Estructuras de cables ARQUITECTURA - ESTRUCTURAS l
integrantes Alejandro Lopez Martinez 13100013 Luis Daniel Verino Perez 13100031 Saul Moreno Alvarado 13100018 Efrain Velazquez Barrios 13100030 ARQ. ANA CECICILIA ANTU ESQUIVEL 16 DE FEBRERO DE 2015
¿¿ Que entiendes por estructuras de cables ??
concepto Son estructuras especialmente apropiadas para cubiertas de grandes luces con materiales livianos donde el elemento estructural esencial es el cable y el esfuerzo fundamental es el de tracción. relación peso/luz. Los antecedentes de las estructuras de cables pueden encontrarse en las velas de los barcos
caracteristicas • Resisten únicamente esfuerzos de tracción pura • La forma responde a las cargas • Cualquier cambio en las condiciones de carga afecta a la forma • Carecen de rigidez transversal • Las cargas pueden ser muy grandes en relación al peso propio • No constituye una estructura auto portante : el diseño exigirá estructuras auxiliares que sostengan los cables a alturas importantes. Esto conlleva a una combinación de sistemas estructurales diferentes.
VENTAJAS Y DEVENTAJAS Ventajas Peso propio reducido Mayor velocidad de elevación. Seguridad (rotura progresiva) Desventajas X Exigen poleas y tambores más grandes X Al faltar rigidez el puente se puede volver intransitable en condiciones de fuertes vientos o turbulencias, y requeriría cerrarlo temporalmente al tráfico.
antecedentes HISTORIA DE LAS ESTRUCTURAS ATIRANTADAS
El diseño actual de los puentes colgantes fue desarrollado a principios del siglo XIX . Los primeros ejemplos incluyen los puentes de Menai y Cowny (puestos en funcionamiento en 1826 ) en el Norte del País de Gales y el primer puente Hammersmith (1827) en la zona Oeste de Londres . Desde entonces puentes colgantes han sido construidos a lo largo de todo el mundo. Esta tipología de puente es prácticamente la única solución posible para salvar grandes luces (superiores a un kilómetro ), por ejemplo, cuando sea peligroso para el tráfico marítimo añadir apoyos centrales temporales o permanentes, o no sea viable añadir apoyos centrales. En la actualidad, el puente de mayor vano es el de Gran Puente de Akashi Kaikyō , en Japón , y mide casi dos kilómetros. Hay un proyecto, el Puente del estrecho de Mesina , que permitiría unir esa zona, para ello contará con un vano de más de tres kilómetros, aunque este proyecto estaba a punto de iniciarse su construcción, se ha postpuesto .
El Puente Colgante de Menai El Puente Colgante de Menai ( Menai Suspension Bridge en inglés), es un puente colgante entre la isla de Anglesey y Gales. Fue diseñado por Thomas Telford y se completó en 1826, es uno de los primeros puentes colgantes modernos en el mundo.
PUENTE COLGANTE CONWY Conwy Puente Colgante fue uno de los primeros puentes colgantes de carreteras en todo el mundo. Situado en la ciudad medieval de Conwy en County Borough Conwy, Gales del Norte.
Tipos de cables & tirantes CORDONES, CABLES & TIRANTES ESTRUCTURALES
CORDONES Formados por alambres arrollados helicoidalmente, de manera que quedan colocados de forma regular. Tienen más área metálica para el mismo diámetro, por lo que son más resistentes y rígidos
cables Formados por varios cordones arrollados helicoidalmente alrededor de un núcleo o alma, que puede ser una cuerda de fibra textil, un cordón de alambre, un cable o un muelle helicoidal. Se designan conociendo su composición (número de cordones y de alambres de cada cordón), tipo de alma y tipo de cordoneado . Son más flexibles y fáciles de manejar y, consecuentemente, más apropiados para pequeños radios de curvatura.
Tirantes esctructurales Formados por perfiles tubulares.
Union de cables o tirantes La unión de los cables o tirantes con otros dispositivos se efectúa mediante terminales especiales.
Comportamiento general de los cables COMPORTAMIENTO & ESTABILIDAD
COMPORTAMIENTO El cable adopta la forma de una poligonal (cargas concentradas) o de una curva catenaria (peso propio) o parabólica (cargas uniformes distribuidas en la proyección horizontal) en función de la carga actuante (figura 1 a, b, c). Al combinar distintos tipos de cargas se producirán formas combinadas de manera que la carga mayor definirá la forma dominante.
La intensidad de las tracciones desarrolladas en el cable y de los empujes en los apoyos depende de la magnitud y posición de la carga aplicada y de la flecha. Por eso, cuanto mayor sea la flecha mayor será la longitud del cable tendido entre dos puntos fijos y menores los esfuerzos y empujes y, consecuentemente, la sección del cable; y viceversa, para una flecha y longitud menores se producirán unos esfuerzos mayores y se necesitará un cable de mayor sección y por tanto más pesado. El valor óptimo del cociente flecha/luz es el que hace mínimo el volumen del cable. En el caso de cables uniformemente cargados este cociente es 1/3. Sin embargo, no es aconsejable adoptar este valor ya que supone unos empujes tan grandes que harían antieconómico cualquier tipo de apoyo o anclaje. Se considera óptima la relación 1/8 a 1/10 para puentes colgantes y 1/10 a 1/20 para edificios.
ESTABILIDAD Debido a su falta de rigidez, las estructuras formadas por cables deben estabilizarse frente a los cambios constantes de forma producidos por la variación de las cargas así como frente al efecto dinámico del viento. Supongamos una cubierta horizontal formada por cables. Cuando sopla el viento sobre ella produce una succión que hará subir la estructura si la carga muerta es menor. A medida que va subiendo las fuerzas varían y el comportamiento de la estructura vuelve a cambiar como respuesta al nuevo sistema de cargas. El proceso es cíclico y no se detendrá mientras haya viento. Si la acción dinámica actúa en el nivel de frecuencia propia de la estructura, ésta entrará en resonancia, produciéndose vibraciones violentas y, por tanto, grandes daños llegando incluso al colapso total.
Hay varios procedimientos para estabilizar los cables Incrementando la carga muerta de la estructura Aumentan las tracciones en el cable y varía la frecuencia propia evitando, al mismo tiempo, las deformaciones asimétricas. Anclando con tirantes los cables de la cubierta En algunos puntos de la misma para sujetarla al terreno Disponiendo superficies de cables cruzados (Inicialmente pretensados) con curvaturas opuestas.
Por medio de elementos rígidos Como vigas o arcos Utilizando un sistema de doble capa Conectando al cable principal uno secundario, mediante unos elementos interiores que pueden estar traccionados (cable secundario debajo del principal) o comprimidos (cable secundario encima del principal). Ambos cables estarán pretensados, de manera que, una vez colocados, disminuirá la tracción en el cable superior y aumentará en el inferior. Las cargas exteriores junto con las de pretensado originan grandes esfuerzos horizontales en los apoyos, que se absorben por medio de tirantes o por medio de un anillo comprimido de acero.
estructura de cables ESTRUCTURA ATIRANTADAS
Es la estructura a tensión típica Son muy flexibles y cambian de forma bajo la acción de cargas concentradas No poseen rigidez a la flexión, ni resisten fuerzas de compresión . Bajo la acción de fuerzas concentradas grandes, se deforma, pierde su perfil original y alcanza el denominado polígono funicular. CABLES PARALELOS
Cuando las cargas son más repartidas se obtienen formas curvas, como la parábola, comúnmente presentada en los puentes colgantes. Para mantener el equilibrio reacción vertical + reacción horizontal hacia afuera.
Cables Radiales Se observa la presencia de un anillo perimetral comprimido (generalmente de hormigón ). Requiere un anillo o tambor central donde anclan los cables, traccionado , (generalmente de acero). El cable puede ser exclusivo para cada carga o bien puede pasar por varias cargas sucesivamente.
Cables Biaxiales El cable estará trabajando en tracción pura . Estructuras ligeras aptas para cubrir grandes luces. No constituye una estructura auto portante, el diseño exigirá estructuras auxiliares . Pueden tener un estado de tensión -unidimensional: en su forma recta se encuentra el cable tensado, y en los curvos la forma catenaria. - bidimensional.
Celosías de CABLES Sistema triangulado compuesto por elementos estructurales (normalmente) rectos interconectados . Los elementos individuales se interconectan en los nudos; que se suelen considerar uniones nominalmente articuladas . El esfuerzo principal sobre cada elemento es traccion o compresion Cuando las uniones de los nudos son rígidas, se introduce una flexión secundaria.
APOYOS Para transmitir adecuadamente los empujes horizontal y vertical de los extremos del cable al terreno pueden adoptarse varios sistemas . SISTEMAS
Mediante Pilares V erticales J unto con una Viga de Borde T riangulada. Apoyada en fachada o mediante anillos circulares a compresión en el caso de estructuras radiales. Con esta solución desaparece el problema de la cimentación, puesto que ya no está traccionada .
Mediante S oportes Verticales En este caso el empuje horizontal debe ser resistido por el soporte que actúa como una viga en voladizo. A la hora de diseñar la cimentación deberá tenerse en cuenta, necesariamente, el momento inducido en la base del soporte a causa del citado empuje. Esta solución sólo es viable para cables ligeramente cargados y con vanos relativamente cortos.
Mediante Postes A tirantados o Tornapuntas. Cuando los postes son verticales el empuje horizontal del cable pasa directamente al tirante que transfiere la fuerza al terreno. El poste sólo trabaja a compresión (suma de la componente vertical de los cables de la cubierta y de los cables de los tirantes). En este caso la cimentación de los tirantes es compleja, ya que están muy solicitados. Este sistema suele utilizarse para cables que cubren vanos relativamente grandes .
Mediante Postes Inclinados Atirantados . Parte del empuje horizontal va al poste y parte al tirante, reduciendo las fuerzas en éste último y simplificando su Tirantes Cables cruzados Elementos rígidos Sistemas doble capa cimentación, aunque se tiene que aumentar la sección del poste. Esta solución es apropiada para cables de gran luz.
Mediante Soportes Inclinados o en V Invertida . Se disminuye las acciones sobre la cimentación
EJEMPLOS CONSTRUCCIONES ESTRUCTURAS DE CABLES
GOLDEN GATE EN EU- SAN FRANCISCO
Atraviesa el Lago Paranoá en Brasilia , Distrito Federal, capital de Brasil. PUENTE JUSCELINO KUBITSCHEK
Los cables que sostienen el puente flotante están formados por 37 mil alambres de acero ultrarresistente cuya longitud, si los juntásemos uno detrás de otro, darían siete vueltas y media a la Tierra. PUENTE DE AKASHI-KAIKYO, JAPON
Viaducto de millau
El transporte a cable es un instrumento adecuado, en ocasiones el unico , para resolver determinadas necesidades de transporte. TRANSPORTE POR CABLE
Puente colgante
tirolesa
Torre atirantada
El puente colgante más alto del mundo se llama Baluarte Bicentenario y ha sido construido en la cordillera conocida como el Espinazo del Diablo, parte de la Sierra Madre Occidental de México. Este jueves, el presidente mexicano Felipe Calderón participó en la parte final de la construcción de la estructura que une a los estados de Durango y Sinaloa (al noroeste del país). El puente cruza un precipicio de 402 metros sobre el río Baluarte. Gracias a 152 tirantes de acero se extiende a lo largo de 1,124 metros, y su claro central es de 520 metros. Puente baluarte