Etching, Diffusion, and Ion Implantation in Semiconductor Fabrication

gsvirdi07 13 views 44 slides Nov 02, 2025
Slide 1
Slide 1 of 44
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44

About This Presentation

This lecture by Dr. G. S. Virdi, Ex-Chief Scientist, CSIR-Central Electronics Engineering Research Institute, Pilani, provides a comprehensive overview of three key processes in semiconductor device fabrication—etching, diffusion, and ion implantation.

The lecture begins with an in-depth discussi...


Slide Content

Etching-Diffusion & Ion Implantation
Dr.G.S.Virdi
Ex.Chief Scientist
CSIR-Central Electronics Engineering Research Institute
Pilani—33303 1,India

Etchingistheprocesswhereunwantedareasof
filmsareremovedbyeitherdissolvingthemina
wetchemicalsolution(WetEtching)orbyreacting
themwithgasesinaplasmatoformvolatile
products(DryEtching).
Resistprotectsareaswhicharetoremain.In
somecasesahardmask,usuallypatternedlayers
ofSiO
2orSi
3N
4,areusedwhentheetchselectivity
tophoto-resistislowortheetchingenvironment
causesresisttodelaminate.
Thisispartoflithography-patterntransfer.
Etching
Dr.G.S.VIRDI

Toremovematerialfromareasidentifiedbythelithographyprocess
Tocreatestructuresforfunctionaluse
Toremoveoxidelayersbelowfeaturestoallowformotion
NecessityofEtching
Dr.G.S.VIRDI

Etchingisdoneeitherin“dry”or“wet”methods:
•Wetetchingusesliquidetchantswithwafersimmersedinetchantsolution
•Wetetchischeapandsimple,buthardtocontrol(notreproducible),notpopularfor
Nanoforpatterntransferpurpose
•Dryetchingusesgasphaseetchantsinaplasma,bothchemicalandphysical
(sputteringprocess)
•Dryplasmaetchcanbeusedformanydielectricmaterialsandsomemetals(Al,Ti,
Cr,Ta,W…).
•Forothermetals,ionmilling(Ar
+
)canbeused,butwithlowetchingselectivity.(asa
result,formetalsthatcannotbedry-etched,itisbettertopatternthemusingliftoff)
Generally,chemicaletchinghashighselectivity,physicaletching
(sputtering,milling)haslowselectivity.
EtchingMethods
Dr.G.S.VIRDI

Etchingisconsistedof3processes:
•Masstransportofreactants(throughaboundarylayer)tothesurfacetobeetched
•Reactionbetweenreactantsandthefilmtobeetchedatthesurface
•Masstransportofreactionproductsfromthesurfacethroughthesurfaceboundary
layer
EtchingBasic
Dr.G.S.VIRDI

FiguresofMerit
Selectivity
Blue:layertoremain
1. Apoorlyselectiveetchremovesthetoplayer,
butalsoattackstheunderlyingmaterial.
2. Ahighlyselectiveetchleavestheunderlying
materialunharmed
Isotropy
Red:maskinglayer;
yellow:layertoberemoved
1.Aperfectlyisotropicetchproducesround
sidewalls.
2.Aperfectlyanisotropicetchproducesvertical
sidewalls

FiguresofMerit
Dr.G.S.VIRDI

Isotropicvs.Anisotropic
Generallyspeaking,chemicalprocess(wetetch,plasmaetch)leadstoisotropicetch;whereas
physicalprocess(directionalenergeticbombardment)leadstoanisotropicetch.
Isotropic:
•Besttousewithlargefeatureswhensidewallslopedoesnotmatter,andtoundercutthe
mask(foreasyliftoff).
•Largecriticaldimension(CD,i.e.featuresize)loss,generallynotfornano-fabrication.
•Quick,easy,andcheap.
Anisotropic:
•Bestformakingsmallfeatureswithverticalsidewalls,preferredpatterntransfermethod
fornano-fabricationandsomemicro-fabrication.
•Typicallymorecostly.
Dr.G.S.VIRDI

WetChemicalEtching:
Regionsinthewaferare“dissolved”awaybychemicalreactions.
Techniquecannotproducesharp“sidewalls,”sinceetchingisisotropic.
Wetchemicaletchingisusedforproductswithfeaturesizesgreaterthan2µm
WetChemicalEtching/WetEtching
Etchingrate:
•Theetchratecanbecontrolledbyanyofthethreeserialprocesses(reactantstransporttothesurface,
reaction,reactionproductstransportfromthesurface).
•Preferenceistohavereactionratecontrolledprocessbecause
oEtchratecanbeincreasedbytemperature
oGoodcontroloverreactionrate–temperatureofaliquidiseasytocontrol
•Masstransportcontrolwillresultinnon-uniformetchrate:edgeetchesfaster.
Dr.G.S.VIRDI

WetChemicalEtching/WetEtching
Advantages:
Damage-freefinishtowafersurfacewheresurfacemorphologyistypicallysmooth
andshiny
Fastetchrateespeciallyforblanketetch(μm/min)
Etchingisonlychemical:greatselectivity
Simpleanddirectetchingprocesssincesimpleresistcanbeusedasetchmask
processoccuratatmosphericenvironment
Cheapercost
Highetchselectivityeasilyavailableforetchants,resistandetchedmaterials
goodetchuniformityacrosswafer
Disadvantages:
Isotropicetching
Nocontrolforprecisionetching
Notwellsuitedfornanostructures.
Poorprocesscontrol,
Notwellreproducible.
Dr.G.S.VIRDI

ApplicationofWetProcess
Siliconetching:
Forsemiconductormaterials,wetchemicaletchingusuallyproceedbyoxidation
followedbythedissolutionoftheoxidebyachemicalreaction.
Forsilicon,themostcommonlyusedetchantsaremixtureofnitricacid(HNO
3)and
hydrofluoricacid(HF)inwateroraceticacid(CH
3COOH)
Si+4HNO
3→SiO
2+2H
2O+4NO
2
HydrofluoricacidisusedtodissolvetheSiO
2layer
SiO
2+6HF→H
2SiF
6+2H
2O
Silicondioxideetching:
DilutesolutionofHFwithorwithouttheadditionofammoniumfluoride(NH
4F)isused
forwetetching.
Dr.G.S.VIRDI

SiliconnitrideandPoly-siliconEtching:
SiliconnitridefilmsareetchableatroomtemperatureinconcentratedHForbuffered
HFandinaboilingH
3PO
4solution.
Selectiveetchingofnitridetooxideisdonewith85%H
3PO
4at180
o
Cbecausethis
solutionattackssilicondioxideveryslowly.Siliconrateforsiliconnitrideis10nm/min
butlessthan1nm/minforsilicondioxide
GalliumArsenideEtching:
ThemostcommonlyusedetchantsaretheH
2SO
4-H
2O
2-H
2OandH
3PO
4-H
2O
2-H
2O.
Foranetchantwithan8:1:1volumerationofH
2SO
4:H
2O
2-H
2O,theetchrateis0.8
µm/minfor<111>Gafaceand1.5µm/minforallotherfaces.
ApplicationofWetProcess
Dr.G.S.VIRDI

IndryEtching,materialremovalreactionsoccurinthegasphase.
Itcanbeplasmaornon-plasmabased.
Advantages
Eliminateshandlingofdangerousacidsandsolvents
Usessmallamountsofchemicals
Isotropicoranisotropicetchprofiles
Faithfulpatterntransferintounderlyinglayers(littlefeaturesizeloss)
DirectionaletchingwithoutusingthecrystalorientationofSi
Highresolutionandcleanliness
Lessundercutting
Nounintentionalprolongationofetching
Betterprocesscontrol
Easeofautomation
Disadvantages:
Somegasesarequitetoxicandcorrosive
Re-depositionofnovolatilecompounds
Needforspecialisedexpensiveequipment
DryEtching
Dr.G.S.VIRDI

TypesofDryEtching
•Non-plasmabased-usesspontaneousreactionofappropriatereactive
gasmixture.
•Plasmabased-usesradiofrequency(RF)powertodrivechemical
reaction.
Dr.G.S.VIRDI

15
15
Non-Plasma based Dry Etching
•XeF
2isawhitepowder,withvaporpressure
3.8Torrat25
o
C.
•Typicaletchrate1μm/min
•Heatisgeneratedduringexothermicreaction
2XeF
2+Si2Xe(g)+SiF
4(g)
PopularforMEMSapplication.
IsotropicetchingofSi
TypicallyF-containinggases(fluoridesorinterhalogens)thatreadilyetchSi
Highselectivitytomaskinglayers
Noneedforplasmaprocessingequipment
Highlycontrollableviatemperatureandpartialpressureofreactants
Xenondi-fluoride(XeF
2)etchingofSi:
MEMS:microelectromechanicalsystems
Dr.G.S.VIRDI

WhatisaPlasma?
Aplasmaisapartiallyionizedgasmadeupofequalpartspositivelyandnegatively
chargedparticles.
Plasmasaregeneratedbyflowinggasesthroughanelectricormagneticfield.
Plasmaconsistsof:ionized
atoms/molecules+freeelectrons,
freeradicals(neutral).
Variousreactionsandspecies
presentinaplasma
Dr.G.S.VIRDI

PlasmaEtching
•Twocomponentsexistedinplasma
oIonicspeciesresultsindirectionaletching.
oChemicalreactivespeciesresultsinhighetchselectivity.
•Controloftheratioofionic/reactivecomponentsinplasmacanmodulatethedry
etchingrateandetchingprofile.
Dr.G.S.VIRDI

Chemical
Process Physica l Process
Wet
etching
Plasma
etching
Reactive
Ion
etching
High
density
plasma
etching
Ion
milling
&
Sputter
etching
Selectivity
Pressure
Energy(power)
Anisotropicity
PlasmaEtchingTypes
•Chemicaletching:freeradicalsreactwithmaterialtoberemoved.E.g.plasmaetchingathigh
pressurecloseto1Torr.
•Physicaletchingorsputtering:ionicspecies,acceleratedbythebuilt-inelectricfield(self-bias),
bombardthematerialstoberemoved.E.g.sputtercleaningusingArgasinsputterdeposition
system.
•Ionenhancedetching:combinedchemicalandphysicalprocess,highermaterialremovalrate
thaneachprocessalone.E.g.reactiveionetching(RIE),whichisthemostwidelyuseddry
etchingtechnique.

PlasmaEtching(Chemical)
•Inaplasma,reactiveneutralchemical
species(freeradicals,e.g.Fatomsor
molecularspeciesCF
3)aremainly
responsibleforthechemicalreactiondue
totheirmuchgreaternumberscompared
toions.
•Thosefreeradicalsaremoreabundant
thanionsbecause:
1)theyaregeneratedatlowerthreshold
energy(e.g.<8eV;incomparison,Aris
ionizedat15.7eV);and
2)they(unchargedradicals)havelonger
lifetimeintheplasma.
•Theneutralradicalsarriveatcathode
surfacebydiffusion(thusnon-
directional).
Duetotheirincompletebonding,
freeradicalsarehighlyreactive
chemicalspecies.
Chemicaletching
Dr.G.S.VIRDI

•Duetotheirincompletebonding(incompleteoutershells),freeradicals(neutral,
e.g.CF
3andFfromCF
4plasma)arehighlyreactivechemicalspecies.
•Freeradicalsreactwithfilmtobeetchedandformvolatileby-products.
Purechemicaletchisisotropicornearly
isotropic,andtheetchingprofiledepends
onarrivalangleandstickingcoefficients
offreeradicals.
PlasmaEtching(Chemical)
Dr.G.S.VIRDI

Advantages:
Lowerchemicalcosts
Reducedenvironmentalimpact
Greatercleanliness
Greaterpotentialforproduction-lineautomation.
Disadvantages:
Plasmaetchhaslowerselectivitythanwetetching
Purechemicaletchisisotropicornearlyisotropic
HighRFlevelscancausedamagetothewafer
PlasmaEtching(Chemical)
Dr.G.S.VIRDI

PlasmaEtching(Physical)
Physicallybombardthefilmstobeetchedwithenergizedchemically
inertionsoratoms
Materialisremovedbyionbombardmentofthesubstrate.This
processismostoftenusedtopre-cleansubstratespriortodeposition.
Gasdischargeisusedtoenergizechemicallyinertionsoratoms(e.g.
Ar)
Highlyanisotropicetching
Damagetounderlyingmaterial—maychangedeviceproperties
RarelyusedinVLSI
Dr.G.S.VIRDI

SputteringEtching/Ion Milling
•Physicalmillingwhenusingheavyinert
gases(Ar).
•Plasmaisusedtogenerateionbeam(Ar
+
),
whichisextractedandacceleratedtoetch
thesample.(i.e.sampleoutsideofplasma)
•Thustheiondensity(determinedbyplasma
source)andionenergy(determinedbyDC
accelerationvoltage–biasbyappliedDC
voltage,notbyRFbiasasinhighdensity
plasmaetchingsystem),canbecontrolled
independently.
•Highaccelerationvoltage(>1kV),leadingto
millrate10-30nm/min.
•UsedwheneverRIEisnotpossible(dueto
thelackofvolatilespeciesformation).
UsuallyemployedtoetchCu,Ni,Au,
superconductingmaterialscontaining
metals…
•Lowpressure10
-4
Torr(>1orderlowerthan
RIE),solargemeanfreepathandlessenergy
lossduetocollision.(suchlowpressure
cannotsustainaplasma,soionmillingisnot
plasmaetching)
Dr.G.S.VIRDI

Figure10-8Problemsassociatedwithsputteretching(oranyetchingthathasahigh
degreeofphysical/ionicetching):a)trenchingatbottomofsidewalls;b)redepositionof
photoresistandothermaterials;c)chargingandionpathdistortion.
24
•Poorselectivity(2:1or1:1),veryanisotropic.
•Sputteringratedependsonsputteryieldswhichcanbeafunctionofincidentangle.
•Problemsincludefaceting(sputteryieldisafunctionofincidentangle),trenching,re-
deposition,chargingandionpathdistortion,radiationdamage.
•Notpopular,etchestooslow,thoughreactivegas(CF
4,CCl
4,O
2)canbeaddedtoslightly
improveselectivityandetchingrate.
SputteringEtching/Ion Milling
Dr.G.S.VIRDI

ReactiveIonEtching(RIE)------Combinationofchemicalandphysicaletching
Directionaletchingduetoionassistance.
PlasmaEtching(Chemical+Physical)

InRIEprocesses,thewaferssitonthe
poweredelectrodesubstratesinalow
pressurehalogen-richenvironment.
Thisplacementsetsupanegative
biasonthewaferwhichaccelerates
positivelychargeions(chemicallyinert
ions)towardthesurface.
Moreover,glowdischargeisusedto
producechemicallyreactivespecies
(atoms,radicals,orions)
Therefore,thematerialcanbe
removedbybothchemicalmeansand
ionbombardmentofthesubstrate
surface.
ReactiveIonEtcing(RIE)

•RIEisananisotropic(duetodirectionalionbombardment)andhighlyselective(dueto
chemicalreaction)etchingprocess.
AnisotropicProfile
HigherEtchRatethaneither
process
Higherselectivityratiothan
physicaletch
Smallerfeaturesizespossible
ToGreatercontrol
widthsandedge
overline
profilesis
possiblewithoxides,nitrides,
poly-siliconandaluminum.
WidelyusedinVLSIfabrication
ReactiveIonEtcing(RIE)

IonEnergyvs.PressureforaPlasma

Chemical—PhysicChem.+Phys.
Purelychemicaletching
(usingonlyreactive
neutralspecies)
Isotropicetching
Chemical+physicaletching
(usingreactiveneutralspecies
andionicspecies)
Anisotropicetching
Physicaletching
(usingionicspecies)

Impuritydopingistheintroductionofcontrolledamountofimpurity
dopantintosemiconductors.
Themaingoalofdopingischangingtheelectricalpropertiesof
semiconductor.
ImportanceofDoping
Formationofp-njunctionandfabricationofdevicesduringwafer
fabrication.
Alterthetypeandlevelofconductivityofsemiconductormaterials.
Formbases,emitters,andresistorsinbipolardevices,aswellas
drainsandsourcesinMOSdevices.
Dopepoly-siliconlayers.
ImpurityDoping

Diffusionandionimplantationarethetwokeymethodsofimpurity
doping
Diffusion:DopantatomsmovefromthesurfaceintoSibythermal
meansviasubstitutionalorinterstitialdiffusionmechanisms.
Ionimplantation:DopantatomsareforcefullyaddedintoSiintheform
ofenergeticionbeaminjection.
Comparisonof(a)diffusionand(b)ionimplantationtechniquesfortheselective
introductionofdopantsintothesemiconductorsubstrate.
DopingTechniques

Figure1:Comparisonofthermaldiffusionandionimplantationforselectivelyintroducing
impuritiesintothesurfaceregionofasemiconductorwafer.ImpurityconcentrationCvaries
withdepthx
DiffusionandIonimplantation

DopantSources

WhatisDiffusion?
Simplediffusionofasubstance(blue)duetoaconcentrationgradientacrossasemi-
permeablemembrane(pink).
Basically,theprocesshappensasaresultoftheconcentration
gradient.
Diffusionprocessiscarriedoutinsystemscalled“diffusionfurnaces”.
Itisfairlyexpensiveandveryaccurate.
Therearethreemainsourcesofdopants:gaseous,liquid,andsolids
thegaseoussourcesaretheonemostwidelyusedinthistechnique
(Reliableandconvenientsources:BF
3,PH
3,AsH
3).
Inthisprocess,thesourcegasreactswithoxygenonthewafersurface
resultinginadopantoxide.Next,itdiffusesintoSilicon,formingan
uniformdopantconcentrationacrossthesurface.

DiffusionSteps
Therearetwomainstepsofdiffusionasfollows.Thesestepsareusedtocreatedoped
regions.
Pre-deposition(fordosecontrol)
Inthisstep,desireddopantatomsare
controllablyintroducedontothetargetfrom
methodssuchasgasphasediffusions,and
solidphasediffusions.
Drive-in(forprofilecontrol)
Oncethedopantatomshavearrivedonthewafer
surface,theyneedtoberedistributedintothebulk.
Thisprocessiscalleddrive-in.Inthisstep,the
introduceddopantsaredrivendeeperintothe
substancewithoutintroducingfurtherdopant
atoms.

PhosphorusDiffusion
Anexampleofthechemicalreactionforphosphorusdiffusionusingaliquidsourceis
4POCl
3+3O
2→2P
2O
5+6Cl
2
TheP
2O
5formsaglassonsiliconwaferandisthenreducedtophosphorusbysilicon:
2P
2O
5+5Si→4P+5SiO
2
Thephosphorusisreleasedanddiffuseintothesilicon,andCl
2isvented.
Schematicdiagramofatypicalopentube
diffusionsystem

IonImplantation
Ionimplantationisalow-temperatureprocessusedtochangethechemicaland
physicalpropertiesofamaterial.
Thisprocessinvolvestheaccelerationofionsofaparticularelementtowardsatarget
toalterthechemicalandphysicalpropertiesofthetarget.
Thistechniqueismainlyusedinsemiconductordevicefabrications.
AdvantagesofIonImplantationTechnique
Theadvantagesofionimplantationincludeprecisecontrolofdoseanddepthofthe
profile/implantation.
Itisalow-temperatureprocessthatoperatesclosetoroomtemperature,sothereisno
needforheat-resistantequipment.
Otheradvantagesincludeawideselectionofmaskingmaterialsandexcellentlateral
doseuniformity.

Figure17:Schematicoftheionimplantationprocess.Dopantatomsareionizedbybombarding
withelectrons.Thesearethenisolated,accelerated,andthenimpingedonthewafer. Thereis
alsoascanningsystemthatallowstheionbeamtoscanoverthewafersurface.Adaptedfrom
Fundamentalsofsemiconductormanufacturing andprocesscontrol-MayandSpanos.
IonImplantationProcess

Inionimplantation,dopantatomsareionized,isolated,acceleratedand
madetoimpingeonthewafersurface.
Ionimplantationequipmentshouldcontainanionsource.
Thesourcematerialisusuallyintheformofagase.g.AsH3,PH3,and
BF3aresomecommonsources.
Similarly,elementalsourceslikeAsandParealsousedassolid
sources.
Thisionsourceproducesionsofthedesiredelement.
Theionsarethenseparatedusingamassanalyzer,whichisa90◦
magnet,whichbendstheionsdependingonthemass.
Afterselection,thedesiredionsarethenacceleratedandmadeto
impingeonthewafersurface
Beamscanningorrasteringisalsopossibleusingelectricfieldcoilsto
deflecttheionbeams.
Theseionsstrikethetarget,whichisthematerialtobeimplanted.
IonImplantationProcess

Eachioniseitheranatomoramolecule.
Thepenetrationdepthoftheionsdependontheirenergy(changedby
theacceleratingfield).
Theamountofionsimplantedonthetargetisknownasthedose.
However,sincethecurrentsuppliedfortheimplantationissmall,the
dosethatcanbeimplantedatagiventimeperiodisalsosmall.
Thereforethistechniqueisusedwheresmallerchemicalchangesare
required.
IonImplantationProcess

Onemajorapplicationofionimplantationisthedopingofsemiconductors.
Ionimplantationisespeciallyusefulwithdevicescaling.
Itcanalsobeusedtodopesmallregions.
Itisusuallyusedlaterintheprocessflowwhenthermalbudgetsaretightandthehigh
temperatureofthermaldiffusionisnotallowed.
Theconcentrationprofileforionimplantationisshowninfigure18.Themaximum
concentrationisatacertaindepthbelowthesurface,calledrange.Inthermaldiffusion,
themaximumconcentrationisatthesurfaceandtheconcentrationdecreaseswithdepth.
IonImplantationProcess

EffectofIonImplantation
Inionimplantation,sincethewafersurfaceisimpactedbyhighenergy
ions,itcancausedamagebyknockingSiatomsfromtheirposition,
causinglocalstructuraldamage.
Thisneedsapostthermalannealingtreatmenttorepairthedamage.
Therearetwowaysofdoingthis.
1.Tubefurnace-lowtemperatureannealing(600-1000◦C).Tominimize
lateraldiffusion.
2.Rapidthermalannealing-highertemperaturesarepossiblebutfor
shortertimes.

DiffusionandIonimplantation

Thank You…
Dr.G.S.VIRDI
Tags