Engineering Mathematics - Total derivatives, chain rule and derivative of implicit functions

jayanshugundaniya9 18,026 views 7 slides Nov 03, 2014
Slide 1
Slide 1 of 7
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7

About This Presentation

Engineering Mathematics


Slide Content

Total Derivative
i
ni
i
i
ni
i
i
i
dx
x
u
du
dt
dx
x
u
dt
du
dt
du
*
=
=
=
=
å
å


=
*


=
=
=====
=
1
1
n321
nn2211ii
yxn321
as dt'' geliminatinby form aldifferentiin written becan (1)Equation (B)
(1) ........
:by given is derivative Total ORt coefficien aldifferenti total theAnd
(t)] x(t),..., x(t), x(t),f[xu indirectly So
] (t)x x(t)...x x(t),x x[....n 0,1,2,3,4.i where(t)x xHere
.f & f sderivative partial continuous hasu and )x....,x,x,f(xu (A)

Total Derivative
))sin(3)cos(2)(()sin(
)(sin3)cos()sin(2
)3()cos(2 .
find , ty & sin(t) where,e u If
:Example
: xrespect tou with oft coefficien aldifferenti totalaget we
, 1 making and x tputtingBy (C)
2
3
2
3
2
22
3y2
1
2
11
1
1
1
1
3
tttet
tettet
textex
dt
dy
y
u
dt
dx
x
u
dt
du
Ans
dt
du
xx
dx
dx
x
u
x
u
dx
du
x
x
t
tt
yy
i
ni
i
i
*+**=
***+***=
**+**=*


+*


=
==*=
*


+


=
=


=
å
=
=

Total Derivative
2/12
1
2/12
2/12
1
)1(
3
sin32
)1(
1
332

)1(
1

3 ,32 Ans.
)(sin given that
, respect to with 3 y)f(x, of derivative total theFind :Example
x
x
xx
x
xyx
dx
dy
y
f
x
f
dx
df
xdx
dy
x
y
f
yx
x
f
xy
xyxx
-
++=
-
++=
*


+


=
-
=
=


+=


=
**+=
-
-

The Chain Rule
w
z
z
p
w
y
y
p
w
x
x
p
w
p
v
z
z
p
v
y
y
p
v
x
x
p
v
p
u
z
z
p
u
y
y
p
u
x
x
p
u
p
x


*


+


*


+


*


=




*


+


*


+


*


=




*


+


*


+


*


=


=
====
: follows as wv,u, respect to with sderivative partial has w)]v,z(u, w),v,y(u, w),v,f[x(u,p
function composite then thew),v,z(u,z & w)v,y(u,y w),v,(u, x& z)y,f(x,p If

The Chain Rule
b
y
u
a
x
u
t
u
b
s
u
a
r
u
t
s
s
u
t
r
r
u
t
u
s
u
s
u
r
u
y
s
s
u
y
r
r
u
y
u
r
u
s
u
r
u
x
s
s
u
x
r
r
u
x
u
y
u
b
x
u
a
t
u
*


+*


=


*


+*


=


*


+


*


=




=*


+*


=


*


+


*


=




=*


+*


=


*


+


*


=




+


=


+=+==

(3)& (2) (1), From
)3.........(....................
)2(....................10
)1.........(..........01 Ans.
: that show then s,t variableindependen theare t &y x,&bt ys at,xr s),f(r,u
:Example

Derivative Of Implicit Functions
.r denominato as sideother
the to
x
y
th product wi asget we termseshift whol andcommon as
x
y
of termsallcollect Now
)
x
y
asit leave , ' x respect toy with ofation differenti a ' encounter we whenever &
constant as y'g'considerinby then &constant as x'' gconsiderin tedifferntiafirst
y'' & x''both having terma atedifferenti we whenever i.e. (x'' respect towith
equation whole thesidesboth atedifferentiFirst .
x
y
out carrying of methodanother also is thereHere
ly.respectivey & x respect to with ' f'function ofation differenti partial theare & where
dependsfunction heon which t variblesany twofor -
x
y
.example... above In the
tiondifferentifor formula specific a have they &Function Implicit called is functions of typeThis
constant:example
ableother vari theof functions a as expressed becannot variablespecificA
variable,one than moreon dependshat function t ain Sometimes

2222








=


==+++
yx
y
x
xy
ff
f
f
abceyxxyyx

Derivative Of Implicit Functions
.
)log(
)log(
x
y
gsimplifyinon givesagain which
constant) a ofiation (different0
x
y
x
y
)log()log(
:becomesit methodanother By
)log(
)log(
x
y
So....
)log(
y

)log(
x

-
x
y

constant Here Ans.
when
x
y
Find
:Example
1
1
11
1
1
1
1
÷
÷
ø
ö
ç
ç
è
æ
*+*
*+*
-=


=


*+


*+*+*
÷
÷
ø
ö
ç
ç
è
æ
*+*
*+*
-=


*+*=


*+*=


=


==+
=+


-
-
--
-
-
-
-
xy
xy
xyxy
xy
xy
xy
xy
y
x
bxy
bxy
yxxx
yyxy
yxxxyyxy
yxxx
yyxy
yxxx
f
yyxy
f
f
f
ayx
ayx