
Annual Production te of ethylene oid or yar 2002 is 16x10 Isar
PL-12 (€) Because base an mati ‘os and peoleun fo organi chemical very mid and
‘Her production linces a produc ow rater for organ chemical
as
PL13
[Tipe fo [mas [Une ‘Adages | Dinan
O | Lid E DET Tag
1 |fesimome | phase | pin. Conversion per | Operating
reactor Duing |2Gas | 2.Uisedorlab |unitvolume. | cos.
encion nothing | phase | experimentation. | 2 Flubli of | 2 Variable
ieadded or | 3-Liguid [3 produc
moved Easy | Soli | Pharmaceuticals | muiple [qual
heating or Fermentation | reactions
coal 3 Easy oekan
IST Comines [TLige | 1 Usd sico [1 Commons | T Love
Re | ofreacants and con sequied. | Operation | conversion
prot. Sates 2G00d |perunit
Vai Configuration — | Temperate | volume
composition A IN 2: Bypassing
thoughow dice 3, Two paso | possible wih
<cafiguaion [reactions | poor
Sam posible, | again
Good Cont | 3 High power
5:Simpiyof | ip reg
Low
operating cost
_ ag to cn
PAR Dis ion eaior] 1 T large See PI ah 1 Undead
cenuter of | Primary | pn cometson pr | thera
stem | gas Phase | 2-Fastcactons | wie voune | gradient
series 3 Homngenous [2 Exsyto | 2 Poor
Nora reactions alain (o | temperate
savas ‘Heterogenous | moving prs) | convoi
Cone changes restons 3 Studonn |
Slog tbe length 5.Comtnous nd caning
nn expensive
ESRI NEC NES iy [cnica
thatispaced | Phase | inthe thermal
wisi | Sia | Boergencons as N riet
als | Cata) | pase eation 2 Poor
paris [20 | wthsoid catalyst empsaue |
soi [gritos > | operaagcos | comal
reactions. [opens | 3Comúmoss | 3
operation | Gaming
Cleaning
Lexpensives _|
PI-14
Sven
A=2*10" 9? Tay = 91.09 = 20001
v
10" f° TesarR Fo tam
= 07502" Cs =204no met
í yx=002 A
0 cas
Fs = GO in Santa Ana ind Fa = GO omission rom autos
wv
1000 per car at STP
tp per
Pl-14 (a)
Toul number of moles gas inthe systom:
Leama 410? f)
‘aim je
mot.
025210! Bol
073 534.608
P1-14 (b)
Molar orale of CO ita LA. Bain bys
Fr wc,
y=
ti =a rs
3000, Momet
%400000 cars (See appendix B
Threar 359," § »
= 6685 x 10% moth
PL-14 (0)
Wind speed though condor is Imp
We20 mies
‘The volumetic Howat inthe omidr is
You WH SS COI) fe
1673410" hr
PI-14 (d)
Molar orate of CO to tai om Seat Ana wid
LS
1673.10! hy ZORO tot
Bar 2412 1s
PI)
an,
Remise of CO y cy + Rae ofCO y Wind Ra feat of CO» SEE
ac,
Roth, ve vs N= CV)
4 + Ve > =.
PLA
Tine o nation wech pra
(rari Ps ci Poe
67% am a 1.67310" Lo sao mel
hr ir n
Leo ver
Ca = 20-10 a = SUSO moi
nm ELA D = 3008404 ol
sn
Now ving ts quan in POLYMATH we get plot between Cv 1
Seo Polymath program PI-14-h=1 pol.
POLYMATH Ress
ODE Report (RKF4S
Dito guate a ore y to user
AS OO
‘pet uations a rre y th ser
AA
(2) ae 3000
A ná a et] SS
° (x)
Now suing is equation using POLYMATH we get plot tween Cava
10
‘Se Polymath program PI: 1-8-2 pol
ıxmanı
Ica also the DEQ vars
ODE Report RKESS)
Dini nuntons us oros Ih wer
TA AC = (nb en LUN ON
Esp uations as nor by ous
Poterie
(2) a= 3500
131 B=soe00
a] Vaina
o
‘Changing 4 loca odos ample o pls in graph rc the effet the
is faction dy al tal
Changing b> Te optado of ips i duc proportional:
[Av deccases mltdo decias ad gph becomes smth
Changing > Asthe vaa of is incre te pap changes sited
Smee” And vs dioss graph cago 0 sm.
increasing cue
PIS (a)
ith 005 mot dr
STR: Tho general gone
120
Here Cu = ODICja,vo= 10 min, = 50 molt
‘Als we no ta = Ca a Fig = Cuat.
Shen the vals de above again De ge,
y Cave Cave _ OSIO-0010. 510
€ 005
> = an
FRE The gene equation i
dCi
Ta =k now Fe Conan ee Care >
av av
ngage stove nn ve a
% 4 x va
fac, = fav + V =" (Cy -C
Eo ja vec)
Here V 39d
Volume of PER it same sh volume fr a CSTR sins the ae is consta nd independent of
Ina mabe of abi, 0) = $00
Intl mer foxes, 0) = 200,
[Number a di = 500
an
2
02day"
20004 day jones)
000 (day rabbis)
day"
‘See Polymath program PL-17:a pol
Ferre PEO sashes
lorena) equations as entre th wor
1
spt sans as etre y o ser
ETA
{ai 22000004
E) ka s00e
When, tau 800 and = 0.00008 a
rabbits)
“| Ed
Posting rabbit Y foxes
124
E gg EURE
P1-17(b)
POLYMATH Rests
‘See Polymath program P1-17-b.pol.
ALES Report (sfenent)
Norinoar equations
Aya =
ER)
P1-18 (a)
No presto of the benzos feed wll mh he ae of secu and ths ler coment wll be
shoved.
P1-18 (b)
‘An inepolatio can be dace cathe ogra sale find de desued vals othe ven dat.
‘Now we can tepolt the ete cost a 6000 gl and 15000 gallons
Cat f 000 ga reactor» 100541019
(Cost of 15000 pal sector = 5623 x10°S
P1-18 (0)
Weare gen Cy 150.1% of it
ESTOS
125
Also om Exampe 13,
mpc,
Vena)
Enz
Subs 110 din and
2023 mn we et
Y = 300m?
ich shee dines vom feat win Example 13
PI-18 (d) suey of Pian,
1-19 Eniso Fermi Problem 0 ei sola
1-20 Evo Fee Problem o diet solution
P1-21 vida soon
CDPI-A (a)
low many moles of A atin the reser iria? What ti ntl consent of A?
I ne assume da as sha, an cing he moles A nly present nthe reactor quite
simple. We mer or vara ithe eal as equation:
(20am)(200m) (ei PP”.
a ie
Cam
er Mao, PMN moe?
vana Y
CDP1-A (b)
Time (0 fora uds con 1 consumo 99% ofA.
EN
dí
Our first order rate Jaws: mil,
rece: $a tc, kJ 15
-te-t( Ea), ruin Gi 6 dur conan mi canse
461
Gin
(61min
foresee: =~
CDPI-A (e)
Time for nd order ection eo conse 80% of À an inal pes (P)atT = 127
rate la:
‘We can solve forthe tne in trms of ur rat constant (k= 0.7) and cur
‘concentration (Cas): 2,1
4 4
He,” (Chain Tr > min-To determine
the pressure ofthe reactor following this reaction, we will again use the ideal gas law.
First, we determine the number of moles in the rector
AAA
29N,,+02N y + Na + Ne
( den atm!
seaman
(ein
a
156 Imoles
— 32m
CDP1-B
‘Given: Liquid phase esin na men, AP
Conse dile lement, AV of the rector:
By mati balance
EE, HARD = EE
Where, (= )AV = action of reac clement which iu
DATE
av
Musee (1) 10 Fo
where, Fi te ol hi) mala hw
secta.
mate ocacion mul A er bi fuir ee €
Iovate of (oli) V = volume ofrecio
volume faction of as: Fy mol
Solutions for Chapter 2 - Conversion and Reactor
Sizing
Synopsis
jener The overall hese problems iio lp the student ie taf they have raf) thy
‘an spn” or sie hug number freien tens. Lc age forte agit veloped in
Chapter
P21, This problem will keep students thinking about writing down what they learned
every chapter.
P22. This “forces” the students to determine their learning style so they can better use
the resources inthe text and on the CDROM and the web.
2.3, ICMs have been found to motivate the students learning,
P24, Introduces one of the new concepts of the 4% edition whereby the students
“play” withthe example problems before going on to other solutions.
12. This is a reasonably challenging problem that reinforces Levenspies pots.
P2-6. Novel application of Levenspil plots from an article by Professor Alice Gast at
“Massachusetts Institute of Technology in CEE.
P2-T. | Straight forward problem alternative o problems 8,9, and 12.
P28. Tobe used in those courses emphasizing bio reaction engineering.
P29. The answer gives ridiculously lage reactor volume. The point is to encourage
the student to question their numerical answers
2-10, Helps the students get a fel of real reactor sizes,
P2-11, Great motivating problem. Students remember this problem long alter the
P2-12. Alternative problem to P2-7 and P29.
CDP2-A Similar to 29
CDP2-B Good problem 10 get groups stated working together (eg. cooperativo
learning.
CDP2-C Similar 1 problems 28,2
CDP2-D Similar to problems 28,2
‘Summary
Assigned Altemates itficuky Time (min)
o 15
A 30
A 30
o 15
o 75
s “
AA son 45
s 45
AR 79,12 45
s 15
AA 1
AA o
o 5
o 30
o 30
o 45
says assign one from the group of alternate,
O= Often, I= Infequently, = Seldom, G = Graduate level
Tn problems that have a dot in conjunction with AA means that one of the
problems, either the problem with a dot or any one of the alternates a always
assigned.
Tine
Approximate time in minutes it would take a B/B student solve the problem.
Dieu.
SE
right forward reinforcement of principles (plug and chug)
2
FSF = Fairly straight forward (requires some manipulation of equations or an
intermediate calvlation).
IC = Intermediate calculation required
M= More difficult
OE = Some pasts open-ended.
"Note the letter problems are found on the CD-ROM. For example A = CDPI-A.
Summary Table Ch2
Straight forward
Fairy straightforward
More dificult
Operended 6
Comprehensive 45678912
Critical thinking P29
P2-1 Insiviusizo slaon
P2-2 nvidia soon
2-3 Sutton doing ago given with be modas
P2-4 (a) ample 24 through 23
flow ate Ey ict inal
WSV. Fee Pag? and Co il rela same
“Thro, votan of CSTR in example 2
=
Volume of CSTR in example 2
Verka 2m
1P2-4 (b) Examples
23
Now. Fup = 04 02 mobs,
ew Tate Divide ech m iin tae 23092
Es Tar a
Ben E E
Roue
“Sine
|
£a co]
ter ne
xs I x08
Tretorn X= RK I 0160992 0675
P24 (anne
Ek + EX
a+ Fans
NE + Fa
[8° [07 1
105 fm EC fa
¥=058te Vie Loin?
ax
Plt Rr et sein Estate cule coveson by compting ke ies fe plated
Función
Kee OW Vs Letter
2-4 (d) Example 27
w
Y e
E,
x06 De 1320.
“a
For send STR,
E
=06, Eu
sa
Om.
Fst CSTR rein unchanged
ar PAR:
v (@ x
Un Leven Pt
Fer CSTR,
Levens ot
Bien
en om
—
>12,
uid a ajc
q
Using ape ie,
run
ve DR (x,-X,)-13006-02)=053 08
Wow
CuX „25x08,
sk 208 othr
=0.4mol dh
v= 50m"
Ce Cox)
203 ma”
P25
x 5 Tor [or [oa Jos Jar To
Farm [os [10 [1s 130 [35 [50 Ts
las s le I» is la [6° lo
ve100?
72-5 (a) Two CSTRS insees
Foe at CSTR,
Va aa Xi
o
For asc CSTR,
Ve Fada) 08 -X)
P2-5(b)
Two PERS in ei
By extapolain und sling, we ge
FEU) Kon
P2-5 (0)
‘Two CSTRsin parallel wäh the fed Fo,
iid ely beten vo secs. au
tar 20
VER
Solving we pet Xe = 0
P2.5 (d)
“Two ERS pra with he fc equaly vied teen he wo reacts
Pase = 0 ne
By pola ad olga pa (we get
Kusom
2-5 (e)
ACSTR and a PR ain patel with Dow uly vided
‘Shoe the oie ded equal tus th tro ects the oral oem isthe average ofthe
STR conten (parC) andthe PER coveson tt D)
(O0 +070/2=097
P25 (D
APPR alone y aCSTR,
Se 030 (using paid)
Ve ads) Ken Xin
Solving we pea eae = 0.70,
P2-5(g)
ACSTR followed bya PER,
Resa 044 (using punta)
y Y Eso ax
yugo sde wep Xi 207
2-5 (h)
Ad? PER flowed by 01005 m? CSTR
for PR,
Km =050 (wing put)
STR Vb toco) Berm Kan) = 05m?
Xemn= 053
(CST: Venom) Kama - Km) =05 a
Xonm 072
P2-6 (a) itive Station
226 (b)
1 nde to find he age ofthe baby ipo, we edo know volume ofthe stomach
‘The mel te. sb same fr mater and baby 0 ithe baby hippo eas oe half of wha te
rer ets then Fan (baby) ao (moin)
‘The Levens! Pe is dain othe bby ipo Low,
Autocatalytic Reaction
My =F 28 030200
29
Sine the volume aie stomachs poprional ge of th baby ipo, ad the volen o e
‘mach hall a ale thn te aby pp ale age o fal town hp
2.25 years
45 years
Agent
2) Mina and m. re bo one lof the mother’s then
Catalytic Reaction
1
Pie
eo. 2 m| lu
2
Ps edel fo bh e baby ad mor
Assumin ha ithe stomack e intestine volume propio to gs he he volume othe intestine
(ould 620.5 ande fal covers soul Be O40
P2-6 (0)
rm th web modul we ve hat if polyoma st testes eacton we ge:
Lert. 172368 100188. 28 354% + 4499
240
he Va LT 17236X"+ 100.8%". 28384" + 4490X 202m?
Kan 067
‘The Lever llo eines is shown below Te cule conversion iO 178
Since the ipo ads 30 commeson o survive bu only achieves 17.8, he hippo amt saine
Catalytic Reaction
P2-6 (a)
PR CSTR
Pree
(ile conversion of PER = 0.1
Caniyie Reaction
xeon
Convenio
zu
‘We mst soe
LG = (X:01INIZIX!- 17236X + 100 18N"-28354K + 4499)
xon
Sine the hippo gta conversion or 30% i wi sie
P2-7
Brothemicteetan: À à B + C
(mot min
x oy Hera. minimal,
o 1 a
020 187 os
040 5 02
045 5 02
050 5 02
080 5 02
080 125 08
09 0m u
P2-7 (a)
To aves problem, ist plat AA X Som te chat above Second, use mole lance as given below.
Fox _(300mot/ ino) _,
=r Gmelin? min)
Neon = Maa?
eR,
alg
= Dres une te eave) me
Vine = 72d?
P2-7(b)
For ad sm that ers te rencontra previous conversion of 040 an eves any conversion
A Ge vols oe PR and CSTR wil be dowel bee ofthe ts constant over is
invasion ange
‘om pata, We Know that X, = 00, Use til rd eee ad X,
ee | =300
CTN
AG 0908. V 300 (ue under he cus)
SN 0020 = Pam
Mote balance: Vaya = 72
12700
See Polymath program P2
zu
ee EE
P2-8 (a)
y= Eux,
= 1000 ptr
mere V = (0.15}1000X0.40) = 60cm?
2-8 (b)
he
Ata conversion of 0%, Cu
Fac 1000 gr
‘Therefore V = (0.8X1000)0.80) = 640 dm
P2-8 (0)
Von = Foo
From the plot of Vy Calle aes ue the curve sch tat the rn eq to Vi = $07 1000 =
xen
Fo the Sn? CSTR,
= 80dn =
= 00 From ges and ceck ge 255%
2s
2-8 (@)
To chcno 80% convsson wth x CSTR flowed by a CSIR. he optimum aramgenen so Rave à
CSTR witha vola tochico conversion of about 45%, ote conversion tat corresponds tthe
ini valor. Next à PER wid th vecsay volum o chere he 8 conesion Flowing
Fe CSTR Ths angels the sls caco olmo o aci 80% convo
For two CSTR's in seis. option arrangement woud sl nie CSTR wi volume to ecu
5 comersin o bout 5%, orth cren a conespords ae minimum val of Ui. A
Soma CSTR wih olmo sf ec 80% would alow the cs CSTR,
Ky 2G
¡cb116,,-c.J+0001)
‘exsist coi when Ce smal.
suis constants if we ro toga the constants a simplify
1, Kur
Be RG: FRCS
since C5 < Ky
dus (Ré
TE
log and as Cs ows X dress),
ich comte ith te spe ofthe graph when Xs ag i small Xi
‘Now consider bn Cs ge Xs sa
AS Coots lager Carences
HCyp—C,}+0.001 and Cy = Cie
wen AE ty is
OS
As Cs rows huge. >> Ku
216
And sine Ce coming very small and approaching Oat X = 0 shoud be incio wih Cs or
urine X) This wa obere small values ol X. At neon eves of Cand X, hese
living ces are competing nd wy he curve of I as minimum.
P29
Ines gs phase reaction
ASB 2C
See Polymath program P2-9 pol.
P2-9 (a)
PR volume cesary to achieve 30% comen
Mole Blane
USE 1 ra
Velie Gm ne ce E
ws
v-(4x400000x05) + (100000%0.5)
P2-9 (0)
Volume of send CSTR add in ste to achieve 80%
229 (a)
Volume of PER addin rie oft CSTR chere
SU comen
Vin = 4090 + 100000.)
Vign = 900000?
P2-9 (e)
ya Fax
en
Eine
p dx
nen
gn Of ine oping ups)
100000 =1.3x10%x 0.5)
60000 = f(1.3x10%(x- 0.51) + 100000)ax
P2-9 (0
eal ates woul ot give ht shape The eco volumes te bey go
P2-10
Pot 2-10 involves iting he volume ae rats roma picture The door onthe side fe
Ping was da ren e as asso 9 be 8 gh
The oltoing estimates wee made:
come
beset 4-98
Vente a W156) = 3567 n= 10865
ES
Length ne segment 23 1
eng fee restr 3 R121) = 3036
bait
V2 a 20 COIN) 2388 67,5071.
Aes wil vary ih fo ech ini
P2-11 No slain messy
P2-12 (a)
‘The male out of cls nessa achieve $0 3 comersion ina CSTR and PBR conecto in
series and containing ou! mous o cts can be calles rom the figure below.
“The ily sated re onthe et dentes the COTR whe the dt shaded ae denotes he PBR. This
fig shows hat he smallest amount of is iu when the CSTR pra o the PBR
‘See Polymath program P2-12 pol.
P2-12(b)
Caleta the necessary unto etat a reach 801 conversion using sole CSTR by étain
{heen ofthe shaded pon nth gute below
2
“The mo he octane sapos 232 ky of alt
P2-12 (0)
“The CSTR cult weigh neces to Achieve 40% conversion can b otic y calling the ten of
the a lang show nthe gue belo
“The mea ofthe recargos apposintly 76 of aay,
P2-12 (4)
‘The staat wight mses o here £0 % comen PBR foun by calling the aes othe
shaded region ne gue helo
220
“Tae neces cyst weight i apposite 22 bg
P2-12 (e)
“The amount of stay essay to achieve 40% conversion in single PBR can be owed rr calculating
beca of te sad eon inthe rap eo.
The ces cts eight poi 13 ky
P2-12 0
iy ET
P2-12(g)
For diferent (1) v8.9 caves, rts sould aged 20 at th sles amount fente
‘eed to ie the maximum conversion: Oneal emi a fr crys witha acabe lope, is
ener Bete owes CSTR Similar, when une Js a pote ope, nel ber tt
Poe
CDP2-A (a)
‘Over hat ange of comenson ae he plug lo seater and CSTR volumes denia
We first plot the inverse ofthe reaction rate versus conversion.
{mbes 4 /
(CM
Mole balance equations for a CSTR and a PPR:
FX ppp: y = jo
cstR: V
Until the conversion (X) reaches 0.5, the reaction rate is independent of
‘conversion and the reactor volumes wil be identical
CDP2-A (b)
‘What conversion wil be achive io «CSTR Bats volume of 901?
For now, we will assume that conversion (X) wll be less that 0.5
CSTR mole balance:
ve FX Cu X
van
CDP2-A (e)
“This problem vil be divided ino o arts, a son bows
+ Tte PER volume equi nati X=0 (easton ate independent of conversion)
EX _ MCaX
53x10! m
+The PR volume oi ogo fom X=0 10 X=0 (ac rt depends on ones)
‘We notice thatthe new inverse of the reaction rate (IAA) is 7*108. We insert this new
value into our CSTR mole balance equation:
4x10!"'m
CDP2-A (e)
If the resction is cad out in a constant-pressure batch reactor in which pure is fed to
the rector, what length of time is necessary o achieve 40% conversion?
Since thee is no flow into or out of the system, mole balance can be writen as:
Combine: AV = Ny LE
de
From ie stoichiometry of Ue ration we know tat V = Vo(1+eX) andes 1. We inser
this into our moe balance equation and solve for time (0
After integration, we have:
TES)
Iosering the values fr cur variables:
202: 10%s
“That is 640 years.
CDP2-A (D
tthe rt of ection and conversion a funcion of PER vol.
“The following graph plots the reaction rate (1) versus the PER volume:
Reaction Rate (4) Versus Reactor Volume (Y
Delow is a plot of conversion versus the PFR volume, Notice how the relation is
linear unt the conversion exceeds 50%.
‘The volume required for 99% conversion exceeds 4°1011 m.
CDP2-A (g)
ige teaser to is poble
The rt cin for hs eoble extremely salad the flow teu sg. To aint,
sie conversion it would equi ect of esgic pop (a CSTR or PER approimaey the
ie ofthe Los Angles Basin or swe saw ihe eae of he bach ac, ver long ie
CDP2-B indie san
CDP2-C (a)
i
A
For an intermediate conversion of 03, Figure Blow shows at à FR ys be smallest volume, inc for
{he PR oe hese under he cute Atma came slo achieved by following the PER with à
(CSTR Incas he ares consid would be the rectangle ound by X= and X= 07 witha height.
Sul he Cu vale ot X= 7, bch es tan the tes under the cave
CDP2-C (b)
= (0.3 ~ 091100 + À (0,3-09 (50-20) + (0.2-0.3)(45)
wus
Bo Vimy, Ze (50 Lata) (25 min) + 730 2 = 750 da
CDP2-C (e)
tomes u.
39 Var = (40 Una (10.5) aie 525 2
Me vols father reinos the toral votes 7
CDP2-C (4)
27
re lara aan = 2665 a
fo Yaw, 2 2 (9 RSS nia) = 85265 1
ete PIR
ref Be
POLY cap + aus) + 2620) à AUS + 26) AUD 0) +
CRETE
228 oo sss oars een aT
So Vn VE = (50 LG aia? = 786 1 Ws eatterenoe, preter a
El 00-0 aan = ara + an + a + aan
een mei + 29 + 43 em) em anne
te sans
1 Gane “nen
22.1 aia) = 12881 Um)
Brenn
For the PR
OS
So Ve v,I= (50 2/aia)(25.58 min) = 1179 1
0.5 éitterence
cDP2-C (o
00 on 0.2 03 0.4 os 06 07 0
ol 10 20 an 4 32 7 15 3
baie) 0.0 2.0 86 15.0 172 16.0 102 20.5 26.4
¿a
30 Tan" min
‘Tee geaph yields türen possible
sty au
X, = 0285, 1, = 0.535, and 2, 0.730.
2»
cpP2-D
aia taken at VOLS KPa (10 att) and 227°C (500.2 K)
rar. AN
a del 113 gman?
Yn OBI CoE O TOS
5, A
Carola
CDP2-D (a)
30% conversion in PER:
je
1564805 > Y
} Amin) = 158.5
CDP2-D (b)
530 10 50% conversion in CSTR
EN]
CDP2-D (e)
sat Yen) 405.64?
210824 > Yom traf)
sos
Total Volume:
Via =155.5-+405.6 = 561.1?
CDP2-D (d)
60% consi in PER:
tim =c, Keane = Yon =(0028195f mo) 67605
LEA vos
80% conversion in PER:
2, is not known for X>0.60 - can not do.
CDP2-D (e)
50 % in CSTR:
ru 2304229
Vans 604229{ 2 nn) Om
CDP2-D (N
50 to 60% conversion in CSTR:
Laos)
os >
CDP2-D (g)
128
v
1’/min)= 270.4 m°
Rate of Reactions Volume
1. Constant Temperature and Pressure
No heat effets
No pressure drop
Single interpolation to X, =0.15, 0.30, 045, and 0.50 allowable
Huge volume (the size ofthe LA Basin)! Raise T? Raise P?
CDP2-E
For the CSTR:
yo Fed or (area)
Acca Y, = 12008
From the graph we can se tha X, 0.60
Forth FR
2 a, (aces under curve)
‘Area under curve Va 600 dnt
From the graph we can se tat X, 080
CDP2-F (a)
Fin the contig the CSTR nd PER connect seri
x BR y
of =
on Jon 6x2 =
be 000 us
07 Dase 10€
oo 00e sa =
400 L.CSTR and IOLPFR Feeds 1A. 41 Band 18% L
a HGH "OM
O41C,, = 010.244 moUL)
Fu = Cu 21 LA(O1 mol)
‘There are 10 possible arrangements ofthe system:
1. CSTR followed by the PER
2. PER followed by the CSTR
Case 1: CSTR PER.
CSTR: V,=E, (Area)
Area Mi. = 400
a
From the graph - X, =036
PER: V, =F, (Area under curve)
‘Area under curve = Ya = 100
RTS
From the graph - X.
6.67
Case 1: CSTR => PER Case 2: PER => CSTR
soo
400
¿20
| 10
o
00 02 04 06 0810
x
23
Case 2: PER => CSTR
PFR: Arca under curve = 16 67
enn the gragh ~ X, 20259
CSTR: Ares
From he graph +
CDP2-F (b)
Two 400 1. CSTRS in series
CSTRI: VER, (Area)
‘Area = 66.67
From the gragh - X, = 0.36
CSTRZ: Area = 66.67
rom the graph - X, = 0.595
(6) Two CSTR’s in Series
soo
Do 02 04 06 08 10 00 02 04 05 03 1.0
x x
CDP2-F (0)
Two 4001 CSTR’ sin parallel
To asc CSTR goes half ofthe feed
E.=92=3 molmin
Var (ara)
CDP2-F (à)
PER: Va Fi (Area under curve)
From the graph we can find the area user the curve for a conversion of 0.60:
=90
na 2501000)
Y =(2 molinin)(90)= 180
[ »
ii
“0.0 02 04 06 08 10
(4) Single PER
Un
CDP2-F (0)
Pressure reduced by a factor of 10.
A decease in prestue mosh cms à decrease ia overall coneattion which
Sold tra eases deren €, and Fes By ong asthe eae ana
EX
iti apparent that 1 compensate for the decrease in F,, here would be and increase
ve
CDP2-F (0)
Use the graph of Ui, vs. X to Bnd values for all volumes. (Assure a flow ete of
moin) Genera the following able and gaps
f=
y
[01 ST
oF Ho |
[= TPE |
CT ae 5]
23
(O Conversion vs. Volume
ps |
E A
CDP2-F (g) invited soon
236
mo y
200 300
Solutions for Chapter 3 - Rate Law and Stoichiometry
P3-1 osividsize tation
P3-2 (a) Example 34
— a.
Dee
oa)
En
3-2 (b) Example 32 Yes, wari area considered ine,
en
“The wont the example conversion of 20% won remain unchunged. For 90% conversions ofthe
‘sti so, the fia concerto of ghey ert is Oinstnd el ange conce, Three
90% of ease sodas possible
P32 (names Al Eh D
anne:
33
P3-2 (e) examples
Forte san of Nt can ele fe mude cana Y
1. 00-01
OSOS,
ax
Pot:
“The e of easton decease scale in comen a higher conversions
P3-2 1) ample 6
Fora gen comen, concenaton ois erin low esc than conta vole Bach ett
"eros de eve acon decrees
Ce corsa und mes ae vated
NO, «9 2N0,
AB
G
Buia sto consis gen ty: Ke =
Swishiomety: € = y 490
Constat vole Bath
„el
NK
=X) mi de
yo X) ant Cy = 28
CK
SR) yg 2 2CoX
wur) — (+) wt en 7 eX)
Co a ¥4o(0.07176)not am”
Coming For const ae
CORRE
Cu
Fue ow rt:
Ke
See Polymath program P3-2- pol.
POLYMATH Reo
ALES Report sfenemt)
oninear oquatons
{27 Tao) Xe - (XD) Ca 0500
122 D Xl AA Teepe He 050
Expl equations
u est
Li hnos
13 Cao Dorızayao
14) ops yo
fe Yoo Ja E
[ 7 1 Ga LE
a Da] ol ase
02 08) Bar 0587
03 07 05] 05547]
04 os ses 0518
os 05 0558 0001
ern 04] oso 7
07 03 | os] 0873
08 02 on o7s2
nel 01] om] ot,
095 aos 0387 939
[73 Dom (0.98 Dese
3.2 Kg) No soto i be piven
P3.2(h)
aus de
pda
AY3B 320
E]
Cr ce
eae Clg
CaCug Ke Co
wenns Sy
\ KC,
ihe en sno a quien a
e]
ee =r ms, ied e.
P3-3 Solution e decodig agria aval spare fom he u.
P3-4 (a)
IT pole av ar aa da ligue don ey a
tance eae ns
uae
FE
24 [000540 | as | [mans
IC 1210 | 2408 u
= |. >
‘Plotting In(flashes/min) vs LT, u
Serr
Son program P-tfees an
Forces
Ml »
(arz ei =
ES > a re]
a = as
Pre cay TE
Ba 7
‘Sos, Fetes ad Cricket data
Tow te Aena Mal
Iny = À + B/T ¿and have the same activation eng #5
‘See Polymath program P3-4-<rickets.pol
as
P3-4 (b)
Forty: o
primo Vena LU]
ss ja fs [res “
ling IV) VETA Amon sgh re.
IVe 8 6 1 SEAT .
MTC) Va6dems
MTI SCI) V=OOematutbee oa
‘ould ot be aie ai tempat)
See Polymath program PS-+-becs pol =
a RET AR DAS ET nur
TA [WER LUI *
if — oor E]
a ELLE ..
sa fes je
Pig nV) VT, .
ales sig ne
See Polymath program P3 4 anis pol a
Se cv of ee, an, ricos ad rei low |
Deans model So acy scene a
increas in empero. Aston eerie elie nd cols ae snot the same
SET TET TR THES TREY nn
etn ay
P34(@)
“Thee isa iio temperature for which afer anyone oe inset can bs exraplate Data which woukt
eels he mau and th minim temperate tht hoe set con ende Peor es
"heroe event etpolation gives us a vals hat ks reason, at cortó temperature ou be
seas
P35
‘Tete te o compet eet tht bey abou Ihe maximum inthe cos te: Temperate und
LHCN-H.SO, concentration The cain a incas withing tempe ang ceo
coacetaton of HONHISO, complex. The tempera increases as we 2 rom fp 1 boro of the
‘lua a onsen te ae a conocio shold incas. lower HCN concntaton (nd the
36
HCN 112505 sample) deceso us we fom topo Dtm ofthe clu. There is vitally HON in
"be botom of te column. The opposing fetes sul inthe maximus of he ion ste
sone aound the middle ofthe cl
P3-6 Ani di wot solve fom gs at ow emperatues,
P3-7 (a)
area a doubles o amina 10° aT = Te
FE and k = A PAS où
ky. Then with k= AS in nel, k=
acted, oe) HE)
| E
AD)
108%
hich cam be aproximar by 7
= Rind
P3-7 (0)
Bunion 18 is k= Ae À
Flom he dan at T= 0°, ky = Ae anda Ty = 1000. Ly = de®
1
man OO (om,
‘ox li
37 (€) nun soon
P38
‘hey conn ii tg ig ea,
NO, KO 3 D = A
KO 300 30, ae us 8
Safi an2}+ rl) = rs)
NaN; + 02000, +0180, > UNA + LU + cole...)
Sii tbe
Sp [Sia [eC a
Fa NEP ESTI
KNOW |B [ned | 02 [69-020
a [m0 [O [0,010
ROLE ra jun,
NE to Dion Lion
Given weich of NaN 1508 Mao NaN = 65
horno no moles of NaN +23
1 moles of NaN tq 0.2 mol of KNO}
> Moss 01B,KNO, 0229) 2046 me | My of KNO} = 011
There, ram of KNO, regu “O46 101.1 =465 &
1 mole of NaN quis 0.1 moe of 0: |
‘Males of C 60 = 01123) 023 olen Ma iO; = 6008
"heslo ans of $102 regie = 02 x 6008= 138
Following proposals ae give hand alle wetter bag in as ping pe jun an
Store casi cool y, vents ares
{Avoid Physica damage of th a ar
2 ital under cedar condon of sage Desumposes explosively pon sting (ver
For 105°) shock cmovaion e cion
EN
+ Conditions avoid eat ames, tion sources and izompates.
P3-9 (
Bone in) tm a
ica fonction. Therefore dobla the temple wl ot neces double escote, and
therefor ave dhe cooking tin
P3-9 (b)
‘When ou bol poto at, he beta coe is much ner, ut he temperature canon
be IDC.
When you bak he potato, ie Bas ass outfits llr, atthe tempera can bee has
double af alg wate,
3-9 (€) No olaa wilde given
P3-10 (a)
DCM CH Rule n= Cou,
2) Cala + 120; = CE Kal = Ry Ch
3) (CHACOOCICH) = Cal, + 2CHICOCH,
A ES
Rate ln tp = KICK CaCl
9 Cite = Cia Rae ve ta MC, Co, KA
9) CH,COOCSH, + CANON «+ CILCOOCH, + CHLOH
e ee
Rates nm MCC, CoC
P3-10(b)
A+R oc
w
a
o
(0
P3-10 (e)
CH, = Cata + Hh Ruel a = Co,
39
On name Rate e =
@me a
P3-11 (a)
Laid preci.
D non
ZN 1
can mo + CoN
A mama)
Sujeiomete Table _
peso [Sem Ti Ge
Fr Cont “Cok H
cido
O A ET
ve
Gale fo Tak
Rati a FE
Maelo a CK
SO ESO X209,
01
se Oris PL 3531547 mots mots
35315 mois = 00035 Nba
Fam LE só
an" A "°°"
aos,
À RER 17) USE (2500 SENT) 007 dot
Race
re LEE _ 009) |
7 OO (0947-09)
P3-11 (b)
Ischl, baie gas phase pyro,
GR Cr He
A> Bosc
Suichiomaie table
‘Spas [al [tring Change | Caving
Gk Da tre Fux
CEE ENT
10 pra [Bee
RE RARE
ASIN
TE) ET
Sa) yt mn
(eu
an anal). (EX
+ wea)
Fuel. À matón?
EST
ici N
ex! i
serie, tel E
ie reactions cai out ina constant volume ah ret, => € =0)
Cas Cul FX) mal) Cu Co X md”
O016(1-X)
(0331)
Ge Fox 02x)
Tv (tx) (1-038)
rien flow lemony rt bu
2)
rex)
Ea
E
09
da
(03%)
0.046(1-X
(033%)
N
P3-11 (a)
Inthe obi, cal as pu ac na PBR
Can 2 > Calle
EE
‘Soho table
Sa [Sa Jess ]
Bom ]A — TE,
m |B LE
sam
oon asa
Sen eR) IG a)
;
r
ota. Fu(Oe-2X)_0.10(1-X)
y vo(treX) ix)
3
ete Fox CoX__ 0055X
O) ( 2x) (3x)
te reci follow emer tl
Rate
cc
Fora Mind CSTR:
wein
1 \ mo
ca
) 1663000
1
35) Kecarminam
ux-os
W = 0.0024 fat
sas
mar cas Lo > ono
1
7
Soi pt a
‘suming as pase
Species in
1-0.15X
00x
-0.15X
P3-13 (a)
La A=ONCO Ca icon
au
P3-13 (b)
Spade eng ange Tag
à E Ea Dres]
D Den E
Pair, Eulen 2%)
= a Ex er,
De Fak et,
P3-13 (0)
Forbaich stm,
CoN rae ENN
P3-13 ()
ARC Cy
Ach (1- X)(Oq-2X)
BR
ai
Ber
Fa Hs (-x)(8.67-2x)
2361
P3-13 (0)
1) AUX a Dan To 1 = 461 K
= ACL, Kl, = 00017
Fenol mi
vw (l= X)
=6u(0,-2X)
as
kp E La.
RUT
eo
VO
at
Fenol.
0 = Co #252 X 10 kon tn
)
astra!)
P3-13(0
Da men
AUX up an = Ci
AOS
m’ ‘Amol
= fmol 09} 67
5 Cor 09X3 67-209)
cores Sn
36
=r,2(212x10* "Vis
ro a
kot
= 128x104
P3.13
enon
P3-14
Co + 203 + BN CA New 0.2) + MO + COS
To ak the ys o mas, you mus fist Balance the econ eatin by fing coins,
cd ande This en be dune wih mass balances on ech element involved lesion Once al te
‘flies re oud, you an then eau th cd coef by simply assuming herzen
ceed 1 competion an calle ending maso o el
P3-14 (a)
‘rly mass balance
rare BO G4 aw 1254 be 28
DEEE ESE
AleoforC, 6215) = 4 de which ges c=0909
Next ws sole fre wing te ter cto balance
Peg
We can solve for ung be cogen Else
ee = 086" (0909)
78
ext we we the ydogen aime 1 we ford
een
3079 = 7.40900) 624
ass
aly we ole for aus he oxygen Blane
Gr dae ded 0
Sr 28012009) 1385 +20)
1
P3-14 (b)
Assn 1 moe of lose (180g) ea
ar muss o els / mus o sou asf ls 180
ss 1 els = (molecule weigh) = 0909 mat 91 Asp)
mass of cells 83125
= asf lls mas of 0;
Lie ase mol same rece, hen 1.7 moles oO, ate neta and $312 gol els ae
ac
ms, 147 mol 62 gal)
mot 47048
Yous 83122147 08g
ya
Making Hs tbe ais ll
tn, 2m,
ar
1,2
aan?
3 3°
‘Sibi table
Ss | Snot [Tal ne envi
lA E FagX TESEI
Ne LL Op Fao | PON | O, XS)
nig Co ETC)
P3-15 (b)
7
(16.4am)
(asta on)
% Cyo(l-X)_02(1-X)
Lib: i (+
3
ee)
3 (ex)
2 me
P3-15 (0)
Kam 40 dots
(0 Fo Flow sem
ET
PAC Po, Y
«le
(Fort tn ch
== [Cu]
wen
Beer)
P3-16 (a)
Lui phase tacon asumo constant vol
Rate Law vest action
ee
mujer E]
as
Cas Cali=X). Cy = Cu (I-X)s Co=C eX
o nue covet tomb ame et alto,
To iad the equi concentrations substi quin conversion io he chimie
320
ad mot
Cy=Ca(t-x)=2(1-080)=042
ne C(t-x) mo)
mot mol
(1x) 201-080) 20400
am 66 99-1 gill
ox «204 4080 LEE
P3-16 (b)
Solo
= yy =(1(3-1)=2 and 0,=0
Ke(I-X,)(0+2,)' =21Ci,X0
de. Je 3X,+1=0
x,-058
gut conca:
c 10 ‚mol
RT, „In aim Am
ox [oom er )
(1-0.58) mol
ST Done)
3(058)(0305) mo
se) Sane
P3-16 (0)
Same eatin. rat wan inl concen a pat) gas hase eich action
aa
Combine sve for
Keblt-X,)=(86u,)
x
tn cnt
à mot
Ca=(0305)(1-039) «0.192%
, 036m
Ce =(0.308)(039)=036 2,
P3-16 (d)
Gas phase ratio na constant press, ach rer
Rae leves ection:
Fui conceations:
a2
-0305(1-0.58) _ y gg mol
47 1+2(058) à
30305)(058) met
“1+2(058) an
P3-17
Give: Gus phase reaction À + B > 8 in batch ect ed wih a piston sch at
SCC,
N= Nap alt=0
Pen)
TE HOC = 600 = Cons
P3-417 (a)
sor (sex) aa Lai, 100008
a 7
Ove +6) Ve (Ibe)
ES)
N= Naoli-x] lex
ANN, lA
a
Teste
sa
3-17 (b)
2(1+ eX)
02 201#(1+6X)
X=0259
lomo
none
“ Pue
3-18 Nosolution wil be gen,
P3-19 No solution wi Be given.
P3-20 Nosoluton wil te given,
CDP3-A
Een
a.
ins
aro jamas
maso
CDP3-B
Pay equsion: = C- at)
We ave ctl forthe rection
Che à RB > Cie Re
Giver Ale 2 heat
"Rom the gen da ble, me pet
CATE)
and 60= 6-00)
25.C- 124 Kal nda=032
(sing these aes, md M = 6 ao, we get = 10.48 Kal
CDP3-C (a)
ao
Rat aw at tow tempera: = 7
‘These a thighs temperature mus:
1) Say crm amis ose aun, and
2 Redoce evil aw when he concentration of ns mor faro rad seo.
Ky
Alo, We know,
Rearanging. ne et
Abo when Ca =0, esos he given ae ow ene the proposed tle ws ont
CDP3-C (b)
Ars
Rat allow tempera =
Sotesnwoneriehnw O sfe-2)
Here,
Bt does not sty the invente aw at ow emperates
taking ne at of Ke
Mene iis deuda
CDP3-C (0)
Aunacın
mern rt tae = Maa
Merde == apt en
Weinen Kp= 222. à pp, Leto -
Paba Kr
{un nt)
Ñ
THK ¡Py +KgPo + Ko + Ko Po
ic sates oh e above enn conditions|
2
CDP3-D
4m, + 50, > 400 + 6n,0
Na, “ons Pe
o
Rate Tn 22700 = 500€
2) Assoming ideal gas lar
E
gna
D Gan, Ang ro” (0.189(0.2 gn01/2) = 0.03 gnot/t
se 7 "My 9
3 worte
Sel Tasten Ge Flat
2 où is sasu-n
a Bone Km ae 0-1
so o Be au
20 > o Ham + ous
sy 1 ore 0.07
Bar DR
Eaieiat Ny = 0,79¢4-0.18) = 0.79(0.83) = 0.67
rascar G+
067-018
D apogee the aaa ets
oreo Proscar
En a a A za
RO Be See dan u robe
sn
4 sun x
9.08 TROT
2 nikon RME Mia Hin
€ 0x 123% or
Tr :
„ER
> dom Deren
2d camada
arre ads 11/00 En
wg 1r(0.13/01
Ammonium Ciigide D Oro FroX/2 Faal@p+X?2) Fc(ôn Me
Table for the flow se
fron ie
erisien
1) Molar flow rates considered zucker than umber el metes.
28 opposed o NM
pS
solar flor save by the
CDP3-F
Given : A+B-) C taking place in a square duct.
= lata, = constant
Py "lata
x = 10 £23/(1e.mote)(sec.)
T = Ty = S40°F = 10008
PE = 0.25 ata.
(a) TED de at ensiiibeien da eke gas phate masoughone the zenster
tant Since Bm Libres vapor presse
qr
Sereda ee ty
it dr cevlaced dy à nolocete of B in the Li
= Cy Cy = E Cog Cygl IB: Just inside the reactors,
Yaofo zo
LT ARE à
Fo.
2 e
ere EE ag E Ygoliirgel Gr” Un
fo) des
sobe 25 are) .75 =
Goes oo Mats ate) 0,5) 0 174 Due
738 see LE secon? su
CDP3-G
Bl
3SIHC) + 3H: 2518) 4 THCL + SU: Ch
‘Take 6, HC, as basis
+5 2510 + Fra+Lsunch
SHBG +> Psi +THC +L SEC
Species Symbol Ending ‘Changs Leaving
SiH) A Fao “Fak Fa FOO,
Fas) Bo om FaoX Fa =Fao(€a-X)
HHQG) C o #LFioX Fo =L Fo X
SECHE D o + rex Fo = box
se s o ES S
as
Assume isothermal and constant pressure. Neglect the vapor pressure of Sis)
Solutions for Chapter 4 - Isothermal Reactor Design
PA Individualized soon,
P4-2 (a)
‘Cooking fod (eet empero), 1emovig of tun wih each fet of beach cone), sation of
supa in coe or tea
P4-2 (b) Evampl 1
here wood be ro ee! The nal Haul pase concerto remain the se.
P4-2 (€) Example
Ft 307 comentan,
Per
a+ o and a0, Ye Vus
122052 in
‘Using Mole Bae,
92801
This ss volume ham Example 42 bean he ae is higher
P4-2 (d) txample 43
Ford,
Cro 0015 a (Ci
RT, "070100?
Ling eur 436,00 X= 08
Nese hath oa hg tgs iC and tines by ato 10, hey Senin e
Bester
1
vo
7
P4-2 (€) Example 44
NewD,= Dy
Because he wis lent
1
MS 550.1053
2-0.103%.60 1)
Oum un
rn a $0, s0 too much pressure drop P = 0 and the flow stops.
PA-2 (1) example as
For without peste do, coros wil sin sm as example X = 082.
Win Ps drop.
a. = % 2000576"
nee ke
r= D0.0:24266 912412920 8)
RSA PSV = 334751 aha
252.71 la
a a) = 15814
Fortabat ow
X 08136 visually these
(2) Optimum diameter would bo Lagos
sn
ES
a=0037% 0756
a
2,
e Dia
ca
aw
ja
2
or tubule fw
on
her rer change
P4-2 (h) Esmpe 47
For presute doubled and temperate dese
Cro" PART AT = 688K
See Polymath program P4-2. pol,
POLYMATI! Rest
akute value fhe DEQ vocable
caer Je de de
ODE Report (KES)
43
ra astra a omy a sr
“ia =a
2 dau
(3) Area =e
Epic ts a entry hose
(2) Tao
ES Go zueaanur
[a] ReFactbete
Es) Ge cran
{6} Sept 97 son)
i a=
{3} Fusco
CRE
Eo ve = Facto
iy mea
2) Xe var
15) Tous vie
1) ke
PA-2 (i) Example died sota
P4-2 (j) Hamples9
‘Using lapel ere get maximum feed ate of B = 0.2511 to keep concen ot B
Inn
See Polymath program P4-2j pol
POLYMATH Reus
‘Calcul values a the DEO variable
iatie fetal van miginl solos capes) value tiga vete
“
suatons a ered y the user
D clea)» Kerr
12) AD = d'a eb 20e
21210
13) deeb à ardor won,
4) Ses ee adv
Set ato es cy eo 0018
{21 woos ogest
{Si ao 008, ame
{ai sous
151 ew=005
19 meskes ta
a
aro oui
te concentration o ip he
simu feo te becomes vo, To Sea u
064 das ET
P4-2 (k through 1) India oo,
4-3 soon inthe doing api te ith he eds.
Pad
Wehe 1 ind ihe ine eq cook sgh in Cuno, Pr.
Cs its | — Pre) Boling Poss CO Time cy)
Am atar or En a pa
Boule 1 es Bi Li
Cas Bale En is ?
Assume ection 210 des with pec spp onsnin:
k= Ae
sodas
Es
dt
ch, ac)
For compet moon is: well coke) Ca Oat time
Trato
aud!
Ca ait
zy
Non; plot mata of he cooking tine veras UT and et ia slip Expo oT, =
BEC ASK yes = 2 mine
ñ
a
i
1
i
Gao ar 2 Bostder
i
Bl Asn An
1
P4S (a)
2890 Cras Co "2 molar? ky 2 0.07 dno in
van va eS mPamin Eq 2 20000 calimot
T= 300K
Rasta gama Co IX) CA
csIR vam T350K,
Using the Aurbenbus equation st ie CSTR tempera of 380K yield he new specific
20000( 1
co)
e=sasauina min
CSTR Design Equation AAA
v(kci,(1-x)))
nn
20a 845,
ee
. ‘nia
‘rom the quad ego: xa0925
PBR Ves0odu* 15300K
Design Egon:
x
Fos
aX CO
Wy Fa
x-08s
So, considering the above rs, we wl chose a CSTR.
in the ec ron ae he ne este of 273 K wing he Anbeios ation
54x10
2009)
(2.54,10” 200) aan
SO)
1 CSIR an PR a conato in sr:
(00m KO 07d mol. minimo! dm LK"
Kem O07 ml.
: matin
Sang gnc ation, Ke = 044
Fark,
a
Gat
(OTe? Ime mi) ¿UAM AY py
TO mole min
074? 1 mol minimal bn Ÿ S00án!)
Tole min
X=07%6
2) wea CSTR and PR ar cont pura,
x, {200m XO 07m [mol minimo! = XP
+ Smol/ min,
Xan 2056
For PRR,
Om elim de? Sn)
sa-xy mol / min.
3m
Hence, nal conversion X
056400 4,
P45 (e)
To proces the sume amount of species A, he batch reactor mus ande
sl
te ects in he same concentrations sn he ow esters o
(oo
o bach ector muse ale roces 140 dr? every 24 hos
Nam dt
100 de
moi JO day
Now ve fin the time requted 1 teach 90% conversion. Asumo torso teers is 30K,
EE
os
CE pere TI TT US
rois de.
am tt ae thos ep et hen empero.
dto
bueno
tau tu 3 bn us
Tele, e can un batches ina day an te nce ec volume is
14400dn"
3600.
efecto Table 1-1 and ting ta 360d? out 1000 gallons, we see hate pie woul be
proie $85,000 the rent
Pas
“Te point of ie problem ae:
1) Tomás he ignian inc in proces mes a fine temperatures (ie
compare par) and)
Tate easton fst 7°C tht Batch reactor i mo appropiate, One min test
nd 1800 Aland empty.
3) Nott be conse by inelevant information. does ot mater cir is er ck.
P46 (a)
tes Frac Buap
BASE nen esco
DEE teclas
volenenie Bou va vo
Em]
ma
nen te toh
2 Fee 4x 018 /ye . 308/77 operon
Bee 200 mal
go
x=033
P46
cms TF ir ape ees
P4-6 (0)
Lex
ms vata
RL maca
s Can Gui x)
GET
{moth À
P4-6 (a)
PRR Design Equation
A
a Fe
dx LAC X XX)
ra Fa
Y 535
on
P4-6 (0)
Se DBP) = 278 me acer a tar
Wernfore 144% 10" toast of DBP ane e produced ia days
Mole balance
we
A
“The above equation relates the reaction time fora batch and he conversion
achieved daring that bach, There is a trade-off between high conversion and few
batches and low conversion but many batches per day. What conversion ill
‘resol in the smallest numberof reactors?
3110 Cu
Cu = 0m} f°
E Mar, PES
Tenor hg 23
Moleproduet 410% tomo! _ ggg al
Todays ar
$80mot day
FX mol i day! reactor
I z 4
1,
ne
x
The minimum occurs at X = 0.82 and corresponds to 4.192 or 5 reactors
PA-6 (D) nice soon
4-6 (g) Inividuized station
P4-6 (1) Indiz station
P4-7 (a)
sn
y Econ
pe
ya BETANIA) o ae
eh A 1er Dé
P4-7 (0)
Dre
See Polymath program P4-7 € po
ss
5 eue Er Yen ala
iron union a entre yo us
ED ai io
2} GMA artery
Sp rame avons coun 1
Li a: 60m os
1 Een
[ej axe “
5
atv = 500 | x
ET FOUT
02 x
ALT (A) toiciónalicd vision
P47 (0) CEE EEE E)
Anno
Ra Laws ore
K. = 0.025
Stoichiometry
Ken SE (E El
€ Vir ire
£=2 and C,,=03
Kq= 052
X=(090)X, =047
este
Eo |
0:3 maté [0 ar E
Das a TE
ke | (0 ä
(rex a)
‘Using thes uations in Plymath we gti volume o be 290
=
PAT (O
Ae Bere
Rate Law: 20 =-k(C,=C,CEK) 20 (a eqitiom)
Ke =0005
Stoichiometry: CL
u
ESA Ir),
NA
Re
Sl ge
rer TR
‘sig Plsmal sete dtl quan gs a che of 290 mn”
See Polymath program
‘ROLYMATH Results
us
Dore queen a etre y o user
1 NR = Fela)
‘pe oquatans a otr y th sar
Teh ken das
(i Fao 2s
(3) Gao 3
Li kao
2
TA
A)
CS mot )O Le 207) _
, [ ARCE
E
ER wi ves Aer he Ply quo om pat o
va1300 a?
‘See Polymath program P4-7-1 pressure. po
vorioble Jnisiat value nigime value a
63 : A z 3
ODE Renan (STEH
boton sqatens a oir y tho usar
Tey alga
El ali) =e toon ae)
Ear oquanens as otra by o nor
Fi Kon os
(2) az oct
131 Cao=0s
ESTA
{5} os:
{6} lonas
446
DN CANELA tom eree)
ALV=S00dn? X= 0507 andy = 0381
P4-7 (g)
Membrane et A => B 4 20
AECE Cam CPA CE
Fete aus te = 12
Using pola,
Foc PR,
See Polymath program P4-7-g pol
POLYMATH Rest
“Cala values oh DEO variables
Dirt ua as nr by na user
th) aay ere
161 100: RONA Core Fra)
191 Keı Hans
we pot V= 1040 da?
47
ool
E
We, Ro
P4-8 (a)
“The des makes mo equal volumes one f SO al ach her Ihn ns bg mixing one of 10a
Predicted
expected
pros
‘mol min
a=(gal]
Eo:
1000 gata Eq = ah 2a
Typ 38
oy der
22500 gal
XÈ-3X+138=0
u ve
500 gato SE
E
1-2X,+XP=X,
P48 (0)
A CSTR is been rated atthe bend due o backining ste fete arrangement is PER iin sein
da CSTR
mC
CSTR sone
‘reed dec to
HE >
u
vom. wel
res, Tous, (LM)
ano, Es
viv
Solving 1,2 and 3 by sing pay,
‘See Polymath program P4-8-b pol
‘So, wl cli PR conerson thy consol reaction ob Ist or, Bu actly is a send
rre:
P4-8 (a)
cen conersion and paisas as los: Original we ae a pia A ie pap, when
pate sie is dciasd by 18%, me most poi which ave soe conversions purl aie tA.
Bit when we desea te pace ic y 208, we reach a pit C, 04 dein In connerson sil
Le
Mote balance
Rate law:
Slachoneny:
Now wing
Solving sing pola 0 get ul of vals XV.
‘See Polymath program P4-9 pol
POLYMATIL Rests
LE Solution
A ies a le a
ES HET
Noninear
equations
F3 109 2 M2) 0
Explicit equations
ET tonos
Li Tess
(3) 2520002
(al Vasa
£5) 2 15000
DN yes
1 Kona
191 M 25000
Hoi Me SpA OM)
Tak) x
EN ow
EU LUS
ca ou]
Éd DE
Ey aa
[| 08
30597 ver
EJ LH
En ua
ss a
P4-10 (a)
For abate
call wc.
Bo-B+nv=0
(Co-Cabo nee wel date]
a
P4-10 (b)
Ce =YeslGw - Ci]
(Go -Ci)ro- Ml fisco] uo
SRC a CT
(0-¢,)5+ one Jona)»
Solving we gt Cs +54 pl or 30 dal sf Cy Ca o secas occured 201 on valid anses
C205 dm.
P4-10 (0)
Ce= Yes: CD
025 0j =20 an
P4-10 (4)
Ve 22S dr
(ing equation om hove, we get Cy. 1.67 gl? and Ce
2267 yd?
P4-10 (0)
Van = Vo = 25h del
Using pain om above, we get C= 30 gi? and Ce=216 pm
P4-10 (D
For atch eactor:
Cao 30 ln? Coo = 01 skim?
Cat Yarlla Co
V2 10m
‘See Polymath program P4-10.f pol
OLYMATH Route .
‘ODE Report RAS)
iron uations a entre y o user
DC =
Expt quater a etre yo user
fy Goes
Li Vascos.
5) knee
12) Umarzas
ER
EE) Com Ceovtew (Cees)
(5) = (omar Cato)
(9) in
Eg
sg
P4-10 (8)
‘raps oud Lake sme us pr (sine ec volume nn e design squats fr a constant.
‘lume atch seo,
Paul
‘Gaseous can ia ul cr: À 3 B
n= KC,
k=0.001Smin”*at 801
Eso cal x=090
gmol
MW, = MW, 258
[7
L=10p
P=132 pois
1467 psia
M, = number of tubes
43s
Fora plug flow ect:
vil
NT, = APE = TAR, with = 00015 min! aT, = HOP = SO,
mo a) oom
1.104 540 "720,
teo fr a
191 1073 oe mo)
y Lat au (a —In10
[2 (E219hr")(1467 psia)
v=072f"
v-nabı
(ior Ue integration, refer Appenlix A)
fiom the Idea! Gas som,
Cao = Yoo
Substituting Eq.(5), X = 0.8 and e = -1/4 to Eq. (4) yields,
ai 52 -114y-1/ 4901-08) + IS
Molar Row rate of À cut i hal,
La Up.
Fig = ¿En
From Eq, (4),
Vert
= MA) XT wor
sn
a+ ext
KT
DRNA
EN
TO
AU 16 tn = X94 AN
Polymath Non-Linear Equation Solver, X"
2.9)=258=
da px
x
0758
P413
(Givens The melty nomination À > B liquid phase reaction
&
rc, En foi 58
( 2)
Fora pla How ect with ya=10,X, 2055
Case: an deta pag Hw reactor comet in seis ith the original ao
— %,
2
Since = 10, 0,50 Fora igi phserencion C = (IX) and Cy = CX:
mc)
the ft ester
4
>
po )o-ossmtaso-oss
Take advange of fc hat to PER isis sh ame as on PFR with the volame ofthe tu
combine
Ves Vie Vas andar eX =X
ACM,
¿Cal (0855)
Gal, 2083)
1766
Kom
(Case 2: Products rm entr are sept ná pu As fed othe second race,
‘The ans or fist eco the sam as focas
4
Fa re)
]
y prong amater! alar on e spa. Es FX)
‘Over coneision fr hi scheme:
lool X3) Far F(1=X NI)
Eu [7
=1-(1-%,)(I-X,)
40
(ive: Oto oma: and pur mation fee.
M— +P
M50
O—> P (neglect)
V2 10002 eat
Asam ht the rections te ern and is ode.
x =037
x-050
Assume plug lo ect onions:
Eggi rgd 0
vat
Infi=x)
A DEA
os
row “ao esse
al 1
=1667 Enf-0 0} =11358%
SAL iaft-0.50]= 115582
Alen (I= Xewa)
CETTE
‘The recto appears to be pl once VV
Asa check, assume he rec à CSTR.
as
yola y=
TÍO
Asin kV chub a forbs Case Land Cate 2
sa
()euer Kane 2500 (0.37) gal
(Yo = is ei Oe OO pal
(ena IK 1-037 hr
a
Kenn 16678 (0.50)
wy au Koma MM sal
ero ET] hr
Vis ot ie sume fr Cas 1 aml Cas? sin he CSTR assumption, oe ets must bo
mele sa log low estar
gal
ef cat
ih 850 gal Ny = 046, he rage cat alae
= 500
v-Zenlı-x,) —— (1046) =2931 cat
Sr WP eat
‘This sums tha he cure hyo coins ae present inthe mow eco ain the ok
PAs
A Dina tabasco
>
1
y Fatt al 1), Leaf 1 )
Da wur ER
Asse Auen epson aps e constant
Diving bot sides by ges
sone)
(sas o)
(on Jon ference)
rating and smpltying iv
0.0308
Solving fr gies
TOR
P4-16
Reverte homeizaon reaction
jene — pyre
Xi equliliom conversion
c,
CC
At equiiun.
P4-16 (a)
P4-16 (b)
FacsTR,
EX
Pain the va of Ka,
till)
P4-16 (0)
tm ty = = 22
Le)
zZ NX
x x,
Flowing the plat of volume eficiney a anton of he a0 OK),
See Polymath program PA-16-< pol
PORN TAN ARTO DE on
P4-16 (d)
ine = Vien Yesa | bom probe ent, which isnot posible because cometio A or be
‘he te fr he STR m ei fot the PER
P4-17 (a)
an
12. =03,W= 1h ou 025
A]
Kun CA
AS
=
SA
ara
Solving tr y ula and nor in Poly 0 mach xd y te,
2 yet ‘al sn 025
LOW kg! and = DIR
we go
‘See Polymath program PA 17 a1.pol.
POLYMATH Reals
436
Ye Te Ya
iron uations a entre y imo user
D ana) oe
EA aint = an(s EN
Exp oquaton a etre bythe user
espe 06.
Solving we get or W = hg and z= 07 bg!
x-04
See Polymath program P4 17-42 po
Report te
Noninar equations
Brenn
Explct equations
ar
2 senos
01 207
P4-17 (b)
For tuent fone
= ons =
Le ne à
457
0.7 =28
Now ahing sing ola
See Polymath program P4-17-b pol
POLYMATH Rot
Dé
ODE Report STIFF
tree! oquatan a ette yt nor
a) = ZU rose
CRT NET EE
pou a etary De wer
So, cameron in PBR, X= 0862
P4-17 (¢)tnividutind soto
P4-17 (A) invita oan
No presse io the CSTE
P= Maoll-X) w “ay
I & Funk «group ints constant, se velos rom at ese
WLR) os ko?
yy ix) Bow "05 250) Pr sin
» Pa PR downstate waste volume
P4-18 (b)
PBR: Vag E mth Big = X) = Paalt = XIe) sine «=
D POR o A KI) Pol XXE) 6 o
Production of phosgene in a mia,
CO + Ch, = COch (Gas person)
AGB oc
See Polymath program P4-19 pol.
Biron ext a etre by tho user
ESOS = AD
E aa een
ook quatans as andy a ner
40
ES For
15) osFoornox
1) Veen
1) daran
iaa
En Redon
P4-19 (a)
P4-19 (b)
Te let omeson of the ect 0784
The id is thea MFP = 99 ga +2 5 mal 0.784 = 00155 fs = 4895 year
There 1,00 jeu / 4595 ky per = 204 ec se needed.
P4-19 (0)
Assuming lamior fon, a D te
Pito (355k10/kg Ja 142x10"ke
AE
P4-19 (a)
‘Alower conversions ech de to uri. Also, revere eco eps to ete the forward
resto ner th exit he rat
P4-19 (6) initio sin
P4-19 (1) Individuen
P4-19 (g) isole solo
P4-20 (a)
Mole Balance
Beg
E
Rate Lam
PT
rar eue
Buch,
when Dy met 2006 nw au
a
ses.
=
on
20 (1750)
For abet owe = 7
DZ
BADIA
ont
LD
28,
°K rh 02126 (039/23
a =80*10 "kg
P4-20 (0)
See Polymath program P4-20-b.pol.
| 5
= 1002107 ig?
ef onen] vanebaaesonr,
ara}
Weokzöynıo ~
EN
See Polymath program P#-20 pol
alas ofthe DEQ variables
me tg sue sue
fume Zen Den fem Nasen
= AERO GGESER nn un
ODE Report (RKESS)
fornia gustas a roe by o user ss
i! dd sara
E A) = pra un]
nlc equations as end mo user
i) ops 0078 os
El dure
1) Fans a
da a coseno
2) ignoran on
7 a dpi (Cr?
P4-20 (€) insel soon
P4-20 (€) Individual station
4-20 (Dice sation
P4-20 (g) nv lation
P4-20 (h) tnsividualized solaion
P4-21 (a)
‘Aasume consta volume bach cesta
une: Cu À =r,
Mot Cy mr,
ac ad sion 7 =AC,=KCy (I=)
Spee raionnte:k (25°C) = 0.0022 weeks
Cot
Gel nr)
f
0.0022 weeks tx)
(1 X tu sine volume and moteur weight constan he sun cun b wien as
(x)
630010 =m. (1~0.108)
me = TST
Co 7287-6500,
o Ca 4499 = 2287-6500.
er 6500
P4-21 (b)
10.000.000 = 458 + 10 py fetes
Serving see
ach stag nes an exer of 787 LU 4.62 10% 1.021
n
Number of servings per er = 158 10/30 ul
S110 sevingaye* (1.02 * 10ers
Total excess pt ya
154117 ye (iil on)
“Total oversa cos =
4-21 (0)
tin nietas to expat could be me economic osreb cl lowes empero
‘where nets eue mot oy tos lowering he amour o verse. The cos of hs stage
ull prove tobe the more expensive alate À cost aml neds o Be done to determine wich
‘Staton woul bop
P4-21 (@)
(40°C) =0.0018 wees mon = 26 vests
ak
Cu pe 2-0
Zwecks "__nfi-x)
DOME
x=0.2
Cu = Cal X) but since vote an molecular eight at const be guion ca be ten as
m=Mo(l=X)
{650010 = m,9(1-0.1
yg = T3861
Cu
Ca 100 - 7286-6500,
100 = 73567650 «109 =13.6%
P4-22 No soon cosy
P423
CHOHCHEI + NICO, + (CHAO) + NACI + CO,
446
ae sini value maten) voue tp valo
H ois 3
is O dioses CET
: Anse hon. 9609
Report (RK:
tnt eaten ab er by mo str
13°C rav Car co)
12) AA = ven)
151 CV = "sence
pet equations as otre by he sor
ih Fase
Li Gers
1 esa
12 Vos ts00
15) weaFaatcao
(6) Vevonet
(i) re KG Go
Le) Xba -co-w4o75-1500)
19) Neacew
“o, a
al 7 ml
Bw eee Ni
"T va
P4-23 (b)
Taking average tie fo activi ie charging, hal, cleaning = hr
So. te ne Batch per day the ane o ss = 24-4 Sa 195 he
Since athe temperature which we ate operating the react mo side eatin cn, the ques may 1
an the escion wl Be at the highest low A linn 120 mans)
But at 19. hous amd a how ate of 120 mol 6d? wuld be ae to te reactor. case te
‘ms oe entre 250 da tee ey 1500 «Bn e car, De ection an
‘info 19S hows tao st 120 mol (2 main)
lo. because heres 100 dn of concertation 025, thre are only 1125 mals of Bo et
‘The means about 10 dow of 1S MA isl tat can be sees, Mor A may be added othe exer
cp the reaction high she concemuon do, ut adding twice he noses volume wou be
aa tine and matron op af eng Phys pose)
‘Now conser mule cbs pr day If two bates ar, then tee willbe 9 hous o downtime
‘meaning that he me fr the ection wil 1 hts pl betwee the to Buches, ih a maxi
‘othe est sta wl be to un 2 bes pe ay One bach wil un for ou ando second Bate fo 7
ure Both willbe ron wih How at of? molino.
(Ace batches re run er wil be 13S hous of die and cy 10 hours forte reaction. A
main of 1257 moles of can formed the ine spi evenly or each batch (35 ou)
‘Sev thePlymath code fo par (a snd vary tic and ow ate
P4-23 (0)
y= 015 main 9 te
02 Fana 9 mole / LS mat = 6 dal
100 mi eed fil te ect. At 6 di wil ake 166.67 bou
Now solving ing the code rom pat () with he chanel un
‘See Polymath program P4-23.< pol
16s
PA-23 (A) Inne soliton
P424
NaOH + CH,COOG,
ArB—C+D
¿> CUCOO" Na’ + C,H,OH
Mole tale:
de
a
To produce 200 mos of D, 20 mola And 200 ols Bar eed. Because the conceaon of
A at be ep tow, e mas sent À sly lr amo Tele, ves sr with
ure nthe react, To ge 200 mols ol, we eed he ean wi a east 800 df pu B.
‘sue le ous ol, eat te eater. Tha eaes 18 hots 1 Gary ot the en We
‘il ee 02831000 dn of A 1 gt 200 ae inthe ence. We ne check o mae sete air
‘a nie is volume oly Y bach per dy sobe wed Since we ad 1800 or LS nl in
resto has a volume 4 42 we an sally cry ot singe ath pe day a achive he essay
‘ual to
‘No vary he i aman nh esti, the Hw at f Aad tempestad slo
Ut sai al he constrains. Te program low shows ne pou olson.
See Polymath program P4-24 pot
ODE Report (RK 4S)
Dita quan a erre y th user
Tr da = ra Cao Ca)
23 SAN = reeves
131 COVA) race
CRE
Esp quatona as oir y ho vor
4-25 (a)
AmB+2C
To platthe Now ates dan he resto we nd diferent moe lance fr te hc pei nating
ut ROTH A ad dis dough he membro
Enr
av"
Nex we capes teat a
Phatordereveniblereacion
ad
ale, GE).
à fe. a
Tans othe eso rt
mue Hal
a
RCE,
RyehiCh:
Stibiometey:
“rie
Combine and she in Polya od:
See Polymath program P4-25 a pol.
POLYMATI! Ress
dei sai
ası
E ” PROA aser Les
Hs ” De
ODE Report RKAS)
Bites! uations a entre by to usar
ii aay era Fa
(2) aay or
13) FIM =
‘pet equations as omita by tho usar
Ty ken oor
ES Ft ee Poe Fe
Oi cout
Er a0
HE} m= (cara CORFO Fer FR)
0) Kast
Le) Ras karcorrart
RES
E)
P4-25 (b)
‘Te stp the sam as input (A) except et is nor tb ies ft este
‘See Polymulh program P4-25-b.pol.
POLYMATH Rests
492
Gault vals of he DEO variables
de Basicos 100 Be s2658
A ET issue
OPE Report REED
ion unions as etre by ho ser
(ayy =a
La
13 Mean
opt equations as ere by th ur
META
2) Fle For Fos Fe
3) Get
ia Keio,
151 mu Woo a CORRO)
PA-25 (<) Convesicn would be grue TC nee dang nt
P4-25 (A) lite soon
ss
4.26
CO + HO + CO: + th
Run oc +d
suming cyt ibn uniformly over he ble volume
Mote sone:
chim
&
BoB a Fy tht ky
Scving in pol
‘See Polymath program P4-26.pol.
rossi tas
E or
E as E das
E ara) =
‘Expt oquatons as entered by th cer
tn) Rage ta
Lo Res Favors
13 00.04
1 Corwen
Le Go Grant
1) Arc Rod
(Coy as rar
Uy rennen,
For 85% conversion, W= weight fat 430€
Ina PER no lydogen escapes and theca conversion each
PCR a X
CG, (a
sole this for X,
Xe sist
‘Tish xi conversion that can be achieve ans PER.
era is double, hen the na vales ol Fa and te doable. Thi tens ina conversion of 459
P4-27 Indie otto
P4-28 (a)
‘Assume liberal and eno
Duelos, Poli ROO
Was
P4-28 (b)
455
Cy Gio( 2 Pro
{Cam Cyo(l 20 (1-001 W*
Inge rom XD X= 9
EA
M le
Wasssss
Fist 5% conversion integrate from X=0 10 X=.05
Weste
+ Last 5% conversion integrate fom X85 10 X=90
10858.
4-29 induire schon
P4-30 (a)
Fondo pan
éme > qu + can
DRE
fea
n
Ra ar
ps
X= 0068 and y 20 12,
Solving (1) an 2) by land er om poly we pt
1000948 dy tata"
2000000 am?
456
Now woe fr iin ed with $000 of ety
suite C= Cu EX
A AUX)
Combines WS) Goo x)
Fm ptr 12 ese il nas as D écrans. We io ko tht lr ate ow
1
aL means teen cmpeing (on coc wen Dy car
Westra dent nn cf is E
tapa a anno sp ms eo) Ee nin mas aw st eld arts,
then insteasing pipe ia (or ro seta ae) il rest in ower supe ms veloc, Te
noni be allowing fr let Now
Ie we combine ot fests alpha we pt he lowing:
11
ar
AA
So inca pipe diameter wil lover ah ad increase conti ad lowe press op
u
derung parie ant ha ner et on ap ad wil cree pressure eo ein ina
Tower comersion
1
For Lamina fw @~ Gand & =
x
‘hic ment toscas pipe diameter wil ave he same ends fr pres ro ad conve ut
esti salle hang
P4-30 (€) induire Slaton
P4-31 (a)
LONG Promo IO Fi
Mol base. RAW = rao
Ra be Pe
Pull XV 066%) LEA
Pe= PI: 0666X)
Fred y Mao pres drop)
5 =
‘See Polymath program P4-3La pol
OL ts
a ue 1
as
Exp oquaton a tre bythe sor
TS
2) Page
3) Pa Pao" 91-0666)
(51 Pea Pac 000%
Le) Fao= 1530
D me ko
(3) Sop e-0688
or rs 5% conversion wight equi = Wi =2 Kg
Fo ls 5 cameron weg quid W, 38 kg
EA]
Palma soon ($303
P4-31 (0)
Fura 0027",
Fela code wi ee dp gain
See Polymath program P4-31-b pol
POLYMATH Results
Er Br Det De
ODE Report STE)
Dire quan as rr y Mouser
aa ”
a
pte equator to se
131 K=008 =
La Fiona
El papas yt 098659
151 Pen Pay 0.60%)
I Ferm
Ha
NEE
“| Fal
P4-31 (0)
Bd,
Diameter of pipe = Dan dima of patil = Dr
‘Now DD, = 12 001-490,
a oma LAG
SONDAS
CIDO 000237 ky
Les pre dp and moe consi fr same weight of aaa in part ()-
2) organo
pedis
RS
ER De DD?
SEEN a0 Obie"
Anite rein fy nd cnn eae ca wit
Its beto havea luge ameter ige nd short eat assuming the flow remains he same
‘tough he small pipe
P4-32 (a)
Aquila, re 0 => CxCp =
Va von
3 Coll- x[coj21-cux) Cox)
VoCso.
VoCro
Now string poa,
See Polymath program P4-32
P4-32 (b)
See Polymath program Ps-32-b,pol.
ROLYMATH Rel
lables
A AA
1000
ODE Report (RKE&S) aed
Dien equations as etre by he user 6081
LA AG = ro GAV
Epa equnns a nr by fuser
ar
15) 18e KO -cocane)
15) Vo=200
3 El) a a
Te BR NE TE
P4-32 (0)
Change deal of van Coin be Pola 1,
program tose the changes
‘4-32 (d) e au
coa Copa haha Coed E E]
O cc, a
Des
See Polymath program Ps 32-4 pol. o
/
Ese alu the DEO aros
Sarlabie initiol vetas Mintel waive 0 +,
40
ODE Report KES
Diora union as entered by Io ur
12) aca) =a» Cavov
DEC
(21 Cam «(0002 «Cay Je Catre
a} Stesavat = (Cat - Coayau-kcaa'2
131 RS = (Cu Caden CAVE
pet equations
tord
toed by ho usr
From Plymath, steady sate conversion uf À apronimaih 039
4-33 (b)
199% ofthe steady te concertation (the concerto ofA leaving the id naar)
(035y0611)= 0605
Msorusatt
P433 (0)
“Te pot was orense om the Poly pogam ven above
a,
un)
val
|
CEC SE
P4-33 (0)
We musa rctami he mol balance din pat. The low aes have change and othe mle
(ala on species À nil ehange spy. Because specie added to no diferent ats we wi al
ee mol halos fr species B,
Mole ance on rs pci A
Cao Ea Fa
EA
3
PACA
a
Liquid pase eationso V and var constan
465
Mole balance om aso asis
aN, 1
Cost En = ed a,
en Co Pa = TE and Ve = 5
‘Stoichiometry hs not changed vo = a ts guid phase easton with Vand y cota
Ca Sn, „In
ae a
Mole alice on ecto pis A:
‘Wear adding mot of he edo pis no this ec sch hat
AA
466
i
u ROC
‘See Polymath program P4-33-4 pol
rates
Sd ; ; ie
SB if BEE ES
m M +
Ditters quan as ered y mo ner
{1 aaa) (0008 Catas tarot
12) GC = Catnau- cana K CAP cn?
151 east = (Ca Coys A-Ca9 CDD
Ka) AC = (Cao Co1pau cari
151 ovat) = CorasoeCaobay-Cnenau2 1'C42'000
161 Ac = (Ce CM CAS GES
Ka Sate Salter)
ey
Ve POLYMATICO pa, ve
y want a
pretionss Be mi
For steady-state:
146 moat hos
sé sc ts
Cr. gin
Ge Leo
D fs 280 myn, winch eo sud 30mg
olaaa Ars Corsa)
»
Mole Balance EAT
Bence cw. key
Use POLYMATH o generate plotofC, and N, v 1
po
LE cavet
E) “
SG 45010
parce
Polya soon CDB)
Ti pans als sm as pr) wi mios anges
6m phos iti op er a tai
Him a E
res E El
ee
em, E
Fe !
eo = 4.5
voue” = 70000
HUE
000
alma solos CPs 4)
cpP4-c
Find he cubero moles o ceptors:
EN cepto
riot Sy ps COn
o a
1560
Design equations
Rate Law
Sisiehioneuy:
Wher:
“Tout numb of moles:
Combining and solving:
Y Asume €,
Design Eon: x
Naan
RaseLave ‘
Swiciomery:
an
Combine and solve!
A wey god approximation.
9 Dei x
TR
we
Rasta
TS
Shin
me CCl x}
onc,
eeu
Combi and sve “
ER en
a 4
Ma
Henke Bente RES
x a Cade
De ern:
hu Hp en 5G
AE: ETS Na
il
Ea
CDP4-D
Batches: 2483 2C
= 198 mal y= 92 10 (ms
gal -067 X=Q6
= 0002 Hama 67 = 298 x 10° br,
(C2 00018 ma 67 22.6 10" Tmt?
ol stes: Wa ny
at
Rate a ROC CAC
Some: Cy Cul)
Eee = 09-05
an
combine
Co = Ci A Xk(09-0.5X)+kC,01- XX09-0.5X)°]
ging bern X-D10X=0.6$ fort =O t= gies
are
CDP4E
get 2901
MALTE
Par Ge teen
Tye ao
e
quis foods à mixture of and 8 y
Because of the low concentaton of in th 106, such propor as SG, the specie
‘gravy, Ma, the molecular weight, and the solily of Hy are essentially that of
component A assume tna an M, dpleted via roacion fs nsiantanecusly replaced ia
absorption of H gas over no squid reacting micure, Then al SO0psi)